Transfer matrices for the totally asymmetric simple exclusion process
Abstract
We consider the totally asymmetric simple exclusion process (TASEP) on a finite lattice with open boundaries. We show, using the recursive structure of the Markov matrix that encodes the dynamics, that there exist two transfer matrices $T_{L−1,L}$ and $\tilde T_{L−1,L}$ that intertwine the Markov matrices of consecutive system sizes:$\tilde T_{L−1,L}$$M_{L−1} = M_LT_{L−1,L}$. This semi-conjugation property of the dynamics provides an algebraic counterpart for the matrix-product representation of the steady state of the process.
Origin : Files produced by the author(s)
Loading...