Transfer matrices for the totally asymmetric simple exclusion process - Archive ouverte HAL Access content directly
Journal Articles Journal of Physics A: Mathematical and Theoretical Year : 2010

Transfer matrices for the totally asymmetric simple exclusion process

(1) , (2)
1
2

Abstract

We consider the totally asymmetric simple exclusion process (TASEP) on a finite lattice with open boundaries. We show, using the recursive structure of the Markov matrix that encodes the dynamics, that there exist two transfer matrices $T_{L−1,L}$ and $\tilde T_{L−1,L}$ that intertwine the Markov matrices of consecutive system sizes:$\tilde T_{L−1,L}$$M_{L−1} = M_LT_{L−1,L}$. This semi-conjugation property of the dynamics provides an algebraic counterpart for the matrix-product representation of the steady state of the process.
Fichier principal
Vignette du fichier
Woe1.pdf (146.32 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

cea-02924648 , version 1 (28-08-2020)

Identifiers

Cite

Marko Woelki, Kirone Mallick. Transfer matrices for the totally asymmetric simple exclusion process. Journal of Physics A: Mathematical and Theoretical, 2010, 43 (18), pp.185003. ⟨10.1088/1751-8113/43/18/185003⟩. ⟨cea-02924648⟩
23 View
43 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More