Geodesy and metrology with a transportable optical clock
Abstract
Optical atomic clocks, due to their unprecedented stability and uncertainty, are already being used to test physical theories and herald a revision of the International System of Units. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations. Here, we report the first field measurement campaign with a transportable $^{87}$Sr optical lattice clock. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a $^{171}$Yb lattice clock also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.
Domains
Engineering Sciences [physics]
Origin : Files produced by the author(s)