Computing the rates of measurement-induced quantum jumps

Abstract : Small quantum systems can now be continuously monitored experimentally which allows for the reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of jumps between the eigenstates of the observable which is measured. Using the Stochastic Master Equation (SME) formalism for continuous quantum measurements, we show that the density matrix of a system indeed shows a jumpy behavior when it is subjected to a tight measurement (even if the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to two simple examples. We then discuss the mathematical, foundational and practical applications of our results. The analysis we present is based on a study of the strong noise limit of a class of stochastic differential equations (the SME) and as such the method may be applicable to other physical situations in which a strong noise limit plays a role.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48, pp.25FT02. 〈10.1088/1751-8113/48/25/25FT02〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal-cea.archives-ouvertes.fr/cea-01626690
Contributeur : Emmanuelle De Laborderie <>
Soumis le : mardi 31 octobre 2017 - 10:53:20
Dernière modification le : mercredi 21 mars 2018 - 18:56:42
Document(s) archivé(s) le : jeudi 1 février 2018 - 12:45:58

Fichier

1410.7231.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Michel Bauer, Denis Bernard, Antoine Tilloy. Computing the rates of measurement-induced quantum jumps. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2015, 48, pp.25FT02. 〈10.1088/1751-8113/48/25/25FT02〉. 〈cea-01626690〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

15