Stochastic spikes and strong noise limits of stochastic differential equations

Abstract : Motivated by studies of indirect measurements in quantum mechanics, we investigate stochastic differential equations with a fixed point subject to an additional infinitesimal repulsive perturbation. We conjecture, and prove for an important class, that the solutions exhibit a universal behavior when time is rescaled appropriately: by fine-tuning of the time scale with the infinitesimal repulsive perturbation, the trajectories converge in a precise sense to spiky trajectories that can be reconstructed from an auxiliary time-homogeneous Poisson process. Our results are based on two main tools. The first is a time change followed by an application of Skorokhod's lemma. We prove an effective approximate version of this lemma of independent interest. The second is an analysis of first passage times, which shows a deep interplay between scale functions and invariant measures. We conclude with some speculations of possible applications of the same techniques in other areas.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger
Contributeur : Emmanuelle De Laborderie <>
Soumis le : lundi 30 octobre 2017 - 16:09:03
Dernière modification le : jeudi 21 mars 2019 - 13:09:53
Document(s) archivé(s) le : mercredi 31 janvier 2018 - 13:31:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : cea-01626332, version 1
  • ARXIV : 1705.08163


Michel Bauer, Denis Bernard. Stochastic spikes and strong noise limits of stochastic differential equations. 2017. 〈cea-01626332〉



Consultations de la notice


Téléchargements de fichiers