Equilibration properties of small quantum systems: further examples

Abstract : It has been proposed to investigate the equilibration properties of a small isolated quantum system by means of the matrix of asymptotic transition probabilities in some preferential basis. The trace $T$ of this matrix measures the degree of equilibration of the system prepared in a typical state of the preferential basis. This quantity may vary between unity (ideal equilibration) and the dimension $N$ of the Hilbert space (no equilibration at all). Here we analyze several examples of simple systems where the behavior of $T$ can be investigated by analytical means. We first study the statistics of $T$ when the Hamiltonian governing the dynamics is random and drawn from a distribution invariant under the group U$(N)$ or O$(N)$. We then investigate a quantum spin $S$ in a tilted magnetic field making an arbitrary angle with the preferred quantization axis, as well as a tight-binding particle on a finite electrified chain. The last two cases provide examples of the interesting situation where varying a system parameter -- such as the tilt angle or the electric field -- through some scaling regime induces a continuous transition from good to bad equilibration properties.
Type de document :
Pré-publication, Document de travail
t17/021. 30 pages, 8 figures, 3 tables. 2017
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

Contributeur : Emmanuelle De Laborderie <>
Soumis le : mardi 7 mars 2017 - 15:32:39
Dernière modification le : jeudi 15 mars 2018 - 15:05:49
Document(s) archivé(s) le : jeudi 8 juin 2017 - 14:28:39


Fichiers produits par l'(les) auteur(s)


  • HAL Id : cea-01484658, version 1
  • ARXIV : 1702.05909


J. M. Luck. Equilibration properties of small quantum systems: further examples. t17/021. 30 pages, 8 figures, 3 tables. 2017. 〈cea-01484658〉



Consultations de la notice


Téléchargements de fichiers