Cuts from residues: the one-loop case

Abstract : Using the multivariate residue calculus of Leray, we give a precise definition of the notion of a cut Feynman integral in dimensional regularization, as a residue evaluated on the variety where some of the propagators are put on shell. These are naturally associated to Landau singularities of the first type. Focusing on the one-loop case, we give an explicit parametrization to compute such cut integrals, with which we study some of their properties and list explicit results for maximal and next-to-maximal cuts. By analyzing homology groups, we show that cut integrals associated to Landau singularities of the second type are specific combinations of the usual cut integrals, and we obtain linear relations among different cuts of the same integral. We also show that all one-loop Feynman integrals and their cuts belong to the same class of functions, which can be written as parametric integrals.
Type de document :
Pré-publication, Document de travail
t17/019 2017
Liste complète des métadonnées

Littérature citée [70 références]  Voir  Masquer  Télécharger
Contributeur : Emmanuelle De Laborderie <>
Soumis le : mercredi 15 février 2017 - 16:25:03
Dernière modification le : mercredi 23 janvier 2019 - 14:39:04
Document(s) archivé(s) le : mardi 16 mai 2017 - 15:05:50


Fichiers produits par l'(les) auteur(s)


  • HAL Id : cea-01468660, version 1
  • ARXIV : 1702.03163


Samuel Abreu, Ruth Britto, Claude Duhr, Einan Gardi. Cuts from residues: the one-loop case. t17/019 2017. 〈cea-01468660〉



Consultations de la notice


Téléchargements de fichiers