Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Resolving the Structure of Black Holes: Philosophizing with a Hammer

Abstract : We give a broad conceptual review of what we have learned about black holes and their microstate structure from the study of microstate geometries and their string theory limits. We draw upon general relativity, supergravity, string theory and holographic field theory to extract universal ideas and structural features that we expect to be important in resolving the information problem and understanding the microstate structure of Schwarzschild and Kerr black holes. In particular, we emphasize two conceptually and physically distinct ideas, with different underlying energy scales: a) the transition that supports the microstate structure and prevents the formation of a horizon and b) the representation of the detailed microstate structure itself in terms of fluctuations around the transitioned state. We also show that the supergravity mechanism that supports microstate geometries becomes, in the string theory limit, either brane polarization or the excitation of non-Abelian degrees of freedom. We thus argue that if any mechanism for supporting structure at the horizon scale is to be given substance within string theory then it must be some manifestation of microstate geometries.
Complete list of metadatas
Contributor : Emmanuelle de Laborderie <>
Submitted on : Friday, April 4, 2014 - 11:46:20 AM
Last modification on : Monday, May 4, 2020 - 5:04:02 PM

Links full text


  • HAL Id : cea-00973465, version 1
  • ARXIV : 1311.4538



Iosif Bena, Nicholas P. Warner. Resolving the Structure of Black Holes: Philosophizing with a Hammer. 2013. ⟨cea-00973465⟩



Record views