Charge regulation at a nanoporous two-dimensional interface - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue ACS Omega Année : 2021

Charge regulation at a nanoporous two-dimensional interface

Résumé

In this work, we have studied the pH-dependent surface charge nature of nanoporous graphene. This has been investigated by membrane potential and by streaming current measurements, both with varying pH. We observed a lowering of the membrane potential with decreasing pH for a fixed concentration gradient of potassium chloride (KCl) in the Donnan dominated regime. Interestingly, the potential reverses its sign close to pH 4. The fitted value of effective fixed ion concentration (C̅R) in the membrane also follows the same trend. The streaming current measurements show a similar trend with sign reversal around pH 4.2. The zeta potential data from the streaming current measurement is further analyzed using a 1-pK model. The model is used to determine a representative pK (acid–base equilibrium constant) of 4.2 for the surface of these perforated graphene membranes. In addition, we have also theoretically investigated the effect of the PET support in our membrane potential measurement using numerical simulations. Our results indicate that the concentration drop inside the PET support can be a major contributor (up to 85%) for a significant deviation of the membrane potential from the ideal Nernst potential.
Fichier principal
Vignette du fichier
Ghosh-acsomega-6-2487-2493-2021.pdf (1.21 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03149568 , version 1 (26-11-2021)

Identifiants

Citer

Mandakranta Ghosh, Moritz Junker, Robert van Lent, Lukas Madauss, Marika Schleberger, et al.. Charge regulation at a nanoporous two-dimensional interface. ACS Omega, 2021, 6 (4), pp.2487-2493. ⟨10.1021/acsomega.0c03958⟩. ⟨hal-03149568⟩
72 Consultations
20 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More