The Electrode‐Ferroelectric Interface as the Primary Constraint on Endurance and Retention in HZO‐Based Ferroelectric Capacitors - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Advanced Functional Materials Année : 2023

The Electrode‐Ferroelectric Interface as the Primary Constraint on Endurance and Retention in HZO‐Based Ferroelectric Capacitors

Résumé

Abstract Ferroelectric hafnium‐zirconium oxide is one of the most relevant CMOS‐compatible materials for next‐generation, non‐volatile memory devices. Nevertheless, performance reliability remains an issue. With TiN electrodes (the most reported electrode material), Hf‐Zr‐based ferroelectric capacitors struggle to provide reliable retention due to electrode‐ferroelectric interface interactions. Although Hf‐Zr‐based ferroelectric capacitors are fabricated with other electrodes, the focus is predominantly directed toward obtaining a large ferroelectric response. The impact of the electrodes on data retention for these ferroelectrics remains underreported and greater insight is needed to improve device reliability. Here, a comprehensive set of electrodes are evaluated with emphasis on the core ferroelectric memory reliability metrics of endurance, retention, and imprint. Metal‐ferroelectric‐metal capacitors comprised of a Hf 0.5 Zr 0.5 O 2 layer deposited between different combinations of nitride (TiN, TiAlN, and NbN), pure metal (W), and oxide (MoO 2 , RuO 2 , and IrO 2 ) top and bottom electrodes are fabricated for the investigation. From the electrical, physical, and structural analysis, the low reactivity of the electrode with the ferroelectric is found to be key for improved reliability of the ferroelectric capacitor. This understanding of interface properties provides necessary insight for the broad implementation of Hf‐Zr‐based ferroelectrics in memory technology and, overall, boosts the development of next‐generation memories.

Dates et versions

cea-04459879 , version 1 (15-02-2024)

Identifiants

Citer

Ruben Alcala, Monica Materano, Patrick Lomenzo, Pramoda Vishnumurthy, Wassim Hamouda, et al.. The Electrode‐Ferroelectric Interface as the Primary Constraint on Endurance and Retention in HZO‐Based Ferroelectric Capacitors. Advanced Functional Materials, 2023, 33 (43), ⟨10.1002/adfm.202303261⟩. ⟨cea-04459879⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More