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Introduction

Fusion devices are a promising solution for a new source of energy. Fusion power plants would present

a lot of advantages, among others: large amount of released energy, accessible feedstock supply, and

little nuclear waste. However, using fusion reaction to produce power using a magnetic confinement

is a scientific and technological challenge as it requires a high confinement in the core plasma at the

same time as a good control of plasma exhaust on the material walls.

This work is motivated by the key problematic of power handling in fusion power plants necessary

to avoid damaging or even melting the expensive plasma facing components. The understanding of

the physics underlying heat transport, and more specifically the establishment of the power Scrape-Off

Layer (SOL) width λq, is a critical task for the engineering design of future Tokamak devices such as

ITER ([Loarte 07, Wischmeier 15]) and DEMO ([Wenninger 14]).

In this context, it is mandatory to make reliable predictions for power exhaust in order to correctly

size the future Tokamaks, and, if possible, to take advantage of the physics knowledge to improve the

design of the machine. This calls for a theoretical ground describing the way energy escapes the core

plasma through the separatrix and deposits on the PFCs. Some theoretical and experimental studies

attempt to achieve such a task, however no definitive conclusion have been drawn yet, and it is still

not clear what are the main mechanisms at play.

To achieve this goal, numerical modelling is a necessary complement to experimental results as

the latter give only an incomplete picture of the plasma state due to the difficulties inherent to

measurements in the hot plasma.

The 3D turbulent fluid approach for the edge plasma is an interesting tool to study this problem-

atic leading to international efforts on the development of edge plasma models. The code TOKAM3X

developed at IRFM is a part of this ongoing effort of plasma turbulence modelling. Among others,

the most advanced 3D turbulent codes are BOUT++ [Naulin 08], GBS [Ricci 12], and TOKAM3X

[Tamain 16], and each of this code has its specificity. The code BOUT++, extension of the gradi-

ent driven code BOUT precursor of 3D fluid modelling, includes several additional physics in the

fluid equations, in particular energy conservation, electro-magnetic and kinetic effects. This code

has recently investigated the problematic of the power SOL width with good comparison with ex-

perimental results [Chen 17]. The code GBS includes also important physical features as neutrals

description, electro-magnetic physics, and self-consistent fluctuations of temperature. Recent works

focus on turbulence in non-isothermal limited simulations, in particular describing the effect of the

limiter position on the pressure SOL width [Loizu 14] and discussing a possible explanation for the

narrow feature observed experimentally in L-mode [Halpern 17]. Earlier linear work, has been carried

out on the prediction for the pressure SOL width [Mosetto 13, Mosetto 15] based on non-local linear
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theory [Ricci 10, Ricci 13]. The code TOKAM3X, despite using a simpler physical model, offers the

possibility to use a flexible and complex geometry, including realistic X-points [Galassi 17]. Moreover,

the code has been recently extended to an anisothermal version, the study of this extended model is

one of the focus of this thesis. Note that these 3D codes follow the 2D codes also used to study trans-

port in the edge plasma, in particular the code HESEL [Rasmussen 16] and TOKAM2D [Sarazin 98].

In particular, the code HESEL has produced interesting results on L-H transition, blobs dynamics in

presence of temperature dynamics [Rasmussen 15, Olsen 16].

The study of the physics of power SOL width is one of the long-term objectives of TOKAM3X

and TOKAM2D. However, both codes have been used only in their isothermal version until recently.

One of the aims of this work is to review the general characteristics of energy turbulent structures and

heat transport in the anisothermal versions, and to draw a comparison between turbulence features

in isothermal and anisothermal models.

This PhD work has been dedicated to the study of the different aspects of heat transport in the

edge plasma using a numerical fluid approach. Special focus was devoted to two types of mechanisms

suspected to play an important role in heat transport:

• turbulence established to be a major particle transport player in L-mode plasma. In H-mode,

turbulence strongly reduced in the pedestal and near-SOL. It is thus not clear which is the main

mechanism driving the transport through the separatrix.

• large-scale convective transport, and in particular the role of the magnetic drifts convection.

This mechanism has drawn much attention recently as models based on such mechanisms of

transport present a good agreement with the actual scaling law in the H-mode.

The problem of interest has been approached gradually using different numerical tools. In a first stage,

we have studied separately the two mechanisms:

• the basic properties of turbulence and heat transport in the presence of self-consistent temper-

ature evolution have been studied with the code TOKAM2D (Chapter 3);

• the large scale transport by the magnetic drift in realistic geometry but with a low level of

anomalous transport are studied with the code SolEdge2D (Chapter 4).

Finally, the study of simulations including both mechanisms, is made in the last chapter (Chapter 5).

This work has been done using the code TOKAM3X in its anisothermal version, which solves both

energy turbulence and 3D geometry self-consistently in the same simulation.

Outline of the thesis

In the second chapter of this manuscript, we introduce the fluid model, and detail the assumptions

followed with this approach (high collisionality, drift approximations). We then present the physics

of the open-field lines due to the plasma-wall interaction, which determines the boundary conditions

used in the fluid models. Finally, we detail the derivation of the equations of one of the three code used
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in this thesis: TOKAM3X, as the two others studied codes (TOKAM2D, SolEdge2D) are somehow

included in TOKAM3X model.

The third chapter addresses the basis properties of turbulence in a simplified 2D geometry, and

the impact of the addition of self-consistent temperature variation. First, it is found that the inclu-

sion of temperature does not modify drastically the general features of turbulence, presenting similar

intermittent structures and highly intermittent transport. Nevertheless, the presence of electron tem-

perature fluctuations in the current parallel losses triggers an additional instability, the sheath negative

resistance instability, which acts in conjunction with the interchange drive. The characterisation of

the turbulence, using the input of linear analysis, has revealed that the additional instability has an

impact on turbulence, and also on the perpendicular equilibrium in particular on the power decay

length. The impact of ion temperature fluctuations is studied separately. Its inclusion, even though it

does not trigger a new instability, impacts the turbulence characteristic and the decay length through

the perpendicular balance equation, namely its impact on the vorticity expression.

The fourth chapter is dedicated to the study of large-scale transport due to magnetic drifts in simula-

tions where the turbulence is arbitrarily set via a diffusion coefficient. In this framework, we observe

the existence at low diffusion of a∇B-drift dominated regime in which both transport and SOL widths

are determined entirely by the∇B drift convection. Such a regime exists independently of parameters

and the geometry chosen. However, the latter is also characterized by a complex plasma equilibrium

presenting supersonic transition and steady-state shock. Moreover, this regime is reached only at

extremely low level of transverse transport, way below the neoclassical level. Finally, we discuss the

impact of some additional physics in the drift dominated regime as the addition of the centrifugal

drift, the temperature evolution and the neutral inclusion.

For the fifth and last chapter, we have run TOKAM3X fluid simulations in limiter realistic geometry,

one isothermal and one anisothermal, with the aim to characterize particle and energy turbulence

and transport and to compare the two models. The regime found for this geometry and this set of

parameters is a L-mode like regime, where turbulence is largely dominant both in particle and energy

transport. Here, the contribution of ∇B-drift convection to the global transport is negligible, which

is in agreement with the result of the previous chapter, as the drift dominated regime exists only at

very low anomalous transport level. Moreover, we find, as in 2D simulations, that there is no signifi-

cant modification of the turbulence features (intermittent structures and statistical properties) due to

the addition of temperature fluctuation. However, the temperature gradients induce a key difference

between isothermal and anisothermal simulations: it triggers the presence of a high amplitude elec-

trostatic shear layer. This shear layer comes along with a reduction of the turbulent flux penetration

into the SOL. However the exact impact of the shear layer on the turbulence remains unclear as they

does not appear at the same radial location.





Chapter 1

Issues of the power exhaust in

Tokamak devices

1.1 Fusion basics

Nuclear fusion, reaction occurring in stars, is a reaction of two light atomic nuclei which join to form

a heavier atomic nucleus. This reaction is associated with a reduction of the total mass of the system,

which leads to the release of a large amount of kinetic energy of reaction products, quantified by the

well known Einstein relation ∆E = ∆mc2. One would like to use this process as a means to have a

new source of energy in the future.

However such a reaction does not easily happen as it requires high-energy particles to permit the

atomic nucleus to overcome the long-range Coulomb repulsion force and get close enough so that the

short-range strong nuclear force can lead to fusion. In theory, fusion reaction would produce energy for

all element lighter than iron, but in practice, on earth, only the reactions involving hydrogen isotopes

are conceivable. Among those, the deuterium-tritium (D–T) reaction is the one chosen for future

fusion devices. Even then, the reaction of fusion requires very high temperature of the order of 109 K.

Given extreme temperatures involved, one can readily expect to have great challenges concerning

power exhaust.

A simplified power balance of the fusion plasma gives conditions for fusion to be energetically

profitable [Lawson 57]. The Lawson criteria gives the amplification factor, Q ratio between the energy

produced by fusions reaction Pfus and the external energy input Pext : Q = Pfus/Pext as a function of

plasma parameters Eq.1.1:

f(Q) = nTτE (1.1)

where n is the plasma density, T is the plasma temperature and τE the energy confinement times.

For economic reliability, one estimates that the amplification factor has to be above 40, or that

nTτE > 3.1021m−3keV.s−1 1. The temperature being imposed by the D-T reactivity, two main ways

can be followed to reach this criteria :

• Inertial Confinement Fusion with extremely dense plasma (n ≈ 1031m−3) but with short con-

1In the world of nuclear fusion, the enery unit of electron-Volt (eV) is used as a temperature unit instead of the
Kelvin. One writes equally T and kBT where kB is the Boltzmann’s constant and one has 1 eV = 1.602× 1019 J ∼ 105 K
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B

Btor

Bpol

Figure 1.1: Tokamak magnetic configuration

finement times (τE ≈ 10−11s), such conditions are obtained by compression of D-T pellet with

laser beam.

• Magnetic Confinement Fusion with relatively low-density (n ≈ 1019 − 1020m−3) but long con-

finement times (τE few s). This second fusion branch is the focus of this present work.

1.2 Magnetic confinement in the Tokamak configuration

1.2.1 Magnetic confinement in a Tokamak

No solid wall can withstand the extreme temperature required for fusion reactions. Thus fusion

reactions have to take place away from the wall. At this temperature, reactants are stripped from

their electrons, and matter is in the plasma state. Devices for fusion by magnetic confinement take

advantages of the property that charged particles in a magnetic field, B, have a helical trajectory

around field lines. The radius of this trajectory is the Larmor radius (ρL):

ρL =
msv⊥
qsB

(1.2)

Where ms, v⊥, and qs are respectively the mass, the cross-field velocity and the charge of the

particle. The Larmor radius of a deuterium ion D+ at 10 keV in a magnetic field of 3 Tesla is about

5.10−3 m. This way the plasma is confined in the direction transversal to the magnetic field, but is

still free in the parallel direction.

In order to confine the particles in the parallel directions, the configuration of fusion devices uses

closed magnetic field lines, i.e which do not intercept any solid wall, this way the hot plasma of fusion

is also confined in the parallel direction. A straightforward idea is to produce a magnetic field, called

toroidal field and denoted Btor (reported in red on Fig.1.1), with circular field lines in a form of a

torus using circular coils which are toroidally distributed all around the plasma.

The produced magnetic field presents inhomogeneities. Considering the Ampere’s law one can

readily observe that Btor is proportional to the inverse of the distance to the center of the torus

Btor ∝ 1/R. The magnetic field amplitude is lower in the outer region of the torus, called Low

Field Side (LFS) than the inner region the high field side (HFS). This inhomogeneity creates particles

vertical drift dependant of the charge sign, thus is in the opposite direction for electrons and ions
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ϕ
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poloidal angle
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Figure 1.2: System of coordinates used in Tokamak configuration

(see section 2.2). The induced vertical charges separation leads to a fast deterioration of the plasma

confinement. Therefore a more complex magnetic configuration is required. An additional field, called

poloidal field and denoted Bpol (reported in light green on Fig.1.1) is added. This field is achieved by

driving a current in the plasma (current in the toroidal direction), this current is induced by induction

using primary coils in the center of the plasma.

Each field line of the total magnetic field, B = Btor+Bpol, is contained in a surface, called the flux

surface and labelled ψ. Except for rational values of the safety factor, denoted q Eq. (1.3), defining

the winding of the magnetic field lines, a field line never closes on itself and covers the entire magnetic

flux surface.

q(r) =
B ·∇ϕ
B ·∇θ (1.3)

The plasma equilibrium on the flux surfaces ψ is described by the force balance, that writes in the

ideal Magnetohydrodynamics (MHD) approximation:

B× J = −∇p (1.4)

where J is the current density in the plasma and p the plasma pressure. This equation implies that

the pressure is uniform on the flux surface (B ·∇p = 0), which can be expected from the free motion

of particles on magnetic field lines. This pressure gradient is directed toward the center of the plasma,

so that the pressure is higher in the center region of the plasma, where fusion reaction take place, and

lower in the exterior region where the plasma is close to the material walls.

1.2.2 Limiter and divertor configurations

The plasma can not be in a infinite volume chamber, and, inevitably above a certain radial extension,

all magnetic field lines are intercepting a solid wall. The corresponding flux surfaces are called open

flux surfaces, to distinguish them from the core flux surfaces, i.e. the closed flux surfaces Fig. 1.3. The

first surface intercepting a solid surface is the Last Closed Flux Surface (LCFS), also called separatrix.

The plasma region which intercepts the material wall, the Scrape-Off-Layer (SOL), is a region where

the plasma–wall interaction takes place.
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core plasma
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divertor target

wall

open flux surfaces

closed flux surfaces
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Figure 1.3: Scheme of the two geometry configuration limiter (left), divertor (right)

The SOL region is the transition between the core region, where extreme condition are required for

fusion to take place, and the solid wall, where rather low temperature are needed to avoid the materials

melting. It is thus a region presenting a complex physic, with important radial gradients. The Plasma-

Facing Component (PFC), limiter or divertor targets, are the first components intercepting the field

lines, and are designed to extract the high heat flux escaping from the core region via the plasma. It

is worth to note that the PFCs act not only as a sink, but also release neutral particles, by recycling

process, which are later ionized with energy provided by the plasma.

Two classes of magnetic configurations exist : limiter and the divertor configuration.

1.2.2.1 limiter configuration

The limiter configuration (represented on the left panel of Fig.1.3) is the straightforward, and histor-

ically magnetic configuration. It is not the chosen solution retained for steady-state plasma in future

devices (see divertor configuration for reason). However it remains of importance as it would be the

configuration for the start-up plasma of ITER, and presents some challenge for the power exhaust

problematics.

1.2.2.2 Divertor configuration

In divertor configuration, also called X-point configuration (represented on the right panel of Fig. 1.3)

the plasma–wall interactions take place somehow remotely from the core plasma. This permits to

avoid that plasma heavy impurity, created close to the strike point, penetrates in the core plasma and

radiates energy which would deteriorate the confinement properties. Moreover, it has been shown that

this configuration offers an easier access to the high confinement regime [Lipschultz 07, Pitcher 97]

(see section 1.3.2.1).
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1.3 Transport in Tokamak

The primary purpose of the Tokamak design is to ensure confinement (τE) of the fusion plasma.

Such confinement requires a transport in the parallel direction much faster than in the cross-field

direction. However, a perfect confinement does not exist and the significant differences of temperatures

between the edge and the core of the plasma impose a cross-field transport triggered by thermodynamic

forces and directed to the outward region of the plasma. A good understanding of this transport

is mandatory for the design of future machines for both estimation of confinement time and wall

interaction problematics.

1.3.1 Classical and neoclassical transport

In the plasma, particles interact together via collisions, which leads to particles displacement from

their trajectory. This process can be described by a random walk and modelled as a diffusion Eq.

(1.5). This description of the transport is referred to as classical. Due to the important density and

pressure gradient in the cross-field direction, the collisional mechanism results in a cross-field flux

directed against the gradient, that is to say toward the exterior of the plasma.

Γ⊥,D = −D⊥∇⊥N (1.5)

In this collisional approach, the diffusion coefficient is estimated as a function of the collision fre-

quency, ν and the Larmor radius ρL, representing respectively characteristic time, spatial scales of the

random walk. Thus, it can be assumed that D⊥,c ∼ νρ2
L . In the edge plasma, the classical diffusion

coefficient takes typical values in the range of 10−4 to 10−2 m2s−1 for Deuterium ions. However, the

classical description of the transport does not explain the level of cross-field transport observed in the

experiments which is several order of magnitude higher than the classical predictions.

In a torus geometry, the magnetic field presents inhomogeneity and the particles experience the vari-

ation of B along the field lines in the parallel direction, which modifies the collisional transport. The

physics describing this effect is called the neoclassical description of the transport. The neoclassical

estimation of the diffusion coefficient is higher than one of the classical one of a factor ∝ q2 (from 10

to 100) [Hinton 74]. However the experience proved that this still is not sufficient to explain cross-field

transport observed in Tokamak.

1.3.2 Turbulent or anomalous transport

As presented previously, the collision theory is not sufficient to explain the cross-field transport,

historically referred as anomalous transport as it was explained neither by classical nor by neoclassical

theory. In the low confinement regime of the plasma (L-mode, see section 1.3.2.1), experimental

evidence revealed that a large fraction of particles transport is driven by turbulence in the outer

mid-plane, with high amplitude fluctuations of density, temperature and electrostatic potential in the

edge plasma [Zweben 07, D’Ippolito 11]. This intermittent transport takes the form of long range

filamentary structures aligned along field lines, usually called blobs or filaments. Blobs are then

radially transported by the local electric drift, denoted uE (see chapter 2), and the anomalous or
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turbulent transport writes:

Γturb = 〈ñũE〉 (1.6)

The turbulent transport is sometimes modelled by a diffusion term, with anomalous value for

diffusion. However, if this method is practical for the global modeling of the machine, a precise

comprehension of the turbulence is mandatory, especially to understand the transition toward the

high confinement regime (H-mode, see section 1.3.2.1), or the asymmetry in the cross-field transport

and to make reliable prediction for future devices.

1.3.2.1 H-mode and transport barriers

Turbulence is a key player in the particle cross-field transport, responsible, when fully developed,

for L-mode. Tokamak reliability requires to achieve high performance discharges, with the objective

to reduce the turbulence in order to reach higher pressure in the confined plasma. In 1982, an

unpredicted regime, the H-mode, presenting higher confinement time, has been observed for the first

time in ASDEX [Wagner 82]. The transition between L-mode and H-mode is due to a reduction of

turbulence in the vicinity of the separatrix. The transition comes along with steeper pressure profiles

in the region of reduced turbulence, forming a pedestal, and higher plasma pressure in the core plasma

Fig. 1.4. The region of reduced turbulence is called a transport barrier.

A strong poloidal velocity shear layer, observed experimentally, is believed to be a key player of

turbulence reduction [Burrell 97, Terry 00]. The turbulent structures are decorrelated by this shear

layer and do not propagate through the barriers transport leading to the formation of the pedestal.

The mechanisms triggering the formation of this shear layer, and thus responsible for the H-mode, are

not resolved yet.

One of the downside of the H-mode, is the apparition of a MHD instability which triggers high

frequency relaxations of energy, in the range of 10 to 1000 Hz: the edge localized modes (ELMs). Even

though this question is not treated in this work focusing on steady-state energy deposition, the ELMs

are also a critical issue for the life time of PFCs as they deposit extremely high amounts of energy.

1.3.3 Laminar large scale transport

In H-mode, the turbulence being strongly reduced in the pedestal and near-SOL, it is not clear which

is the main mechanism driving the transport through the separatrix. Some models proposed that the

direct advection of the steady-state mean fields by drift velocities (see section 2.2) could explained a

part of the cross-field transport :

• A Heuristic Drift-based (HD) model [Goldston 12] proposed that, in H-mode, the direct ad-

vection by magnetic drifts u∇B and ucent (see chapter 2) is the main mechanism driving the

cross-field transport across the separatrix.

• It has also been shown that the electric drift also drives large scale transport, and can present a

steady-state contribution to the global transport, especially in the X-point region [Galassi 17].
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L-mode

H-mode

Pe

r/a

pedestal transport
barrier

Figure 1.4: Pressure profiles in different confinement regimes : Internal transport barrier in green and
H-mode barrier in red (compared to L-mode in blue.)

1.4 Power exhaust in steady-state at high performance : a critical

issue for future devices

Economical viability of future fusion devices requires a sufficient power spreading onto PFC, potentially

damaged by high energy deposition. For ITER, the design limit of divertor materials in steady-state

is estimated at 10 MW m−2 [Loarte 07]. However, due to the anisotropic transport, faster along the

field lines than in the transverse direction, energy escaping the core plasma reaches PFC through a

narrow channel of plasma Fig.1.5. Thus, the exhaust energy is deposited on a small surface, receiving

important heat flux. Nowadays, one has no certainty that ITER would stay within this constraint

[Eich 13b], and power spreading is a key problematic for operation of future machine. In order to

optimize the design of future machines, one needs to improve the predictive capability of the power

spreading, and to have a better understanding of the physic underlying the establishment of the peak

heat load is mandatory.

1.4.1 Power balance

PITER = 500 MW︸ ︷︷ ︸
fusion

+ 50 MW︸ ︷︷ ︸
heating

(1.7)

In operational steady state of Tokamak, input and reaction power has to be evacuate one way or

another, for ITER Ptot = 550 MW, 50 MW with external heating and 500 MW with fusion. During a

fusion reaction, 4/5 of energy, that is to say 400 MW, is transferred to neutrons, and the rest to the

plasma. Neutrons are not confined by the magnetic field and are dispersed on all the wall surface.

In the power transferred to the plasma, about 50 MW is radiated by bremmstralung, and impurities

radiations. Once again, this energy is dispersed on all the wall surface. The 100 MW left, denoted

PSOL, is evacuated by plasma convection. For the need of confinement time of Tokamak, the cross-field

transport of particles gyrocenter has to be small compared to the transport in the parallel direction.
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Figure 1.5: Scheme of the SOL width

The downside is that the plasma crossing the separatrix flows towards the target without important

spreading, so the power evacuated by convection will be deposited only on a small surface, which

means important heat flux, and potential damage for the plasma facing component at the strike point.

1.4.2 SOL width definition

For a given power evacuated through the plasma PSOL, the maximal heat flux, qmax is inversely

proportional to the wetted surface, Swet, that is to say the surface of spreading of the heat flux.

Considering the axisymmetry of the problem, the value of this surface is constrained by the width of

the heat channel, denoted λq, and a geometric parameter defined by divertor properties (discussed in

the next section).

qpeak ∝
PSOL

Swet
∼ αgeo

PSOL

2πRλq
(1.8)

The heat channel width is thus a key problematic in the heat exhaust, and λq results from a

competition between the parallel and cross-field transport in the main SOL. From a general perspective

this thin narrow layer derived from the equality :

τ‖ ∼ τ⊥ (1.9)

The penetration length in the SOL λq is related to the physic of the SOL and its model of transport.

• For a diffusive transport model, used in transport code (see chapter 4), λq is defined by the

relation Eq. (1.10), where D⊥ can represent classical, neoclassical or anomalous transport.

λ2
q

D⊥
∼
L‖
cs

(1.10)

• For a convective transport model λq is defined by the relation Eq. (1.11). For turbulence

modelling, the character intermittent of the transport has to be taken into account. An ex-

pression of a time-averaged perpendicular velocity has been proposed by Ref. [Fedorczak 17] :



14 Chapter 1. Issues of the power exhaust in Tokamak devices
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Figure 1.6: Schematic shape of the heat flux profile in the main SOL (red) and at the target (blue)

vturb
⊥ = nb

n τbfbvb, where nb is the density of the blob, n the averaged local density, fb frequency

of apparition of a blob and τb is life time, and vb its velocity.

λq
v⊥
∼
L‖
cs

(1.11)

It is worth to underline that the λq notion is somehow a theoretical view of a concept that one

tends to resume to a single valued comprehension whereas it is multi-faceted. Indeed this narrow

channel has no reason to be uniform neither in time, in particular for turbulent regime, nor in space.

In fact temporal disparity, poloidal and radial asymmetry has been reported from experimental results

[Carralero 14, Kočan 15, Dejarnac 15, Horacek 15, Gunn 13].

1.4.3 Footprint : geometry impact

Even though the power SOL width is generally defined as the property of the main SOL, in experience,

λq is mostly measured from the heat flux radial profile at the limiter or divertor targets, by IR

measurement or/and Langmuir probe methods.

Historically, the radial profiles were supposed to follow a decaying exponential. λq is then defined

as the e-folding decaying length : q = q0 exp (−r/λq). The estimation of λq was directly extracted

from the profiles at the target with two methods : by an exponential regression of the profile λq,exp,

or by an integral definition λq,int =

´
target q(s−s0)ds

qpeak
[Loarte 99, Fundamenski 11].

In order to clean-up obvious geometrical effects and compare different machines, λq is remapped

at the outer mid-plane λq → λq/fx, where fx is the flux expansion between the outer mid plane

and divertor targets, fx =
RompBpol,omp

RtarBpol,tar
. Note that the flux expansion is also a parameter allowing

to decrease the peak heat load. Another geometrical effect impacting the peak heat flux is the angle

between divertor tiles and the magnetic field lines (qwall = q‖ sin (α)). Both of these geometric param-

eters have an impact on the peak heat load apart from the transport in the main SOL, they would be

accounted in αgeo in Eq. 1.8. Advanced divertor concepts take advantage of these geometrical effects

for the design of the divertor geometry : Snow-Flake divertor [Soukhanovskii 11, Soukhanovskii 13],

SuperX-divertor [Valanju 10].
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More recently, the description of heat load at the target proposed by Ref. [Eich 11] parametrizes the

profile by a convolution of a decaying exponential, representing the transport in the main SOL, with

a Gaussian, representing a diffusive spreading in the divertor region Eq. 1.12. This methods permits

to get rid of divertor effects and to extract a coherent multi-machine (JET, DIII-D, ASDEX-Upgrade,

C-Mod, NSTX, MAST) empirical scaling law for λq in H-mode [Eich 13a, Eich 13b].

q‖(s̄) =
q0

2
exp

(Ç
S

2λq

å2

− s̄

λqfx

)
erfc

Ç
S

2λq
− s̄

Sfx

å
+ qbg with s̄ = s− s0 (1.12)

This description separates two different physic contribution of the transport:

• The transport in the main SOL represented by λq. Note that here λq would be e-folding length

of the decaying exponential profile at the divertor entrance (represented in blue on Fig. 1.6),

there is no evident reason that it would be the same width at other poloidal locations of the

SOL

• Divertor physics, leading to a leakage into the private-flux-region (PFR),represented by the

factor S, usually called spreading factor.

Both λq and S have an impact on the peak heat flux. The spreading leave some possibility to

reduce qpeak, without playing on the main SOL transport. S can be easily linked to the integral SOL

width λint, directly linked to qpeak and it has been shown that λint = λq + 1.64S [Makowski 12]. A

scaling low for S has been proposed, showing a main dependency in B−1
pol both in both L-mode and

H-mode [Scarabosio 15]

The separated physic motivates a distinct extrapolation of λq and S. However their is no clear evidence

yet that their is no interplay mechanisms, justifying that both of these effects can be easily decoupled.

In fact studies on TCV Tokamak have found a unexpected result: the variation of the length of the

divertor impacts essentially the estimated λq and not the spreading factor S [Gallo 16].

1.4.4 λq scaling laws

The current scaling law for the H-mode, derived from the multi-machine regression of Ref. [Eich 13a],

found that the strongest dependencies of λq is the one with Bpol Fig 1.7, Eq. 1.13 with a second

striking and unexpected result that no dependencies on R is found.

λq,Eich ∝ 0.64B−1.16
pol (1.13)

This functional dependencies seems to be somehow universal and has been retrieved in other

experiments [Thornton 14, Sun 15, Wang 14]. Moreover, it is worth underlining that this feature is

not specific to H-mode, an empirical scaling law in L-mode show similar dependency with Bpol :

• In divertor configuration on JET and ASDEX-Upgrade [Scarabosio 13]

λL,lim
q ≈ 1.44B−1.14

pol (1.14)
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Figure 1.7: Bpol scaling of power SOL width

• In limitor configuration on Tore-Supra (add scaling law) [Gunn 13]

λL,lim
q ≈ 9.4B−0.73

pol (1.15)

The extrapolation of this H-mode scaling law gives for ITER λq = 1 mm to 3 mm rising concern,

as it might lead to heat flux above the constraint limit of 10 MW m−2 even taking into account the

detachment effect (see section 1.4.5)

So far, empirical scaling laws miss a theoretical grounds to back-up their prediction, and the

mechanisms driving the heat transverse transport in the edge plasma are not yet fully understood.

This is a central issue for the design and the sizing of future devices. Some theoretical studies attempt

to describe the way energy escapes the core plasma through the separatrix and deposits on the PFC

have been done, but no definitive conclusion has been drawn yet. In L-mode, it is accepted that

turbulence dominates the cross-field transport, theoretical model have been proposed based on linear

analysis using the gradient removal theory [Ricci 09], and based on a blob approach [Fedorczak 17] to

predict the value of the SOL width in L-mode.

In H-mode turbulence is strongly reduced in the vicinity of the separatrix, and it is thus not

certain whether turbulence plays the predominant role in the cross-field transport. The HD-model

[Goldston 12] (described in detail in chapter 4) has attracted much interest for its good agreement

with experience [Eich 13a, Faitsch 15, Sieglin 16], in particular its prediction of the dependency on

Bpol.

1.4.5 Necessity of detachment regime

It is important to recall that the spreading of energy described above is in fact not sufficient to stay

below the operational constraint of 10 MW m−2 for future devices like ITER, even more so for DEMO.

Moreover, for the long-term erosion due to sputtering of electron, it is further mandatory to keep

the electron temperature below 5 eV [Zohm 13]. For both these issues, a so-called detached regime is

foreseen. The physic of the detachment is linked a high recycling condition, in the detached regime

one observes a simultaneous decrease of density and temperature at the strike point which leads to
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a roll over of the plasma flux to the target. In such regime, the largest part of the incoming heat

flux will be dissipated by radiation in the divertor region, and the radiated power expected is of 60%

for ITER [Wischmeier 15], and 95% for DEMO [Wenninger 14]. Moreover, it permits to keep a low

electron temperature at the target. However detachment can affect the confinement properties if the

heavy impurity does not stay in the divertor region.

1.4.6 Narrow feature in L-mode start-up plasma

The start-up phase of ITER discharge will be in limiter configuration, with the limiter positioned

on the inner wall, i.e on the HFS wall. In this configuration, experimental q‖ profiles at the limiter

target exhibit double exponential features: with steeper gradient in the vicinity of the strike point

(λq,narrow ∼ few mm) [Kočan 15, Dejarnac 15, Horacek 15], followed by flatter profile in the far SOL.

This characteristic leads to a higher peak heat load onto the inner wall: the estimated qpeak presents

up to a factor 4 compared with the value expected from single exponential approach [Kočan 15,

Arnoux 13], and could exceed the material limit.

A theoretical model, using 3D fluid simulation, proposed that this feature could be explained by

the reduction of radial correlation due to a sheared poloidal flow E × B [Halpern 17]. However one

needs to have a better understanding of this feature in order to avoid possible damage of the wall.



Chapter 2

Fluid modelling of the edge plasma

The study of the mechanisms underlying heat transport via experimental results is a difficult task

due to the complexity of measurement in the hot plasma, in particular for ion temperature. Thus, a

complementary approach of the heat transport study using numerical tools is mandatory in order to

have a better understanding of the underlying physic.

In the edge plasma, the 3D turbulent fluid model is an interesting tool as it includes all the

physics suspected to play a role in the establishment of SOL width : self-consistent turbulence, drift,

temperature dynamics etc, with a reasonable computational cost.

In this chapter, the fluid model is derived, and we present the main approximation of this approach:

fluid closure, drift ordering. Moreover, some insights on the physic of the open field lien, specific to

the edge plasma, are provided. In the last section, we detailed one of the three numerical fluid tools

used in this thesis: the code TOKAM3X in this anisothermal version. This code has been chosen as

the two others models studied in this work TOKAM2D, and SolEdge2D are somehow reduced models

of TOKAM3X.

2.1 Fluid approximation

Despite the great progress of supercomputers, the computational limits are still a key problematic of

the numerical approach leading to modelling efforts to reduce the cost of the physical model. The

most straightforward approach is the particular description, where the trajectory of each particles is

computed from the equation of motion (2.1) of a particle of mass mα and of charge eα.

mα
dvα
dt

= eα (E + vα ×B) (2.1)

where vα, E and B stand respectively for the particle velocity, the electric and magnetic fields.

The electric and magnetic fields are generated both by external fields and by the impact of all the

other plasma particles according to Maxwell’s equations.

For Np particles the computational cost is 6Np (6 degrees of freedom 3 for position and 3 for velocity).

In spite of the low plasma density ∼ 1020m−3 this approach is numerically inaccessible. That leads

the physicist to use more complex but less costly descriptions. Two approaches are mainly used: the

kinetic approach and the fluid approach.
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Kinetic approach:

The kinetic approach is a statistical approach solving the distribution function, fs, in spatial and

velocity space, its temporal evolution is described by the Boltzmann’s equation (2.2). This allows

to reduce the numerical cost to N6
pts � 6Np where Npts is the spatial resolution. The gyro-kinetic

approach further reduce the cost to 5 dimensions by taking the average along the cyclotron motion.

∂tfs + vs ·∇rfs + as ·∇vsfs = ∂tfs |coll (2.2)

Fluid approach:

The fluid approach is an other step to reduced the numerical cost. It only considers averaged quantities

of the distribution function, such as density, velocity and temperature, obtained by the momenta of

the distribution function (2.3), that is to say integrals of the distribution functions along the velocity

space.

M(n)
s =

ˆ

Ω

vs
⊗nfs (r,vs, t) dvs with vs

⊗n ≡ vs ⊗ · · · ⊗ vs︸ ︷︷ ︸
n times

(2.3)

This approach allows to further reduced the numerical cost to 3 dimensions plus times. Edge plasmas

are highly collisional, in this framework, the distribution function tends to be quasi-Maxwellian (2.4).

fs ≈ ns
Å

ms

2πkBTs

ã
exp

Ç
−|vs − us|2

v2
T

å
(2.4)

with us the fluid velocity defined later (2.4), and vT the thermal velocity. The numerical cost of such

approach will then depends on the complexity of the model (number of moment solved, additional

mechanisms) and also of the spatial resolution of the grids.

2.1.1 Derivation of fluid equations

Fluid equations are obtained by taking the different momenta of the kinetic equation (2.2) and then

by integrating over all the 3D velocity space:

ˆ
vs

vs
⊗n∂tfsd

3vs+

ˆ
vs

vs
⊗n∇x·(vsfs) d

3vs+

ˆ
vs

vs
⊗n∇vs ·

Å
qs
ms

(E + vs ×B) fs

ã
d3vs =

ˆ
vs

vs
⊗nCsd

3vs

(2.5)

One can rewrite the Equation (2.5) by considering commutative properties as:

∂t

Çˆ
vs

vs
⊗nfsd

3vs

å
+∇x·

Çˆ
vs

vs
⊗(n+1)fsd

3vs

å
+

ˆ
vs

vs
⊗n∇vs ·

Å
qs
ms

(E + vs ×B) fs

ã
d3vs =

ˆ
vs

vs
⊗nCsd

3vs

(2.6)

The exact resolution of the nth momentum equations requires to know the n + 1th momentum, i.e

to solving the n + 1th momentum equation. Thus only the infinite set of fluid momentum equations

is equivalent to solve the kinetic model. In the fluid description, one truncates the momentum at a

certain order, and solves only few momentum equations (2 or 3). In this thesis, we discuss two type
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of models:

• Isothermal models : i.e assumptions of a constant temperature, for which 2 momenta equations

are solved.

• Anisothermal models for which 3 momenta equations are solved.

Both models relies on the classical closure used in fluid modelling, the so-called Braginskii closure,

which leans on the assumptions of high collisionality (presented in section 2.1.3).

2.1.1.1 Continuity equation

For n = 0, the equation 2.6 writes:

∂t

Çˆ
vs

fsd
3vs

å
+∇x ·

Çˆ
vs

vsfsd
3vs

å
+

ˆ
vs

∇vs ·
Å

Fs

ms
fs

ã
d3vs =

ˆ
vs

Csd
3vs (2.7)

Using the quasi-Maxwellian hypothesis (2.4), i.e the distribution function fs decreases exponentially

at infinity in the velocity space, one has:

∀n ∈ N, lim
|vs|→+∞

vs
⊗nfs = 0 (2.8)

The third term of (2.7) can be then recomputed:

ˆ
vs

∇vs ·
Å

Fs

ms
fs

ã
d3vs = lim

vs→+∞

ï
Fs

ms
fs

ò+vs

−vs

= 0 (2.9)

Finally, we suppose here that the collisions do not create or destroy any particles, i.e. their is no

atomic reactions (
´
Ω

Csdvs = 0). The particle balance equation then writes:

∂tns +∇ · (nsus) = 0 (2.10)

Using the following definition for the momenta of the distribution function:

• the momentum of order 0 is by definition the mean particle density ns

ns (r, t) =M(0)
s (r, t) =

ˆ

Ω

fs (r,vs, t) dvs (2.11)

• the fluid velocity us is defined by the moment of order 1:

(nsus) (r, t) =M(1)
s (r, t) =

ˆ

Ω

vsfs (r,vs, t) dvs (2.12)

2.1.1.2 Momentum balance equation

For n = 1, the equation (2.6) writes:

∂t

Çˆ
vs

vsfsd
3vs

å
+∇x ·

Çˆ
vs

vs ⊗ vsfsd
3vs

å
+

ˆ
vs

vs∇vs ·
Å

Fs

ms
fs

ã
d3vs =

ˆ
vs

vsCsd
3vs (2.13)
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The particle velocity is split into its averaged part, the fluid velocity defined in (2.12) and its

fluctuating part denoted ws in the following ws = vs − us. By definition, one has
´
vs

wsfsd
3vs = 0.

Using this notation, the equation (2.13) becomes:

∂t (nsus) +∇x ·
Çˆ

vs

(us + ws)⊗ (us + ws) fsd
3vs

å
︸ ︷︷ ︸

=A

+

ˆ
vs

vs∇vs ·
Å

Fs

ms
fs

ã
d3vs

︸ ︷︷ ︸
=B

=
1

ms
Rs (2.14)

We now develop separately A and B:

A =∇x ·
(

us ⊗ us

ˆ
vs

fsd
3vs + us ⊗

�
���

���ˆ
vs

wsfsd
3vs +

�
���

���ˆ
vs

wsfsd
3vs ⊗ us +

ˆ
vs

ws ⊗wsfsd
3vs

)

=∇x ·
Ç
nsus ⊗ us +

ˆ
vs

ws ⊗wsfsd
3vs

å
B =

��������ï
vs ·

Fs

ms
fs

ò+∞
−∞
−
ˆ
vs

Fs

ms
fsd

3vs

= − qs
ms

Ç
E

ˆ
vs

fsd
3vs +

ˆ
vs

vsfsd
3vs ×B

å
= − qs

ms
ns (E + us ×B)

We further introduce two fluid definitions:

• The total pressure tensor ¯̄Πtot
s . One can notice that ¯̄Πtot

s is a symmetric tensor

¯̄Πtot
s = ms

ˆ
vs

ws ⊗wsfsd
3vs (2.15)

• The collisional momentum source Rs

Rs = ms

ˆ
vs

wsCsd
3vs (2.16)

Finally, the momentum balance equation writes:

∂t (msnsus) +∇ ·
Ä
msnsus ⊗ us +ms

¯̄Πtot
s

ä
= qsns (E + us ×B) + Rs (2.17)

2.1.2 Second moment: energy equation

The derivation of the second momentum of equation (2.2) is detailed in Annex A and leads to:

∂t (ns ¯̄εs) +∇ ·
Ç

1

2
ns (¯̄εs ⊗ us + us ⊗ ¯̄εs) +

1

2

ˆ
vs

msws ⊗ us ⊗wsfsd
3vs +

¯̄̄
Qs

å
(2.18)

=
1

2
qsns (E⊗ us + us ⊗E) + ¯̄Wvs×B

s + ¯̄Hs +
1

2
(Rs ⊗ us + us ⊗Rs)
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Using the definition of fluid quantities for the momentum of second order:

• the energy tensor ¯̄εs:

ns ¯̄εs ≡
1

2
msnsus ⊗ us +

1

2
¯̄Πtot
s (2.19)

• the pressure flux tensor
¯̄̄
Qs:

¯̄̄
Qs =

1

2
ms

ˆ
vs

ws ⊗ws ⊗wsfsd
3vs (2.20)

• the collisional pressure source tensor ¯̄Hs:

¯̄Hs =
1

2
ms

ˆ
vs

Csws ⊗wsd
3vs (2.21)

• the work tensor of the Lorentz force ¯̄Wvs×B
s :

¯̄Wvs×B
s =

1

2
qs

ˆ
vs

((vs ×B)⊗ vs + vs ⊗ (vs ×B)) fsd
3vs (2.22)

Equation (2.18) is a tensor equation providing the transfer of energy in the three space directions.

Such precision is usually considered superfluous in standard plasma fluid codes as the pressure is

assumed quasi isotropic due to collisions. In this framework, the resolution of the tensor equation

would be a unnecessary numerical cost. The resolution of the total energy Etot is considered sufficient

to describe the transport in the edge plasmas. The equation of the energy evolution is obtained by

taking the trace of the equation (2.18) and leads to the following scalar equation:

∂tE
tot
s +∇ ·

Ä
Etot
s us + us · ¯̄Πtot

s + qs
ä

= nsqsE · us +Q‖,s + Rs · us (2.23)

where :

• ps = 1
3 Tr

Ä
¯̄Πtot
s

ä
is the scalar pressure

• Etot
s = 1

2msns|us|2 + 3
2ps is the total energy carried by the species s

• Q‖,s = 1
2ms

´
vs
|ws|2Csd3vs is the collisional energy source

• qs = 1
2ms

´
vs
|ws|2wsfsd

3vs is the heat flux

2.1.3 Braginskii closure

The Braginskii closure on plasma fluid equation [Braginskii 65] is a closure for fluid equations of 2nd

of 3rd order. This closure was developed in the frame of a strongly magnetized and highly collisional

plasma, i.e ωceτe � 1 and ωciτi � 1 where ωce/i and τe/i are respectively the cyclotron frequencies and

the collisional times for electrons and ions. In this limit, the plasma is close to the thermodynamic

equilibrium and the distribution function exhibits a quasi-Maxwellian shape. It gives a closure for the

following undetermined quantities: the friction terms Rs, the collisional energy source Q‖,s, the total
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pressure tensor ¯̄Πtot
s , the heat flux qs. The principal results for single ion species plasma are recalled

below.

The collisional momentum source Rs is made of two contributions: a friction force Ru due to the

relative velocity between ions and electrons, and a thermal force due to the temperature gradient. For

electron, one has:

Re = Ru
e + RT

e = ene
Ä
η‖j‖b + η⊥j⊥

ä
− 0.71ne∇‖Te −

3

2

ne
ωceτe

b×∇⊥Te (2.24)

where η‖ and η⊥ are respectively the parallel and perpendicular Spitzer resistivities. Moreover, one

has Re = −Ri.

The collisional energy source Q‖,s writes:

Q‖,i = 3
me

mi

pe − pi
τe

for electrons (2.25)

Q‖,e = η‖j
2
‖ + η⊥j

2
⊥ +

1

ene
j ·RT

e − 3
me

mi

pe − pi
τe

for ions (2.26)

The total pressure tensor can be decomposed in a scalar pressure part and a tensor (2.27). This

decomposition is motivated by the fact that the pressure is assumed to be quasi isotropic in a high

collisional plasma.
¯̄Πtot
s = ps

¯̄I + ¯̄ΠBrag
s (2.27)

The Braginskii’s tensor can be itself decomposed in 3 components : a viscous tensor, a Finite Larmor

Radius tensor, and a residual tensor (2.28). Their expressions are detailed in Annex A but one

will retain that ¯̄Πvis
s is the term of higher magnitude. Moreover, the diamagnetic cancellation shows

that the difference between the divergence of the diamagnetic advection and the one of the ∇B-drift

advection is compensated by the highest term of the ¯̄ΠFLR divergence. This simplification will be used

to replace u∗ by u∇B in the fluid equations and allows to suppress the contribution of ¯̄ΠFLR.

¯̄ΠBrag
s = ¯̄Πvis

s + ¯̄ΠFLR
s + ¯̄Πres

s (2.28)

The heat flux qs is made of two contributions: a friction force, and a thermal force due to the existence

of the temperature gradient.

qe = que + qTe = 0.71pe
Ä
ue‖ − ui‖

ä
b +

3

2

pe
ωceτe

b× (ue⊥ − ui⊥)

− χe‖∇‖Te − χe⊥∇⊥Te −
5

2

pe
meωce

b×∇⊥Te (2.29)

qi = −χi‖∇‖Ti − χi⊥∇⊥Ti +
5

2

pi
meωce

b×∇⊥Ti (2.30)

where χi/e are respectively electron and ion thermal conductivities.
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2.2 Drift ordering

The motion of a particle in magnetic field presents two main components, a free parallel motion at a

velocity of the order of the thermal velocity cs ≈
»
Ts/ms, and a cross-field circular motion around

the field line (the cyclotron gyro-motion). Moreover, the presence of non-uniformity of the magnetic

field or of an electric field induces a transversal motion the guiding center which moves away from the

magnetic line. Such motions are called the drift velocities. The contribution of the gyro-motion in the

fluid velocity is null apart from the drift effects. Thus, the fluid velocity of species a s is decomposed

as follows:

us = u‖,s + u⊥,s = u‖b + u⊥,s

where u‖b is the parallel motion and u⊥,s is the contribution of the drift velocities.

In order to find the expression of the drift velocities, one applies the so-called drift ordering used in

the frame of the fluid modeling. This drift ordering relies on the assumption of two small parameters:

• The frequency of studied phenomena is assumed to be smaller than the cyclotron frequency and

gives us the first small parameter εω (2.31).

εω =
ω

ωc
� 1 (2.31)

• The characteristic plasma perpendicular length is supposed to be higher than the Larmor radius

and gives us the second small parameter εl (2.32).

εl =
ρL
l⊥
� 1 (2.32)

The motion in the perpendicular direction can be ordered as :

u⊥,s = εu⊥,s
1

︸ ︷︷ ︸
drift of 1st order

+ ε2u⊥,s
2

︸ ︷︷ ︸
drift of 2nd order

+o
Ä
ε2
ä

Note that the parallel velocity is at least of the same order than the zero order of the cross field

motion, i.e the cyclotron motion : |u‖,s| ∼ vT ∼ ρL/ωc, where vT is the thermal velocity.

2.2.1 Drifts of order 1

In order to isolate u⊥,s, we estimate the transversal projection of the first moment equation by taking:

B×
î
∂t (msnsus) +∇ ·

Ä
msnsus ⊗ us + ¯̄Πtot

s

ä
= qsns (E + us ×B) + Rs

ó
(2.33)

Using the splitting of the velocity into parallel and perpendicular contributions, and assuming a

magnetic field constant in time, the equation can be rewritten as :

∂t (msnsB× u⊥,s) + B×∇ · (msnsus ⊗ us) + B×∇ ·
Ä

¯̄Πtot
s

ä
= qsns

Ä
B×E +B2u⊥,s

ä
+ B×Rs
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First, we can start by neglecting the following terms of an order higher than one with respect to εω

or εl:

| ms∂t (nsB× u⊥,s) |
|qsnsu⊥,sB2|

∼ msωu⊥
qsu⊥B

∼ ω

ωc
∼ εω ∼ o(1)

The second term of the left side of the equation one can distinguish several contributions: ∇ ·
(msnsus ⊗ us) = ∇ ·

Ä
msnsu‖,s

2b⊗ b
ä

+∇ ·
Ä
msnsu‖,sb⊗ u⊥,s

ä
+∇ · (msnsu⊥,s ⊗ u⊥,s). The two

last terms are of an order higher than one and can be neglected in the drift ordering, indeed:

|B×∇ ·
Ä
msnsu‖,sb⊗ u⊥,s

ä
|

|qsnsus⊥,sB2|
∼ msnscsu⊥k⊥

qsnsu⊥B
∼ ρL
l⊥
∼ εl ∼ o(1)

|B×∇ · (msnsu⊥,s ⊗ u⊥,s) |
|qsnsus⊥,sB2|

∼ msnsu
2
⊥k⊥

qsnsu⊥B
<
ρL
l⊥
∼ εl ∼ o(1)

For the first order, one retains only the viscous part of the Braginskii stress tensor (see Annex A):

¯̄ΠBrag
s ≈ ¯̄Πvis

s as ¯̄ΠFLR
s , ¯̄Πres

s << ¯̄Πvis
s (2.34)

Moreover, apart from the curvature terms, which are neglected here, the divergence of the viscous

stress tensor can be rewritten as [Bufferand 17]:

∇ ·
Ä

¯̄Π‖s
ä

= −1

3
∇
Ä
p‖ − p⊥

ä
+∇ ·

ÄÄ
p‖ − p⊥

ä
b
ä

b +
Ä
p‖ − p⊥

ä
κ (2.35)

With κ = b ·∇b

Finally, retaining only the term of first order, the projection of the momentum equation can be

rewritten as :

B×∇ ·
Ä
msnsu

2
‖b⊗ b + ¯̄Π‖s

ä
+ B×∇⊥p = qsns

Ä
B×E +B2u⊥,s

ä
+ B×Rs

Thus we get:

u⊥,s =
E×B

B2
+

B×∇⊥ps
nsqsB2

+
B×∇ ·

Ä
msnsu

2
‖b⊗ b

ä
nsqsB2

+
B×∇⊥ · ¯̄Π

‖
s

nsqsB2
+

B×Rs

nsqsB2

=
E×B

B2
+

B×∇⊥ (p⊥)

nsqsB2
+

B×∇ ·
Ä
msnsu

2
‖ +
Ä
p‖ − p⊥

ää
nsqsB2

B× κ+
B×Rs

nsqsB2

In the hypothesis of low β (ratio of kinetic and magnetic pressure), assumed in the edge plasma

modelling, the scalar pressure becomes isotropic, i.e p⊥ − p‖ ≈ 0. In the following, we will consider

an isotropic pressure and we neglected the terms of collision in Rs even though it can be a disputable

simplification at very high collisionality. The 1st-order perpendicular velocity is finally given by the



26 Chapter 2. Fluid modelling of the edge plasma

Figure 2.1: (a): Ion and electron drift in magnetic field due to electric drift (particular representation).
(b): Ion drift due to diamagnetic drift (fluid representation)

sum of the E×B drift uE, the diamagnetic drift u∗, and the centrifugal drift ucent:

us
1
⊥ =

E×B

B2︸ ︷︷ ︸
uE

+
B×∇ps
nsqsB2
︸ ︷︷ ︸

u∗

+
B×∇ ·

Ä
msnsu

2
‖
ä

nsqsB2
B× κ

︸ ︷︷ ︸
ucent

(2.36)

We now discuss the physical meaning of these three drifts.

Electrical drift uE:

In the presence of an electric field, E the cyclotron motion of a charged particle is distorted. For

example, if one considers an electron, the electron is accelerated by E (i.e presents a larger Larmor

radius), in the part of the gyro-motion where the electron velocity is in the same direction than the

electric field E. Conversely, in the part of the gyro-motion where the velocity is in the opposite orien-

tation than E, the electron is slowing down (i.e presents a smaller Larmor radius). This modification

of the gyro-motion implies an averaged perpendicular motion of the gyro-center as schemed on Fig.

2.1 a).

For ions, the E force applies on the particle is reversed, however as the particle turns in the

opposite direction, the final drift is consequently in the same direction as for electron. This drift

depends neither on the particle charge nor on the particle mass. Thus it does not create any current

for a quasi-neutral plasma.

Diamagnetic drift u∗:

The diamagnetic drift velocity is a fluid drift as it does not come from the drift of a single particle

motion but results from the collective motion of an high number of particles (statistical effect). As

illustrated on Fig. 2.1 b), the presence of a pressure gradient induces a spatial inhomogeneity of

cyclotron velocity distribution. This spacial inhomogeneity results in global motion of the fluid.
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However, each the gyro-center of each single particle does not move. And one can show that the

particle flux associated with this drift is divergence-free except for the effect of the magnetic field

curvature:

∇ · (nsu∗) =
1

qs

Å
∇ps ×∇

1

B2

ã
.B (2.37)

In fact, in the fluid codes used in this work, the diamagnetic drift is replaced by the so called ∇B
drift u∇B = ±2Ts

B×∇B
B3 , as it can be shown that the divergences ∇ · (nsu∗) and ∇ · (nsu∇B) coincide

(see Annex A).

Conversely to the diamagnetic drift, the ∇B drift can be understood from a particle point of

view. The difference of B implies that the Larmor radius of the particle is smaller on the size of the

gyro-motion where B is the strongest (ρL ∝ 1/B). Following the same lines of thought as for uE

drift, one understands how the ∇B drift induces a drift of the particle with a direction depending on

B×∇B.

Note that the diamagnetic (or ∇B) drift is charged dependent and thus drives current for a quasi-

neutral plasma.

Centrifugal drift ucent:

The centrifugal drift is also a drift due to the inhomogeneity of B along the particle motion. This

drift comes from the difference of B that the particle experiences along its parallel motion, when in

the case of ∇B drift it comes from the inhomogeneity encountered along the transversal gyro-motion.

The centrifugal drift is a curvature term, but can make a significant contribution to the radial flux

when u‖ ∼ vth. This contribution is of the same order as the one of the diamagnetic or ∇B drift. In

the fluid modelling, this term is sometimes neglected under the hypothesis of a small Mach number.

However, this drift should be considered as 1st-order term in the drift ordering, especially in the case

of large amplitude flows.

The role of the drifts in the transport is twofold:

• First the drifts plays a role in the dynamics of the turbulence. Indeed, the diamagnetic drift

is a mechanism of destabilisation of the turbulence and the electrical drift is the mechanism of

advection of the intermittent structures.

• They also play a role in transport from their averaged contribution. Indeed, the E × B and

∇B drifts bring forth large scale flows, which play a role in the steady-state equilibrium of the

plasma.

2.2.2 Drift of order 2 : the polarisation drift

The same methodology, than the one for the drift of order 1, leads to the expression of the drift of

order 2, called the polarisation drift (2.38).

upol =
msB

nsqsB2
×
Ä
∂t
Ä
nsu⊥,s

1
ä

+∇ ·
Ä
nsu⊥,s

1 ⊗ us

ää
+

B×∇
Ä

¯̄Π1
s +Rs

ä
nsqsB2

(2.38)

The polarisation drift is an inertial term proportional to the mass of the particle. Thus, as

mi/me ≈ 1000 � 1, only the contribution of the ion polarisation drift is taken into account in the
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fluid model. Moreover, uspol depends on the particle charge, thus as the diamagnetic drift, it generates

currents.

This drift is of the second order, that is to say of an order of magnitude lower than uE and u∗.

Nevertheless, this drift plays a significant role in the equation of current conservation, as the divergence

of the current associated with upol is of the same order as the one associated with u∗. Moreover, the

electric drift does not induce any current. Consequently, one needs to keep the contribution of the

polarisation drift in the divergence operator of current advection to have a coherent ordering, but it

will be neglected in other advection terms. This last simplification, made for computational reasons,

is disputable, as ∇ (nu∗) and ∇ (nupol) are of the same order. However, the fact that ∇ (nuE) is still

of an order of magnitude higher makes it reasonable.

2.3 Physic of open field lines

The SOL is a specific region as it is comprised in-between the hot core plasma, and material PFCs.

In this region, the plasma following the magnetic field lines, intercepts the material walls, leading

to a plasma–wall iteration. At the solid surface, the ions and electrons recombine and neutrals are

transported back in the plasma. Thus the wall acts as a sink, but also as an indirect source for the

plasma. These phenomena are not studied in details in this thesis but are of a key player for the peak

heat flux management at the target. For example, this is the mechanisms involved in the physic of

the detachment regime, crucial for the operation of future devices (section 1.4.5).

Moreover, the charged particles arriving at the wall interact with it, which leads to a modification

of the electric fields in this region. This phenomena induces specific boundary condition for the SOL

plasma at the PFC, which needs to be correctly modelled for a coherent fluid code.

2.3.1 Boundary conditions at the wall in fluid models

Ions and electrons present different thermal velocities at the same temperature, i.e Te = Ti, vT,e/vTi =»
mi/me � 1. Due to this difference of velocity, the wall intercepts initially a higher flux of electrons

than of ions, and thus charges negatively. Consequently, an electric field arises in the vicinity of the

wall. This electric field accelerates ions, and slows down electrons until an equilibrium state is reached

where ion and electron fluxes are equal.

Due to this mechanism a thin zone of charged plasma is observed in the proximity of the wall. This

region is called the sheath region. The characteristic width of the sheath corresponds to the Debye

length (2.39), that is to say the scale length of screening of an electric charge:

λD =

 
ε0T

e2n
(2.39)

where ε0 is the vacuum permittivity. For a typical SOL plasma density of 1019 m−3, an electron

temperature of 50 eV, λD is about 10−5 m. Hence, the typical width of the sheath is of several order

of magnitude lower than the parallel length L‖ = 2πqR ≈ 100 m.

Two regions of the SOL can be distinguished : the sheath region, and the remaining plasma
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Figure 2.2: Scheme of the sheath region and the quasi-neutral plasma

satisfying the quasi-neutrality assumption. The Poisson equation writes differently in the two regions:

d2φ

dz2
=

e

ε0
(ne − ni) for the sheath (2.40)

ne ≈ ni for the quasi-neutral SOL (2.41)

where z is the coordinate in the parallel direction.

Considering the negligible thickness of the sheath, this region is not explicitly modelled in fluid

codes. However, they are taken into account via the boundary condition at the target, so-called the

Bohm conditions. These boundary conditions are derived below, and determine the equilibrium of the

main quasi-neutral plasma.

2.3.2 The Bohm condition

In the following, sheath is assumed to be collisionless due to its low width, smaller than the mean free

path. Moreover, the inertial terms of electron will be neglected and the plasma in the sheath region is

assumed to be isothermal. In a first part, we derive the Bohm condition under the cold ion hypothesis

(Ti = 0). The momentum balance equation (2.35) for electron in the parallel direction can be then

rewritten as:

∇‖pe = −neeE‖ (2.42)

kBTe∇‖ne = nee∇‖φ (2.43)

giving the Boltzmann’s relation:

ne = ne,0 exp

Ç
e (φ− φ0)

kBTe

å
(2.44)

We now estimate the acceleration of the ion due to the difference of potential between an upstream

point and the sheath entrance. Under the cold ion and collisionless assumption, the energy conservation

energy for ions gives:
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1/2miv
2
‖ = −eφ (2.45)

Moreover, assuming that the only source of ion is upstream, the parallel momentum is constant

(niv‖ = constant), and one can combine particle and energy balance to get:

ni = nse
»
φse/φ (2.46)

where ’se’ stands for sheath entrance.

Using (2.44) and (2.46) the Poisson equation (2.40) then writes:

d2φ

dz2
= − e

ε0

Ç 
φse

φ
− exp

Ç
e (φ− φse)

kBTe

åå
(2.47)

The Taylor expansion of the previous equation as a function of the small parameters ∆φ ≈ φse−φ >
0 gives:

d2∆φ

dx2
= −ense∆φ

ε0

Ç
e

kBTe
− 1

2|φse|

å
(2.48)

which admits a non oscillatory solution only if:Ç
e

kBTe
− 1

2|φse|

å
≥ 0 (2.49)

This expression is equivalent to the following expression (2.50), usually called the Bohm criteria.

vse ≥ cs with cs =

 
kBTe
mi

(2.50)

This result can be generalized for hot ion plasma [Stangeby 00] by modifying the expression of the

sound speed as following:

cs =

 
kB (Te + γTi)

mi
(2.51)

where γ is the polytropic index, in particular γ = 1 for an isothermal plasma.

2.3.3 Solid Surface with an oblique angle with B : Bohm Chodura Condition

So far, the magnetic field lines have been assumed to be normal to the solid surface. However, in

realistic Tokamaks, it is not the case. In fact, a large angle between the target normal and B is

desirable in order to decrease the peak heat flux at the target qpeak = q‖ cos (α), where α is the angle
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between the solid normal and B.

In this configuration, one needs to take into account the transversal drift into the previous deriva-

tion of the boundary condition, which leads to the so called Bohm-Chodura boundary condition

[Chodura 86]:

|
Ä
u‖b + u⊥

ä
· nwall| ≥ cs|b · nwall| (2.52)

where nwall is the normal to the solid wall, and with the flux directed towards the wall.

2.3.4 Bohm conditions for energy balance

The sheath derivation permits to deduce the plasma outflux at the sheath entrance Γse. However, the

energy outflux has still to be determined. Considering a collisionless sheath, the heat flux has to be

convective and expresses as:

qe = γekBneTeΓse and qi = γikBnTiΓse (2.53)

where γe and γi are the sheath transmission coefficients. Their expression can be found in Ref.

[Stangeby 00], and we have γe ≈ 5, γi ≈ 2.5.

2.4 Turbulent codes : TOKAM3X

In this section, we details the derivation of the equation of the code TOKAM3X in this anisothermal

version, one of the three codes used in this work. This code has been chosen as the two others models

studied TOKAM2D, and SolEdge2D are somehow reduced models of TOKAM3X.

TOKAM3X is a first principle 3D turbulence fluid code for edge plasma, which has the specificity to

run in flexible and realistic geometry. The code solves fluid equations for a quasi-neutral plasma based

on the Braginskii’s closure and the drift approximation presented previously. Recently, the code has

been extended to an anisothermal version with self-consistent resolution of the temperature dynamic

and gradient. Before, the code solved an isothermal set of equations with temperature constant in

space and time.

TOKAM3X is a flux-driven code, hence, the quasi steady-state equilibrium profiles are self-

consistent. The system is driven by volumetric sources of density, parallel momentum and energy,

which models the plasma influx from the central plasma. The volumetric sources are symmetric in

the poloidal and toroidal direction and are located at the inner boundary with a Gaussian shape in

the radial direction.

Moreover, diffusive terms are added to the balance equations. Such terms represent the dissipa-

tion mechanism at scales smaller than the mesh grid, thus not modelled self-consistently. They are

mandatory for the numerical stability of the code.

Above the Braginskii’s closure and the drift approximation, TOKAM3X makes further hypothesis in

order to obtain the final set of equations:

• TOKAM3X is an electrostatic code: the effects of magnetic fluctuations on the transport are

neglected under the low β hypothesis. Here, only the electric potential fluctuations are taken
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into account. With this hypothesis, B is considered constant in time and the electric field is

equal to the gradient of the electric potential φ.

E = −∇φ (2.54)

• me/mi ≈ 10−3, therefore, inertial terms of electron are neglected with respect to the ones of

ions.

• The parallel resistivity, η‖ and the parallel thermal conductivities χ‖,e/i are also simplified in the

version of the code presented in this work. The parallel Spitzer resistivity η‖, which normally

depends on the temperature, is taken constant in time and space. In the case of the parallel ther-

mal conductivity only the temperature dependency is conserved and we take χ‖,e/i = K0,e/iT
5/2

where K0,e/i are constant parameters.

• A Boussinesq-like approximation [Hinton 71] is realized on the current balance equation (see

section 2.4.4.4).

• The centrifugal drift, only recently implemented in TOKAM3X, has not been taking into account,

and the diamagnetic drift is replaced by the ∇B-drift under the diamagnetic cancellation (see

section 2.1.3).

Note, that the drift of order 2, i.e the polarization drift, is kept only in the charged balance as

the current divergence of this drift is of the same order than the one of the drift of order 1. In the

other equations, only the drifts of order 1 are kept even though, as mentioned in section 2.2.2, this is

a disputable simplification.

2.4.1 Magnetic configuration

The magnetic field, constant in time in TOKAM3X, is fixed as an input parameter of the code. The

magnetic equilibrium is assumed to axisymmetric (i.e toroidally symmetric) and is thus described

using a 2D map of the poloidal plane. The code allows to use complex realistic geometries including

X-point configurations. However, in this work, the studied simulations are restricted to limiter config-

uration. For such magnetic configurations, the magnetic equilibrium is determined by two parameters:

a toroidal flux number F = B0R0 and a 2D poloidal flux function ψ. The magnetic field is computed

accordingly, using the formula:

B = Btor + Bpol = F∇ϕ+∇ψ ×∇ϕ (2.55)

where Btor and Bpol are respectively the toroidal and poloidal magnetic field, and ϕ is the toroidal

angle. The iso-ψ surface are tangent to B and label the flux-surfaces.

The meshes used in TOKAM3X are aligned to the flux-surface. They use the covariant and con-

travariant basis associated with the curvilinear coordinate system (ψ, θ, ϕ), where θ is the coordinate

along the poloidal direction.
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2.4.2 Boundary condition

In the parallel direction Bohm-Chodura boundary condition are imposed at the magnetic pre-sheath

entrance : |
Ä
u‖b + u⊥

ä
· nwall| ≥ cs|b · nwall|, qe = γekBneTeΓse and qi = γikBnTiΓse

In the perpendicular direction, Neumann conditions are imposed at the inner and the outer boundary.

2.4.3 Normalisation

In the code, all quantities, F, are normalized with respect to a reference quantity. The dimensionless

variables are denoted ÙF , and defined by ÙF = F/F0 where F0 is the reference quantity.

The reference density n0, and temperature T0 are chosen as typical values at the separatrix in

Tokamaks. The reference magnetic field B0 is defined as B on the machine magnetic axis. Spatial

quantities are normalized to the Larmor radius ρL =
√
miT0
eB0

, and time to the inverse of ion cyclotron

frequency Ωs = eB0
mi
e. Accordingly, electric potential φ, and the parallel velocity are respectively

normalized to T0
e and cs,0 =

√
T0
mi

. The reference quantities are reported on Tab. 2.1, as well as the

typical value of this quantity observed in Tore Supra at the separatrix.

Quantity ns(m
−3) Ts (eV) φ (V) B (T) time (s) distance (m) us (m.s−1)

Normalization n0 T0 φ0 = T0/e B0 ω−1
c ρL cs,0 =

»
T0/mi

Tore Supra 5× 1018 − 1019 30 30 3.1 3× 108 2× 10−4 5× 104

Table 2.1: Normalizations in TOKAM3X

In the following, the normalized quantities will be denoted with upper-cases and the over paren-

thesis will be omitted for a reason of simplicity of notations (N for density , Pα for the pressure, Φ

for the potential, etc...)

2.4.4 Braginskii equation in Tokam3X

2.4.4.1 Continuity equation

Considering the quasi-neutrality assumption (ne = ni), it is equivalent to solve the electron or the

ion continuity equation. In Tokam3X, we choose to solve the continuity equation for electrons (2.57)

because the drifts are simpler to solve for electron as the polarization drift (∝ me) can be readily

neglected. In the case of density, the divergence of nu∗ and nu∇B are rigorously the same (see Annex

A), and we define the electron perpendicular velocity as:

u⊥,e = uE + u∇B,e (2.56)

The dimensionless continuity equation then writes:

∂tN +∇ ·
Ä
N
Ä
u‖b + u⊥,e

ää
=∇ · (D⊥N∇⊥N) + SN (2.57)
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where ∇ · (D⊥N∇⊥N) is the diffusive term modelling small scales and SN the source of particle in

the core region. Note that in TOKAM3X the electron parallel velocity is in fact replaced by the ion

parallel velocity (u‖ ∼ u‖,e ∼ u‖,i i.e j‖ is neglected) due to numerical considerations.

2.4.4.2 Parallel momentum balance equation

This equation is obtained from the parallel projection of the momentum balance equation (2.35) of

both electrons (2.58) and ions (2.59), where the electron inertial terms and the divergence of Braginskii

tensor are neglected.

0 = −neeE‖ −∇‖pe + R‖ (2.58)

mi

Ä
∂tΓ‖,i +∇ ·

Ä
Γ‖,i(u‖,ib + u⊥,i

ää
= nieE‖ −∇‖pi −R‖ + SΓi (2.59)

Where SΓi is a source of parallel momentum on ions.

The sum of two equations, combined to the quasi-neutrality assumption and the diamagnetic cancel-

lation, becomes after normalization:

∂tΓi +∇ ·
Ä
Γi
Ä
u‖,i + u⊥,i

ää
= −∇‖ (Pi + Pe) +∇ ·

Å
D⊥ΓN∇⊥

Γi
N

+D⊥N
Γi
N
∇⊥N

ã
+ SΓ (2.60)

where Γi = Niu‖,ib is the ion parallel momentum, and ∇ ·
Ä
D⊥ΓN∇⊥ Γi

N +D⊥N
Γi
N∇⊥N

ä
is the

diffusive term modelling small scales.

2.4.4.3 Parallel Ohm’s law

The parallel current conservation also comes from the ion and electron momentum equations. However,

the inertial terms of electrons are not neglected in a first stage, and the equation on ions is multiplied

by me/mi which leads to:

me

Ä
∂tΓ‖,e +∇ ·

Ä
Γ‖,e(u‖,eb + u⊥,e

ää
= −neeE‖ −∇‖pe −∇ ·

Ä
¯̄ΠBrag

ä
· b +R‖ + SΓe (2.61)

me

Ä
∂tΓ‖,i +∇ ·

Ä
Γ‖,i(u‖,ib + u⊥,i

ää
=
me

mi

Ä
nieE‖ −∇‖pi −∇ ·

Ä
¯̄ΠBrag

ä
· b−R‖ + SΓi

ä
(2.62)

Here Γ‖,e/i are non-normalized quantities

The difference of equation (2.61) and (2.62), neglecting now all the terms in me/mi, and using the

electrostatic assumption E‖ = −∇‖φ, writes:

me

Ä
∂tΓ‖,e +∇ ·

Ä
Γ‖,eu‖,eb

ää
−me

Ä
∂tΓ‖,i +∇ ·

Ä
Γ‖,iu‖,ib

ää
= −neeE‖ −∇‖pe +R‖ (2.63)

Electronic inertial terms and the divergence of the Braginskii tensor are neglected with respect to the

electrostatic force. Moreover, the parallel projection of the fiction term R‖ given by Braginskii closure

2.1.3 leads to R‖ = eneη‖j‖− 0.71ne∇‖Te for a hydrogenic plasma. The parallel current conservation,
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also called the generalized Ohm’s law, becomes after normalization:

η‖NJ‖ =∇‖Pe −N∇‖Φ + 0.71N∇‖Te (2.64)

2.4.4.4 Charge conservation

At first order, the charge conservation writes:

∇ · j =∇ ·
Ä
j‖b
ä

+∇ · (j∗) +∇ · (jpol) = 0 (2.65)

where j∗ and jpol are respectively the diamagnetic and polarization current.

The charge balance equation is expressed as a function of the generalized vorticity (2.66), denoted W .

Under the Boussinesq approximation , the generalized vorticity writes:

W =∇ ·
Å

1

B2
∇⊥Φ +

1

NB2
∇⊥Pi

ã
(2.66)

The development of the charge conservation (not detailed) leads to the following normalized equation:

∂tW +∇ ·
Ä
W
Ä
u‖ + u⊥,i

ää
=∇ · (N(u∇B,i − u∇B,e)) +∇ ·

Ä
J‖b
ä

+∇ · (D⊥W∇⊥W ) + SW (2.67)

where ∇ · (D⊥W∇⊥W ) is the diffusive term modelling small scales, and SW a source of vorticity.

2.4.4.5 Electron and ion energy balance equations

In both electron and ion energy balance equations (2.23), we keep only the parallel contributions, the

ones of highest magnitude (u‖ � |u⊥|), from the terms neE · us and Rs · us in coherence with the

drift ordering. We thus keep ±u‖,iR‖, ±nu‖,iE‖. Note that as for the equation on density the electron

parallel velocity is replaced by the ion parallel velocity in the energy balance equation.

Moreover, as done for the parallel momentum equation, the anisotropic part of the pressure tensor

∇ ·
Ä

¯̄ΠBrag
ä

is not kept in the equation: ∇ ·
Ä

¯̄Πvis
ä
∝ p‖ − p⊥ ≈ 0 under the low β assumption and

∇ ·
Ä

¯̄ΠFLR
ä

disappears in the frame of the diamagnetic cancellation.

The heat fluxes (2.68) and the friction sources (2.69), from the Braginskii closure, are further simplified

keeping the terms of highest magnitude because the others perpendicular terms are negligible compared

with turbulent or drift transport.

qe/i = K0,e/iT
5/2
e/i ∇‖Te/ib (2.68)

where K0,e/i are constant parameters defined as an input of the code.

Q‖,i = −Q‖,e = 3
me

mi
ν∗
Ne

τe
(Te − Ti) (2.69)
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Finally, the energy conservation equations, in the normalized form, writes:

∂tEe +∇ ·
Ä
(Ee + Pe)u‖,i + Eeu

e
⊥
ä

=∇ ·
Ä
Ke

0T
5/2
e ∇‖Teb

ä
− Pe∇ · (ue⊥)− ΓiE‖ +

Γi
N
R‖ (2.70)

+Q‖,e +∇ ·
Å
D⊥TeN∇⊥Te +D⊥N

Ee
N
∇⊥N

ã
+ SEe

∂tEi +∇ ·
Ä
(Ei + Pi)u‖,i + Eiu

i
⊥
ä

=∇ ·
(
Ki

0T
5/2
i ∇‖Tib

)
− Pi∇ ·

Ä
ui⊥
ä

+ ΓiE‖ −
Γi
N
R‖ (2.71)

+Q‖,i +∇ ·
Å
D⊥TiN∇⊥Ti +D⊥N

Ei
N
∇⊥N +D⊥ΓΓi∇⊥

Γi
N

ã
+ SEi

where Ee = 3
2NeTe, Ei = 3

2NiTi + 1
2

Γ2
i
N , ∇ ·

Ä
D⊥TeN∇⊥Te +D⊥N

Ee
N ∇⊥N

ä
,

∇ ·
Ä
D⊥TiN∇⊥Ti +D⊥N

Ei
N∇⊥N +D⊥ΓΓi∇⊥ Γi

N

ä
are the diffusive terms modelling small scales, and

SEe and SEi are sources of electron and ion energy.

2.5 2D fluid models

In the family of fluid models, one finds also further simplified model with 2 main types of 2D codes,

later studied in this work:

• 2D slab geometry model: turbulence code where the parallel dynamics is simplified with the

assumption that k‖ = 0 and with a simplified geometry. This is the case of TOKAM2D, used in

Chapter 3, to study the basic properties of heat turbulent transport.

• 2D mean-transport code : laminar code in realistic geometry, in which no self-consistent turbu-

lence is solved, and turbulence is arbitrarily set via a diffusion coefficient. This is the case of

SolEdge2D, used in Chapter 4, to study the drift transport in the limit of low anomalous trans-

port. Note that in this largest version, SolEdge2D contains physics not included in TOKAM3X:

neutral inclusions, and realistic walls. However the model used in the most part of the chapter

4, can be considered as a reduced model of the TOKAM3X equations.

code TOKAM3X SolEdge2D TOKAM2D

type 3D turbulent fluid 2D mean fields fluid code 2D turbulent

geometry realistic realistic including the walls 2D slab

computational time ∼ 2− 4.105 s ∼ 4− 8.105s 108 − 2− 109s

for a simulation

Table 2.2: Comparison of the different models : geometry, and computational cost





Chapter 3

Mechanisms of heat turbulent

transport in 2D slab geometry

Turbulent transport of particle has been widely discussed and described both experimentally and

theoretically. However it is not the case of heat turbulent transport, especially for ion energy transport,

since in experiment electron temperature fluctuations are hard to measure and the ion temperature is

practically unknown in the edge plasma.

In order to have an insight into the basic properties of heat turbulent transport, we first investigate

the turbulence characteristics, and the resulting heat transport, in a simple slab geometry which does

not include complex geometrical effects, and only reflects basic properties of turbulence. Moreover,

the fast resolution of Tokam2D allows to scan the main parameters of the model in a short amount of

time which would be too costly in a 3D model such as Tokam3X.

The impact of the inclusion of both electron and ion temperatures dynamics on turbulence and

resulting heat transport are discussed in this section. Special focus is devoted to the contribution of an

additional mechanism due to the interaction of sheath boundary conditions with Te fluctuations, called

the Sheath-driven Conducting-Wall (SCW) instability, in simulations including electron temperature

dynamic, and to finite ion temperature effects in simulations including ion temperature dynamics.

3.1 Tokam2D: reduction of fluid modeling to a 2D model

3.1.1 Model

Tokam2D is a flux driven 2D fluid model, as TOKAM3X detailed in the previous section, derived from

the two first momenta of the distribution function for the isothermal version [Sarazin 98, Sarazin 03],

and from the three first momenta for the anisothermal version [Marandet 16]. The 2D treatment of

the turbulence comes from the so-called flute hypothesis which assumes constant perturbations along

the field lines, that is to say k‖ = 0, based on the fact that, in tokamaks, transport along the field

lines is much faster than in the cross-field direction. The parallel losses are then modeled by taking

the averaged loss along the field line between the two targets, and are represented by the sheath

conductivity coefficient σ.

Tokam2D uses also a simplified geometry, the so-called slab geometry in which only a thin poloidal

extent is treated in the limit of large aspect ratio, so that the magnetic field is considered locally as
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straight lines and the effect of magnetic curvature is set by a free parameter denoted g. In the slab

geometry x and y represent respectively the radial and poloidal directions.

The model solves the Braginskii’s fluid equations for particle conservation (3.1), charge conservation

(3.2) and electron and ion energy conservations (3.3)–(3.4) as follows:

∂tN + [φ,N ] = −σNcs exp

Å
Λ− φ

Te

ã
+DN∇2

⊥N + SN (3.1)

∂tW + [φ,W ] = − g

N
∂y (Pe + Pi) + σcs

Å
1− exp

Å
Λ− φ

Te

ãã
+ ν∇2

⊥W (3.2)

∂t

Å
3

2
Pe

ã
+

ï
φ,

3

2
Pe

ò
= −γeσPecs exp

Å
Λ− φ

Te

ã
+ χe∇2

⊥

Å
3

2
Pe

ã
+ SEe −

3me

mi
τ−1
e (Pe − Pi) (3.3)

∂t

Å
3

2
Pi

ã
+

ï
φ,

3

2
Pi

ò
= −γiσPics + χi∇2

⊥

Å
3

2
Pi

ã
+ SEi +

3me

mi
τ−1
e (Pe − Pi) (3.4)

W = ∇2
⊥φ+∇ ·

Å
1

N
∇Pi
ã

(3.5)

where cs =
√
Te + Ti is the normalized parallel acoustic speed, Pe = NTe and Pi = NTi are re-

spectively the electron and ion pressure, W is the generalised vorticity expression under Boussinesq’s

approximation, and [a, b] = ∂xa∂yb−∂ya∂xb is the Poisson bracket, representing the E×B advection.

Like in Tokam3X all quantities are normalized: spatial quantities to the Larmor radius ρL, time to

the inverse of ion cyclotron frequency Ωs, computed with respect to a reference temperature T0 and

magnetic field B0.

3.1.2 Parameters

In this chapter, the turbulence characteristics and the resulting cross-field transport are discussed

when releasing step by step the assumptions of the cold ion isothermal model, referred simply as

isothermal model in the following:

1. addition of the self-consistent variations of electron temperature governed by the equation (3.3),

this reduced model is referred as anisothermal-Te model;

2. inclusion of finite ion temperature term in the expression of the vorticity, and addition of the

self-consistent variation of ion temperature governed by the equation (3.4). The model is referred

as full anisothermal model).

In this chapter, the cold ion assumption in isothermal and anisothermal-Te simulations is replaced

by the simplification of vorticity expression to W = ∇2
⊥φ, i.e. suppression of the finite ion temperature

term in the vorticity expression. In fact, this is equivalent to a cold ion hypothesis, while keeping the

terms proportional to (Te + Ti) at the same amplitude. Thus, for isothermal and anisothermal-Te

simulation, ion temperature is taken constant equal to 1 in the curvature term, (∝ g (Te + Ti)), the

sheath loss term (∝ σ
√
Te + Ti), and Ti = 0 in the vorticity expression.

All simulations are run for a grid of 256× 256 ρL and with an integration time of 0.2Ω−1
s . D, ν, χ

are respectively the cross-field diffusion, viscosity, and thermal conduction coefficients, taken equal to

5 × 10−3ρ2
LΩ−1

s , of the order of neoclassical diffusion coefficients. The influx from the core plasma
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crossing the separatrix is mimicked by a Gaussian volumetric density source at the inner boundary,

SN ∝ exp
{
(x− x0)2/∆2

x

}
, with x0 = 16 and ∆x = 8 and homogeneous in the poloidal direction. The

corresponding electron and ion energy influx SEe/i are equal to ζe/i ∗ SN where ζe/i is the normalized

thermal energy carried by one electron/ion. The terms ±3me
mi

τ−1
e (Pe − Pi) are collisional terms where

me, mi and τe are respectively the electron mass, the ion mass and the characteristic time of electron-

ion collision. The normalised floating potential, Λ, is equal to 3.88, and the electron and ion sheath

heat transmission coefficients γe/i are respectively set to 5 and 2.5. Here, the free parameters are g,

and ζe/i scanned to study their impact on turbulence and transport. In a diverted configuration the

sheath conductivity would be significantly higher in the Private Flux Region (PFR) than in the main

SOL. We study this effect by running two sets of simulations, one with σ = σPFR = 2× 10−4 and this

other with σ = σSOL = 1× 10−4, somehow representative of this variation between the two regions.

3.2 Main characteristics of turbulence in TOKAM2D

3.2.1 Linear analysis methodology

Even though turbulence in Tokam2D is a highly non-linear phenomenon, it is worth studying the

linear stability of the model as it offers an insight into the mechanisms driving the heat transport.

In particular, turbulence structures are partly shaped by the linear instability mechanisms, and its

characteristics, for instance structures size, or phase shift between density and potential fluctuations,

can be seen as markers of different instabilities. This tool will be used all along this chapter, its

assumption and calculation details are recalled below.

The linear analysis studies the stability of a small perturbation to the equilibrium. The method is

based on the assumption that the amplitudes of fluctuations are small in regard to the mean fields.

Each field f is split in a mean and a fluctuating part, respectively f and f̃ , f = f + f̃ with f = 〈f〉t,y.
The ordering assumption of small fluctuations gives ε = f̃/f � 1, so that all the non-linear terms in

ε2 are neglected. The balance equations (3.1)–(3.4) and vorticity definition are developed to the first

order with respect to ε, the calculus being detailed in Annex B.

We also assume to have reached a steady-state equilibrium in which equilibrium fields are of the

form (3.6). It is worth mentioning here that equilibria found in turbulent simulations are far from

the one estimated by the linear analysis : λN,turb � λN,lin, evidence of strong non-linear transport.

However, the choice of assuming nonetheless a quasi steady-state equilibrium is justified by the fact

that the characteristic times of quasi steady-state equilibrium evolution, i.e. 1/σ, λ2
N/D are of an

order of magnitude higher compared to the characteristic time of fluctuation evolution (inverse of the

maximal growth rate, see in the next section). Thus in regard to a fluctuation the quasi steady-state

is constant in time.
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



N = N0 exp (−x/λN )

Te = Te,0 exp (−x/λTe)

Ti = Ti,0 exp (−x/λTi)

φ = ΛTe

with λTe = λN√
γe−1 and λTi = λN√

γi−1

(3.6)

Using the Fourier representation of the fluctuations of each field f (3.7) in the linear relationship, one

obtains an equation of the form (3.8) where M (ω, kx, ky) is a matrix depending on ω, kx, ky and other

parameters of the system. The system (“N , Ŵ , φ̂, T̂e, “Ti) admits a non trivial solution if and only if

the determinant of the matrix M (ω, kx, ky) is zero. This condition yields to a 4th order polynomial

relationship in ω.

f̃ =
∑

kx,ky

f̂kx,ky exp(ikxx+ ikyy) exp(ωkt) (3.7)

M (w, kx, ky) ·




“N
φ̂

Ŵ

T̂e“Ti



= 0 (3.8)

This offers some informations on the temporal evolution of a mode: a mode is unstable, i.e its amplitude

grows in time, if their exists ω solutions of det (M (ω, kx, ky)) = 0 such as Re (ω) > 0 and is stable other-

wise. And the growth rate of a (kx ky)-mode, denoted γ, is defined as max {Re (ω) : det (M (ω, kx, ky)) = 0},
that is to say the growth rate of the most unstable mode.

For each linear mode (ω, kx, ky) an associated phase shift between density and potential fluctua-

tions, denoted δN,φ and defined by δN,φ = arg N̂

φ̂
, can be also extracted by substitution and simplifi-

cation of the other fields in the linear spectral equations.

3.2.2 Characteristics of interchange turbulence in isothermal simulations

In the isothermal model with no finite ion temperature effect, the linear analysis (presented in Annex

B) is considerably simplified. The remaining part of the dispersion relation (det (M (ω, kx, ky))=0)

yields to a second order equation in ω:

ω2 + bω + c = 0 (3.9)

where b = σ
k⊥

+σ+ (DN + νk⊥) and c = (σ +DNk⊥)
Ä
σ
k⊥

+ νk⊥
ä
− gky

λNk⊥
− igσ ky

k⊥
with k⊥ = k2

x + k2
y.

We can observe that the b is a real strictly positive, thus the growth rate is equal to:

γk = Re

®
−b+

√
b2 − 4c

2

´
(3.10)
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Figure 3.1: 2D snapshots of density in log-scale (left) and potential (right) for isothermal cold ions
simulations (top) and full simulations (bottom)

One can readily deduce that the term b has a stabilizing effect. Small spatial scales (high k⊥)

are damped by the diffusive terms with a stabilizing effect proportional to k2
⊥, while large scales are

damped by the current parallel loss σ. The most unstable mode kmax will result from the competition

between this two stabilizing effects. In isothermal simulations, the only instability at play is the

interchange instability, and the destabilization comes from the interplay between the density gradient

and the curvature (i.e. the term ∝ g/λN )

In turbulent simulations, the particle source induces the creation of a density gradient which

builds up until the interchange modes become unstable. As one can observe on Fig. 3.1a) b), these

unstable modes form finite poloidal structures, usually referred as filaments or blobs, characterized by

long radial elongations (kx < ky). Due to the quasi phase quadrature between density and potential

fluctuations, expected from linear analysis, the structures propagate radially advected by the E ×B

radial velocity. In the far SOL, blobs loose their coherence and split into smaller structures damped

by the diffusive effect.

In steady-state, the simulations present an important intermittent feature, characterized by a
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high fluctuation level defined as the standard deviation normalized by the mean field, i.e. for density

σ (N)t,y / 〈N〉t,y. Note that in 2D simulations the averaging is made both in the temporal and poloidal

direction assumed to play the same role on the statistics (ergodic hypothesis). In the TOKAM2D

simulations, the fluctuation level of density is of the order 10% to 50% in relatively good agreement

with experimental results [Horacek 10, Hornung 13]. This turbulent flux starts from the source and

propagates outward radially in a quasi-ballistic motion, with a characteristic velocity of the order of

0.05cs of the same order of magnitude as found in Ref. [Myra 06]. The probability density function

(PDF) of the E × B flux is far from a Gaussian and presents a large positive tail representative of

rare but strong flux event in the outward direction responsible for the largest part of the transport

[Sarazin 98, Sarazin 03].

3.2.3 Impact of electron and ion temperature dynamics

Properties of turbulent transport in Tokam2D have been largely studied with the isothermal closure,

and using the cold ion approximation, i.e Te = constant, Ti = 0 [Sarazin 98, Sarazin 03], highlighting

the properties of strongly intermittent turbulence. Although the electron and ion temperature equa-

tion structures are rather similar to the density equation, turbulence in the full anisothermal model

presents, for the same set of parameters, significant differences compared to the isothermal model as

illustrated on Fig. 3.1.

The most striking effect is the modification of the shape of the intermittent structures. They

present a larger poloidal extends (i.e small ky) and appears to be less radially elongated than in the

isothermal case. Moreover, they do not exhibit the typical mushroom shape observed in isothermal

simulations and the structures appear to stay somehow more coherent, i.e. to spilt up less into smaller

streamers.

In the light of the linear analysis of the anisothermal model, and of the literature, we can already

underline two impacts of the inclusion of temperature dynamics that could be a potential explanation

for these differences. Each of this effect will be further studied in details in the following of the chapter.

Effect of the inclusion of electron temperature dynamics:

The Te-fluctuations have an impact on the current parallel losses via Bohm boundary conditions. The

inclusion of the Te fluctuations in the current sheath losses term modifies the mode number of the most

unstable mode. Indeed, the stabilizing term σcs exp
Ä
Λ− φ

Te

ä
includes now Te fluctuations, and the

linear stabilizing term σcs
φ̂

Te
becomes σcs

Å
φ̂

Te
− Λ

“Te
Te

ã
It is equivalent to a reduction of the effective

parallel resistivity, i.e. a reduction of linear stabilizing term of the large scales. Consequently, one

expects that the most unstable mode will be at a lower ky, i.e. larger poloidal structures.

This is the focus of the section 3.3 of this chapter. In particular, we will show that the presence

of Te fluctuations in the sheath loss is responsible for another instability explaining the modification

of turbulence characteristics.

Effect of the inclusion of finite ion temperature effect:

The inclusion of finite ion temperature effect, that is to say the inclusion of the diamagnetic contribu-

tion to the polarization drift in the vorticity expression (the second term inW =∇·
Ä

1
B2∇φ+ 1

NB2∇Pi
ä
)

has been pointed in the literature to impact turbulence properties [Bisai 13, Olsen 16, Jovanović 08,

Madsen 11]. In particular, the study of the seeded blob dynamics shows that it is responsible for more
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Figure 3.2: Scheme of the processes of the Sheath Conductive Wall instability. Time increases from
left to right

coherent structures. This particular effect will be discussed in the section 3.3 of this Chapter.

Finally, it is worth underlying that electron temperature radial gradient forces the apparition of po-

tential radial gradient (Fig. 3.1 d) via the sheath loss condition. The induced poloidal flow creates an

additive channel for energy transfer between turbulence and mean flow.

3.3 Turbulent heat transport in the presence of electron tempera-

ture fluctuations

3.3.1 Superimposition of two instabilities in the presence of self-consistent elec-

tron temperature fluctuations

In this section, only the impact of electron temperature fluctuations is studied, i.e ‹Ti = 0, λTi = ∞
and W = ∇2

⊥φ. The main difference in the linear stability of the model between the isothermal model

and the Te model is the apparition of an additional linear instability [Berk 91, Berk 93, Cohen 94], the

electron temperature gradient instability induced by sheath conductivity, also know as Sheath-driven

Conducting-Wall (SCW) instability, which acts on top of the well-known interchange instability. Let

us first recall briefly the mechanisms triggering each instability and their principal characteristics:

• interchange instability is driven by the curvature of the magnetic field, and is unstable when

both pressure and magnetic field gradient are directed in the same direction, equivalent to g ≥ 0

in the model. Thus this mechanism is unstable only in the Low Field Side (LFS) of tokamaks.

• Sheath Conductive Wall instability is driven by the impact of the Te fluctuations on sheath

losses.

As the latter instability is less known we start by briefly explaining its mechanism in the simplest

form. The mechanism can be summarized in 4 simplified steps schemed in Fig.3.2. The most reduced

model to explain the mechanisms takes the following assumptions : no density or ion temperature
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fluctuations ‹N = ‹Ti = 0, and no dissipative processes D = ν = χ = 0, so the system of equation

becomes: 



∂tW + [φ,W ] = σ
√
Te

Å
1− eΛ− φ

Te

ã
∂tTe + [φ, Te] = −γeσPecseΛ− φ

Te

(3.11)

1. First let us consider a small sinusoidal perturbation of Te (represented by a full blue line) to the

equilibrium (represented by a dashed blue line) in the presence of a Te gradient.

2. The sheath condition in the current balance equation will enforced a potential fluctuation φ̃ in

phase with T̃e.

3. The E×B advection creates a positive phase shift between T̃e and φ̃ due to the mean Te gradient.

4. For such mode, if one considers a positive structure of Te fluctuation, and the direction of

the electric drift uE×B, reported in green, one can notice that the part of the positive structure

transported in the counter∇Te direction is larger than the one transported in the∇Te direction,

hence the initial fluctuation is amplified, i.e. the mode is unstable.

We now, study the linear stability of the model, in order to disentangle the roles of these instabilities,

we have set-up reduced models which separate their contribution in the global linear analysis:

• reduced model of SCW instability: the interchange instability is simply cancelled by setting the

curvature term to zeros, i.e. g = 0;

• reduced model of interchange instability: the most reduced way to cancel the SCW instability

is to take away the contribution of the fluctuation of temperature in the exponential part of the

parallel loss term in the equation of current conservation, i.e. replacing the sheath loss term

exp
Ä
Λ− φ

Te

ä
by exp

Å
Λ− φ

〈Te〉 t,y

ã
in (3.2).

The linear growth rate as a function of poloidal mode number and for kx = 0 of the isothermal

model and its decomposition in the contribution of each instability, Fig. 3.3a, reveals that the SCW

instability destabilizes larger spatial scales, i.e. is unstable at lower ky than the interchange one. Thus

the SCW instability is the one responsible for the fact that the most unstable mode in the anisothermal

model, indicated by a marker, occurs at lower poloidal mode number than in the isothermal model.

In fact the scales destabilized by the interchange instability in the anisothermal case are even smaller

than is the isothermal case due to the additional contribution of the temperature gradient in the

curvature term g.

Another noticeable difference in the linear instability is the typical phase shift between fluctuation

of density and potential, i.e. arg
Ä “N/φ̂ä. The analytical linear results Fig. 3.3b. predict a phase

quadrature between ‹N and φ̃ for the interchange instability in the isothermal model (arg
Ä “N/φ̂ä ≈ π/2

at all ky), when for the full Te model or the SCW reduced model the shift phase between arg
Ä “N/φ̂ä

is close to zero at very low ky unstable modes (ky < 0.15ρ−1
L ), and decreases down to 0.25π at high

ky in SCW reduced model and down to 0.4π in the anisothermal model. At the maximal value of the

growth rate, arg
Ä “N/φ̂ä are respectively equal to 0.2π (SCW) and 0.3π (anisothermal-Te).
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Figure 3.3: Linear growth rate (a) and linear phase shift between density and potential fluctuations (b)
for Te model, anisothermal SCW, interchange reduced models and isothermal model for σ = 1× 10−4,
g = 4 × 10−4, λN =

(√
γe − 1

)
λTe = 30ρL as a function of the poloidal mode number ky and for

kx = 0. The linear phase shift is reported only for mode presenting a positive growth rate

Fig. 3.4a. depicts a 2D map of the maximal linear growth rate as a function of the local gradient

lengths and Te, for σ = σPFR, σ = σSOL. The black line is the delimitation between the predominance

domain of the two instabilities (γmax,int = γmax,SCW). For the main SOL parameters (left), the

interchange instability has a broader domain of predominance (γmax,int > γmax,SCW). Yet if we look

at the ratio between the SCW and interchange instability (γmax,SCW/γmax,int), Fig. 3.4b. we observe

that the ratio is around 1 for the most part of the domain of local parameter, so the SCW instability

is not negligible with respect to the interchange one. On the contrary, for PFR parameters (right), the

SCW instability has a broader domain of predominance. Moreover, for low Te, expected in the PFR,

the SCW instability is largely predominant γmax,SCW/γmax,int > 2. On Fig. 3.4b, we also observe

that the ratio γmax,SCW/γmax,int decreases with Te for a given value of local gradients and for the two

values of σ, so the relative predominance of the interchange instability is favored by an increase of

Te. To conclude, we keep in mind that both effects of σ and Te on the linear stability favor the SCW

instability in the PFR, which might play an important role in this region.

3.3.2 Modification of turbulence characteristics in non-linear simulations with the

additional SCW instability

We now turn to non-linear simulations to understand how the turbulence is influenced by the additional

SCW instability in light of the linear analysis. The reduced models for each instability applied in the

linear analysis can also be used in non-linear simulations to study separately the characteristics of the

turbulence driven by each instability. Note that in numerical simulations, the averaging of fluctuation

of Te in sheath loss term for the pure interchange model can only be done in the poloidal direction,

i.e exp

Å
Λ− φ

〈Te〉y

ã
.

Let us start by mentioning that all types of simulations, regardless of the driving instability, exhibit

high amplitude structures of density, potential and temperature (in anisothermal cases) reminiscent
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Figure 3.4: (a) Maximal growth rate (γmax) for anisothermal-Te model, and (b) ratio of maximal
growth rate between SCW and interchange instability, for g = 4 × 10−4 and σ = 1 × 10−4 (left) and
for σ = 2× 10−4 (right) as a function of Te and λN with λTe = λN√

γe−1

of the so-called blobs observed in the experience. Nevertheless, the characteristics of these structures

change with the model and as a function of the main parameters (g, σ and ζ).

In order to discriminate the intermittent structures we proceed to a conditional averaging for all

fields f (density, temperatures and electric potential), where we consider only the fluctuating part of

the events of high amplitude compared to the mean field, defined in (3.12) where icond is a conditional

value, and where σN (x) is the standard deviation of density in time and space for a given radial

position x. In the following we take icond = 2.




f̃icond

(t, x, y) = f (t, x, y)− 〈f (t, x, y)〉t,y for (x, y, t) : N (t, x, y) ≥ 〈N (t, x, y)〉t,y + icondσN (x)

f̃icond
(t, x, y) = 0 elsewhere

(3.12)

For a given radial position, each event, or blob, can be defined by its temporal and poloidal position
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Figure 3.5: Conditional averaging of the intermittent structures of density, potential and electron
temperature normalized by their maxima for isothermal (a) and Te (b) simulations

(tb, yb) corresponding to the local center of mass of ‹Nicond
. On Fig. 3.5 the averaged fields on all blobs

at the radial position x = 70ρL on poloidal extend of 30ρL on both sides of the maxima are reported for

isothermal and Te model. The shape of such averaged structure shows two main differences between

the two models: larger structures in the anisothermal-Te, and a clear re-correlation of the density

and potential fluctuations. We can also note that the structures of density and temperature coincide

almost perfectly.

Now in order to characterize the poloidal spatial scale of each intermittent structure, we first

operate the conditional averaging defined previously, and restrict our interest to the radial position

where the turbulent structures are fully developed (here x = 70ρL). Then the blob poloidal size

is estimated by the autocorrelation length, denoted Lac and defined as the width at half maximum

amplitude of the autocorrelation function (3.13) on a poloidal extend of 30ρL on both size of blob

position:

∀ (tb, yb) , fauto (τ) =

ˆ
y

‹Nicond
(tb, y) ‹Nicond

(tb, y + τ) y (3.13)

On Fig 3.6 the probability density function (PDF) of the autocorrelation length, Lac, is reported

for the 4 types of simulation : isothermal, Te, and both SCW and interchange reduced model. We

observe that the most represented spatial scale in anisothermal simulation is larger (≈ 10ρL) than in

the isothermal simulation (≈ 8ρL). In light of the linear analysis, this difference is likely to be due

to the SCW instability, as it is the one destabilizing large scales, when the interchange instability

destabilizes even smaller scales in the anisothermal system than in the isothermal one. Indeed the

spatial scales distribution of the anisothermal-Te system presents a similar shape as the one of the

pure SCW simulation, even though the peak around 10ρL has a lower amplitude. On the contrary,

the distribution for the pure interchange simulations coincides almost exactly with the one of the

isothermal simulation. We conclude that the SCW has a stronger impact on spatial scales distribution,

even though for this value of parameters g = 8× 10−1, σ = 1× 10−1 and Te ≈ 1, γmax,int is 1.5 times
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Figure 3.7: Averaged autocorrelation length in
anisothermal simulation as a function of g for σ =
1× 10−4

higher than γmax,SCW. This is in agreement with the results found in the reference [Sarazin 98], which

proposes that the inverse cascade of energy excites large scales of turbulence. As a consequence, the

size of turbulent structures is mostly determined by the value of the smallest unstable poloidal mode,

and thus determined by the SCW instability.

Besides if we look at the variation of the averaged of Lac Fig 3.7, somehow representative of the

relative weight of the two types of distribution, we see that the mean Lac decreases with the increase

of g, namely with increasing γmax,int/γmax,SCW, confirming that the SCW instability is the one which

triggers the destabilisation of the larger scales. The Lac variation with ζ is in agreement with this

conclusion, but is not reported as less significant due to the fact that in this range of Te the ratio

γmax,int/γmax,SCW does not exhibit important variations.

Another noticeable difference in non-linear simulation is that the addition of Te fluctuations triggers a

re-correlation between density and potential fluctuations. This characteristic is estimated by the rela-

tive phase shift between potential and density turbulent structures denoted δN/φ, here no conditional

averaging is operated, however the results are in agreement with the conditional averaging results.

The phase shift is defined as the arc-cosine of the correlation coefficient of ‹N and φ̃:

δN/φ = arccos

Ö ¨‹N∂ ¨φ̃∂
y,t¨ ‹N2

∂1/2
y,t

¨
φ̃2
∂1/2
y,t

è
(3.14)

Isothermal simulations present the typical phase shift of the interchange instability δN/φ = π
2 , when in

simulations we find δN/φ ≈ 0.1−0.15π, Fig. 3.8. If we look at simulations driven by only one instabil-

ity, we note that the phase shift for the full system is almost equal to the one of the SCW instability

δN/φ ≈ 0.1π and the one of the pure interchange simulation is closer to the one of the isothermal

system δN/φ ≈ 0.35− 0.4π. Once again the re-correlation of density and potential fluctuations can be



50 Chapter 3. Mechanisms of heat turbulent transport in 2D slab geometry

0 20 40 60 80 100 120 140

x (ρL)

0.6

0.4

0.2

0.0

θ N
/φ
/π

 

anisothermal Te
interchange
SCW
isothermal

Figure 3.8: Radial profile of δN/φ for isothermal,
Te , pure interchange , and pure SCW simulations,
for σ = 1 × 10−4, g = 8 × 10−4, ζ = 5. The radial
extent where the turbulence is fully developed in all
type of simulations is depicted by the white area,
whereas the grey zones correspond to the zone of
influence of the source

0 2 4 8 16

g (au) 1e 4

0.20

0.15

0.10

0.05

0.00

θ N
/
φ
/π

Figure 3.9: Averaged phase shift in anisothermal
simulation the radial extent [40,125] as a function
of g for σ = 1× 10−4

attributed to the addition of the SCW instability, this result is the one expected in regard with the

result of the linear analysis. Besides by varying g, i.e the relative importance of the two instabilities,

we find that δN/φ increases as γmax,int/γmax,SCW, i.e. increases with g, and thus the phase shift is a

instability-weight marker. As for Lac variation with ζ are not significant due to a weak variation of

γmax,int/γmax,SCW in the range of parameters considered and are not reported on the plot.

Another important result from the conditional averaging Fig. 3.5, is that electron temperature struc-

tures, and even more so electron energy structures, coincide with the ones of the density. This result is

confirmed by the low phase shift between density estimated with this methods: δN/Te ≤ 0.05π for all

the studied parameters. Thus, in this regime, the energy is transported by the fluctuation of density.

The non-local intermittent transport translates into a broadened PDF1 of the particle turbulent flux

which is positively skewed. The turbulent flux of particle, defined as ΓN,turb = −‹N∂yφ̃, is character-

ized by the superimposition of a Gaussian centered on zero corresponding to a diffusive-like transport

and a log-normal distribution for the tails corresponding to the intermittent bursts, responsible for the

largest part of the particle transport [Sarazin 03]. On Fig. 3.10 a., we observe a significant reduction

of the PDF tail between isothermal and Te simulation, and positive skewness is reduced within a ratio

comprised between 1.5 and 2.5 depending on the radial position (Fig 3.11) b. The decrease of the

skewness for ΓN,turb could be linked to the diminution of δN/φ, that was proved as one of the reasons

for this asymmetry [Carreras 96]. This seems to be confirmed by the shape of the PDF of the reduced

models, indeed the PDF of the interchange reduced simulations, presenting a quasi phase quadrature

between density and potential fluctuating parts, is close to the one of isothermal simulations, with

similar skewness γΓN,turb
∈ [1, 1.5]. On the contrary, shape of the PDF in the reduced SCW simulations

1Note that the x-axis is normalized by the standard deviation, the PDF integral is thus not equal to one
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is close to the one of the anisothermal, with lower skewness γΓN,turb
∈ [0.3, 0.7], in agreement with the

lower phase shift between density and potential fluctuations.

The fluctuation level of ΓN,turb is higher in the Te simulation Fig. 3.11 a. compared to isothermal

simulation, and the fluctuation level of the full model is comprised between the one of the two models.

Note that once again the fluctuation level of the pure interchange simulation is close to the one of the

isothermal simulation.

Now, the PDF of radial turbulent flux of the electron energy γEe,turb = −3
2 P̃e∂yφ̃ for the Te

simulation exhibits a longer tail of the distribution than the ones of ΓN,turb. This can be explained

by the fact that the fluctuations of N and Te coincide almost, so that the co-occurrence of two rare

events of N and Te will be even further in the tail considering the transport of energy. This feature

of the transverse transport is really important to keep in mind when talking about the problematics

of plasma facing components. In the case of an intermittent non-local transport, the time averaged

heat foot-print is not representative of the extreme and rare events that the PFC has to face up, and

which can drastically reduce the time life of the components.

To summarize this section two main conclusions can be drawn :

• The SCW instability plays a predominant role in the turbulence features and seems to be the one

setting the turbulence scales, and the re-correlation between density and potential fluctuations.

• The intermittent structures of density and temperature coincide, and so Te or Pe fluctuations

present the same features as the ones of density leading larger intermittency for the energy flux

than for the particle flux.
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Figure 3.11: Radial profile of the fluctuation level (a) and skewness (b) of particle turbulent flux for
Te, pure interchange, pure SCW and isothermal simulations, the source area is colored in grey

3.3.3 Heat turbulent transport: a non-linear superimposition of the two instabil-

ities

In the previous section we have shown that the addition of electron temperature fluctuations have a

significant impact on the turbulence features. As in Tokam2D, the turbulence is responsible for more

than 90% of the transport, one can expect an impact on the time-averaged radial transport.

In order to compare the transport in isothermal and Te model, we first look at the density radial

profiles. The most striking impact of Te fluctuations can be observed on the shape of the density

profile represented in log scale Fig. 3.12a. For isothermal simulations we obtain a purely exponential

profile, whereas for anisothermal-Te simulations exhibits slope variations. This is also found on other

field profiles: Pe, Te, φ. This feature can be explained by the existence of a poloidal shear flows

∂2
x 〈φ〉y,t in anisothermal-Te simulations, created by the presence of non constant Te gradient, and as

the sheath condition imposes 〈φ〉y ≈ 〈ΛTe〉y, the averaged shear is likewise non zero Fig. 3.12b. As

mentioned earlier, this shear flow creates a channel for energy transfer between turbulence and mean

flow, the shear flow impacts turbulence and consequently the profile, which explains the presence of

slope variations. The correlation between the averaged shear and the flux profile is clear, indeed slope

variations of density profile appears at the same radius as the shear extrema indicated by a black

marker on the anisothermal-Te radial density profile.

Even though we have underlined the intermittent feature of the turbulent transport, the radial trans-

port is summed up, here, to the single value of SOL width, representative somehow of an averaged

transport. The SOL width of a field f is defined as the e-folding length of the time and poloidal

averaged radial profile 〈f〉t,y, denoted λf , and estimated by a least squares regression on the radial

extent x ∈ [30, 150] where turbulence is fully developed.

As for turbulence characteristics, the linear analysis permits to have an insight in the mechanisms

likely to dominate the non-linear dynamics according to the gradient removal theory (GR) [Ricci 09,



3.3. Turbulent heat transport in the presence of electron temperature fluctuations 53

(a)

0 20 40 60 80 100 120 140
x (ρL)

10-1

100

N
 

anisothermal Te
interchange
SCW
isothermal

(b)

0 20 40 60 80 100 120 140
dsep (ρL)

10

5

0

5

2 x

〈 φ〉 t,
y

1e 3

anisothermal Te
SCW
interchange
isothermal

Figure 3.12: Radial profiles of density (in log-scale) (a) and ∂2
x 〈φ〉y,t (b) for Te, pure interchange, pure

SCW and isothermal simulations. The source area is colored in grey

Ricci 13]. This theory permits to link the growth rate of a linear mode to the SOL width. The

fundamental assumption is that the saturation of the turbulence occurs when the local flattening due

to the perturbation counterbalances the background density gradient, that is to say kx ‹N ∼ ‹N/λN .

The following steps and hypothesis permits to obtain the relationship (3.15) linking the growth rate

of the dominating mode and the particle SOL width.

• the balance between the parallel losses and the radial transport gives ∂xΓx ∼ Γx/λN ∼ N
csσ

, with

Γx the turbulent flux Γx = N∂yφ ∼ kyφ̃‹N ;

• the leading order of the density equation, i.e ∂tN = [N,φ], gives an additional relationship

between φ̃ and gives γ ‹N ∼ N/λNkyφ̃ which permits to suppress φ̃ in the radial turbulent flux;

• Finally it is assumed that kx ∼
»
ky/λN , as proposed by the Refs. [Mosetto 13, Mosetto 15,

Ricci 13] in non-local linear-theory for interchange instability. Note that, here, we take the same

assumption for the SCW instability. This is justified by the fact such instability can be seen as

a drift-wave like mechanism following kx ∼
»
ky/λN in non-local linear-theory.

λN ∼
1

csσ

Ç
γ

ky

å
max

(3.15)

On Fig. 3.13a. we report the SOL width estimate based on the gradient removal theory for the

different reduced models, and the SOL width found in numerical simulations for different values of g.

The scaling on SOL width as a function of g shows that the gradient removal theory estimates correctly

the increasing trend of λN with g for both isothermal and the Te models. However the λN value is

not exactly predicted: for the isothermal model the ratio between the linear theory and the non-linear

simulation results stays relatively low with a relative error below 17%. For the anisothermal-Te model,

λN from the non-linear simulations shows a negative offset in comparison with the linear prediction,

the absolute value of the relative errors decreases with g from more than 20% for g = 2× 10−4 down

to less than 10% for g = 16× 10−4. Now if we look at the reduced models, in both type of non-linear
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simulations the SOL width is significantly smaller than the one predicted by the GR theory, with a

relative error of more than 30% in both case. For both reduced model, SOL widths from numerical

simulations exhibit greater discrepancy with the GR prediction than in the Te model, which seems to

point out that the global transport results from a non-linear interaction between the two instabilities.

Thus the rather correct estimate from the gradient removal theory in anisothermal-Te simulations

could be fortuitous as it seems that non-linear interactions plays a role in the radial transport.

In conclusion even though the gradient removal theory predicts correctly the trends of the SOL

widths, non-linear effects seem to have an important role so that this theory will not be sufficient in

itself to give a robust prediction of the SOL width. Moreover, we have showed that both instabilities

contribute to the radial transport.

The heat radial transport is characterised in the non-linear simulations by the power e-folding

length λq, with q‖,e = γeσcsPe exp (Λ− φ/Te). On Fig 3.13b. λq is reported as a function of g and

for σ = σSOL and σ = σPFR for the 3 models. We first note that, as for λN , power e-folding lengths

of the pure interchange and pure SCW simulations, respectively λq,int, and λq,SCW (g = 0), are both

smaller than the one of the anisothermal-Te simulation, so the two instabilities are contributing to

the global heat transport. Besides λq,int and λq,SCW are also significantly larger than the power e-

folding length estimated for a pure diffusive simulation λq,diff ≈ 5ρL, so their turbulent transport is

efficient. For σ = 1×10−4, one or the other instability is dominating depending on g, for g = 4×10−4

λqe,SCW > 2 ∗ λqe,int, for g = 8 × 10−4 λqe,SCW ≈ λqe,int and for g = 16 × 10−4 λq,SCW < λq,int,

however for σ = 2×10−4 the SCW instability dominates (λqe,SCW > λqe,int) the heat transport for any

value of g, thus as predicted by the linear analysis, the SCW instability is expected to have a greater
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relative weight in the divertor region. Furthermore the ratio λqe,int/λqe is smaller in simulation with

σ = 2× 10−4 than in the one σ = 1× 10−4, reinforcing the previous conclusion.

Actually for both σSOL, and σPFR, even with a negative curvature (g = −4 × 10−4) the SCW

instability drives turbulence with a λq well above 2λq,diff . With our simplified model, the ratio of

transport between the internal and the external legs of the divertor λq,g=4×10−4/λq,g=−4×10−4 (for

both value of σ) would be smaller than 2.

In conclusion, if the turbulence features are strongly influenced by the characteristics of the SCW

instability, probably due to an important inverse cascade toward the low ky mode, the turbulent

transport seems to by driven from an interplay between the two instabilities, and both contribute to

the transport.

Let us also mention, here, that we could have chosen for the reduced interchange model to take the

averaged of electron temperature in all sheath loss terms, that is to say also for the equation on

density and electron energy Eq (3.1) and (3.3). The reduced model has been run, the turbulence

features of such reduced interchange model are qualitatively the same as the model presented in this

section. However the SOL widths were significantly impacted. This can be explained by the impact

of the averaged on the amplitude of the sheath loss terms. Indeed, if we compare the amplitude

of the particle parallel losses in anisothermal-Te simulations: 1) without averaging on Te, ΓN,‖ =

σcsN exp (Λ− φ/Te), and 2) with averaging, ΓN,‖,∗ = σcsN exp (Λ− φ/ 〈Te〉), we find ΓN,‖/ΓN,‖,∗
varies between 2 and 6 depending on the radius due to the phasing between φ and Te. Hence, the

inclusion of Te fluctuations in the sheath loss term has not only an impact on the cross-field dynamic

but also on the amplitude of the parallel losses.

SCW instability: a potential player in the divertor region or in start-up L-mode plasma

In this section we have shown that the SCW instability contributes substantially to the heat

turbulent transport. However the reduced 2D-fluid model does not take into account the effect of the

strong magnetic shear in the X-point region that would prevent the sheath instability to propagate

into the main SOL [Ryutov 04]. Hence it is unlikely that such instability could play a role in the main

SOL of a diverted plasma.

Nonetheless it could play a role in start-up L-mode limited plasma and also on the turbulence

in the divertor region. In particular it could be of interest for the study of the spreading factor S

[Eich 11], as suggested in Refs. [Ryutov 04, Myra 97]. Indeed it provides an additional mechanism

to spread the heat flux in the divertor region and thus reducing the heat loads which is also a key

factor for the heat flux exhaust problematics. Moreover, contrary to the interchange instability, the

SCW instability would be unstable on both divertor legs and our simulations predict a ratio of only

2 between the SOL widths of inner and outer legs.
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Figure 3.14: (a) Linear growth rate and (b) linear phase shift between density and potential fluctua-
tions for the full anisothermal, full anisothermal SV, anisothermal-Te model, and anisothermal-Te GV
model for σ = 1 × 10−4, g = 4 × 10−4, and λN =

(√
γe − 1

)
λTe =
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γi − 1

)
λTi = 30ρL s a function

of the mode number ky and for kx = 0. Linear phase shift is reported only for mode presenting a
positive growth rate

3.4 Turbulent heat transport in the presence of ion temperature

dynamic

Fluid codes historically used the cold ions hypothesis based on the idea that the ions were motionless in

comparison to electrons due to their higher inertia. Furthermore, in the SOL, the potential follows the

electron temperature, thus it was expected to have a greater impact on turbulence features. However

experimental measurements show that the ion temperature is systematically higher than the electron

temperature in the edge plasma [Kočan 11], and Ti/Te even reached 10 for some tokamaks. Thus the

inclusion of finite ion temperature is required to describe properly the turbulence in the edge plasma.

Moreover, the ion temperature dynamics has been recently a field of interest for the edge plasma

turbulence and it has pointed out that the inclusion of finite ion temperature in the model impacts

the seeded blob dynamics [Bisai 13, Olsen 16, Jovanović 08, Madsen 11]. In this section, we study the

impact of the addition of self-consistent Ti fluctuations first on the linear stability of the model, then

on the turbulence characteristics and heat transport. A special focus is devoted to the contribution

of the inclusion of Ti in the vorticity term, which is shown to play a critical role in the model.

3.4.1 Linear damping of small spatial scales in the presence of finite ion temper-

ature effect

The linear analysis shows that the inclusion of self-consistent fluctuations of ion temperature does not

trigger any supplementary instability in our 2D-model. Indeed, the growth rate falls to negative value

when the destabilizing terms of interchange and SCW instabilities are set to zero.

The principal linear impact of the addition of Ti fluctuations is to damp more efficiently the small

scales (large ky) Fig. 3.14a. Indeed, the growth rates of both full anisothermal and anisothermal-Te



3.4. Turbulent heat transport in the presence of ion temperature dynamic 57

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

ky (ρ−1
L )

0

1

2

3

4

5

6

7

γ
k

(Ω
s
)

1e 3

Ti = 1

Ti = 2

Ti = 5

(b)

0.0 0.2 0.4 0.6

ky (ρ−1
L )

1.0

0.8

0.6

0.4

0.2

0.0

ar
g( N̂/

φ̂
) /π

Ti = 1

Ti = 2

Ti = 5

Figure 3.15: (a) Linear growth rate and (b) linear phase shift between density and potential fluctua-
tions for the full model, for σ = 1×10−4, Te = 1, g = 4×10−4, λN =
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30ρL and Ti = 1, 2, 5 as a function of the poloidal mode number ky and for kx = 0. The linear phase
shift is reported only for mode presenting a positive growth rate

models are quasi-equal for ky < 0.15ρ−1
L , but for ky > 0.2ρ−1

L , γmax decreases drastically faster in the

full anisothermal model. The unstable mode of largest ky is about 0.5ρ−1
L for the full anisothermal

model compared with more than 1 for the anisothermal-Te model. In consequence, the impact on

the growth rate of interchange instability (destabilizing large ky) is more important than for SCW

instability (destabilizing small ky) (results not reported here). Concerning the linear phase shift

between density and potential fluctuations, Fig. 3.14b, the impact of Ti fluctuations is to increase its

amplitude for ky > 0.1ρ−1
L , and the absolute value of the phase shift of the most unstable mode is

about to 0.45π in the full anisothermal model compared to 0.3π in anisothermal-Te model.

The linear analysis also points out that the inclusion of finite ion temperature in the vorticity expression

is the dominant contribution when considering the role of the ion temperature inclusion as it will be

re-discussed later in the section. Indeed if one considers the two following intermediate models:

• anisothermal-Te GV (for Generalized Vorticity): model taking into account the finite ion tem-

perature in the vorticity expression but no Ti fluctuations, i.e. Ti = constant and W =

∇2
⊥φ+∇ · (Ti∇ lnN);

• full anisothermal SV (for Simplified Vorticity): model taking into account Ti fluctuations but not

the finite ion temperature in the vorticity expression but no Ti fluctuations, i.e. Ti = fluctuating

and W = ∇2
⊥φ;

one finds that the anisothermal-Te GV model presents the same impact than the full anisothermal

model on both the linear growth rate and the phase shift, even though the effects are less marked.

One the contrary, the full anisothermal SV presents similar growth rate and the phase shift as the

anisothermal-Te model. Thus the inclusion of finite ion temperature in the vorticity expression is

the dominant additional contribution between in the linear stability of the full anisothermal and

anisothermal Te model.
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Figure 3.16: Conditional averaging of the intermittent structures of density, potential, electron and
ion temperatures normalized by their maxima for simulations with g = 8×10−4, σ = 1×10−4, ζe = 5,
ζi = 3 (a) and ζi = 10 (b)

The scan of Ti, presented on Fig 3.15, shows that the increase of Ti damps more efficiently small

scales, thus favors large scales, and yields to a larger of linear phase shift between N and φ.

3.4.2 Highly intermittent turbulence in the presence of finite ion temperature

On Fig. 3.16a) the typical blob shape for full non-linear simulation with ζi = 3 at x = 70ρL is

reported. The anisothermal simulation with ζi = 3 are the one comparable to the anisothermal-Te

with Ti,0 = 1 as Ti ≈ 1. The typical size of the structure is the same for both models, result also

confirmed by the PDF of the blob size (not reported here). This reinforces the assumption that the

inverse cascade favors the modes of largest ky, as the linear stability of both models coincides only for

low ky, that is to say the ones setting the poloidal spatial scales under the assumption of an inverse

cascade. Nonetheless, a strong damping of small spatial scales, predicted by the linear analysis, is

observable indeed in the far SOL in the full anisothermal model.

The absolute phase shift |δN/φ| is also slightly larger in the full model in agreement with the linear

analysis δN/φ ≈ 0.15π, however such low phase shift is still a marker of the SCW instability, which

seems to be also at play in the full anisothermal model.

Finally it is worth noting that the structures of density and both temperature, ‹N , T̃e, ‹Ti coincide

perfectly as for anisothermal Te simulations.

The increase of Ti has a significant impact on the blob shape, as it can be observed when we compared

the conditional averaging Fig 3.16 for ζi = 3 (left) and ζi = 10 (right). The scale of blobs increases

with an elevation of Ti: the mean size of blobs is 11ρL for ζi = 10 in comparison with 9.5ρL for ζi = 3.

The absolute phase shift increases also with the elevation of Ti, not only between ‹N and φ̃. Note that,

both features are in agreement with the prediction of the linear analysis Fig. 3.15.
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Figure 3.17: (a): PDF of ion energy turbulent flux for Te, anisothermal-Te GV and full anisothermal
simulations. (b): PDF of ion energy turbulent flux for the full anisothermal simulations for ζi ∈
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Statistical properties:

The inclusion of the ion temperature dynamic impacts also the statistical distribution of the

turbulent transport, as one can observe on the PDF2 of the radial turbulent flux of the electron

energy. For equivalent parameters, the full simulation presents a longer tail corresponding to the

intermittent transport in comparison with the anisothermal-Te one Fig 3.17. This corresponds to

an elevation of the positive skewness by a ratio around 1.5 Fig 3.18b. It is important to underline

that corresponding anisothermal Te GV simulation presents the same shape as the full anisothermal

simulation, even though the skewness is 20% smaller, while in the case of the full anisothermal SV

model, the tail of the skewness is significantly reduced (the PDF is not reported for readability purpose

but this can be observed on the skewness Fig 3.18b). This result is coherent with the linear study

which underlines that the inclusion of finite ion temperature in the vorticity expression is the dominant

contribution when considering the ion temperature inclusion. In fact this is in agreement with the

study one seeded blob [Olsen 16] which has shown that the inclusion ion temperature dynamic does

not affect the properties of the blob beyond this finite ion temperature effects.

Unlike the skewness, the level of fluctuation of Γturb,Ee is not significantly impacted by ion tem-

perature dynamics, and is about 5 regardless of the anisothermal model considered Fig 3.18. This

suggests that the addition of Ti favors extreme but rare events of outward energy transport as the mean

fluctuation level is the same but nonetheless the extreme intermittent events are more represented.

Moreover, this high intermittent feature is favored by the elevation of Ti, which impacts significantly

the PDF of the fluxes. Indeed, for high ζi, i.e high Ti, the PDFs of Γturb,Ei exhibit a peaked shaped

around the maximum of the PDF Fig. 3.16b. The higher the ion temperature, the steeper the peak.

This peaked shape is characterised by a drastic increase of the kurtosis, representative of weight of

the PDFs long tails. Hence, the increase of Ti further favors of the number of extreme outward burst

transporting high amount of energy.

2Note that the x-axis is normalized by the standard deviation, the PDF integral is thus not equal to one
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Figure 3.18: Averaged fluctuation level (a) and skewness (b)on the radial extent [30,150] in simulation
as a function of ζi = 3 for σ = 1× 10−4 a,d g = 8× 10−4 and for other reduced anisothermal models

3.4.3 Enhancement of interchange driven mechanism in heat transport with finite

ion temperature

3.4.3.1 Enhancement of the transport due to a non-linear mechanism

Considering the prediction of the SOL width from the gradient removal theory with the same as-

sumptions as presented before, we would expect a rather weak impact of the ion dynamic on the SOL

density width. However this is not the case in non-linear simulation due to a greater discrepancy

between linear prediction and non linear simulation Fig 3.19. If the gradient removal theory predicts

rather correctly the λN dependency on g in the anisothermal-Te model, this is not the case for the

full model. Indeed, the gradient removal theory significantly underestimates the λN dependency on g

: λN ≈ λN,SCW + 10g in the linear theory against λN ≈ λN,SCW + 20g in non-linear simulations.

This discrepancy can be explained by the addition of complexity in the model, we have already

found that the predictions were more satisfying in the isothermal model, with both qualitatively and

quantitatively agreements, than in the anisothermal-Te model, where only qualitative trends were

retrieve. Here, the non-linear results digress even more from linear theory.

Hence, if the shape of turbulent structures is, at least partly, shaped by the linear stability of

the system, the prediction of the SOL width based on the linear stability seems to be too imprecise

for experimental predictions as the transport results from non-linear interactions. Note that this is

coherent with the fact that the simulations including Ti present statistical properties corresponding

to highly intermittent transport (high skewness, and kurtosis).

In particular, here, the increase of the positive dependence between λN and g suggests that the

finite ion temperature effect favors the transport driven by the interchange instability via a non-linear

phenomenon. Another argument for this is that in non-linear simulation, λN is larger in the full

anisothermal model for g = 8× 10−4 (λN,int = 71ρL) than the in anisothermal-Te one (λN,int = 55ρL),

even though the linear prediction is the same for the two models (λN ≈ 100ρL).
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file for full anisothermal, anisothermal-Te GV and
anisothermal SV non-linear simulations with g =
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3.4.3.2 Predominant effect of the finite ion temperature inclusion

As shown in the results on linear analysis and statistical properties, the impact of ion dynamics are

mainly attributed to the finite ion temperature inclusion in the vorticity expression. This result is

also true for the turbulent transport. Let us consider two simulations : 1) a simulation with the full

ion dynamic, 2) a simulation without ion temperature fluctuations but with the term of generalized

vorticity and the same ion temperature profile of the first simulation. One can notice, on Fig 3.20b,

that both ion and electron pressure profiles match exactly for the two simulations. On the contrary,

the profile of the corresponding simulation with Ti fluctuations but with simplified vorticity term

presents a weaker transport (steeper gradient) than the two others.

Hence, one can conclude that the finite ion temperature in the generalized vorticity is the one

triggering an increase of radial transport.

3.4.3.3 Heat transport

Now we can look the transport of ion and electron energy characterised respectively by λqe and λqi ,

e-folding length of q‖,e and q‖,i with q‖,i = γiσcsPi. On Fig 3.21, λqi and λqe are reported as a function

of g and for σ = 1 × 10−4 for the 3 models. As observed in anisothermal-Te simulations power SOL

width λqe and λqi of both reduced interchange and SCW simulations, respectively λqα,int, and λq,αSCW

(g = 0), are both smaller than the one of the anisothermal simulation, so the two instabilities are

contributing to the global heat transport. However the ratio λqe,int/λqe for g = 8 × 10−4 is higher

when ion dynamic is taken into account: λqe,int/λqe ≈ 0.75 against 0.6 in the anisothermal-Te model.

Moreover, λqi,int/λqi = 0.9 is higher than the one for qe thus interchange instability is even more

important for the ion energy transport. This reinforces the conclusion on λN , that ion temperature

dynamics trigger an increase transport driven by the interchange instability.

Nonetheless λqe,SCW and λqi,SCW are also both well above the value of the pure diffusive e-folding
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Figure 3.21: Power SOL width λqe (a) and λqi (a) as function of g for σ = 1× 10−4 for interchange ,
SCW (i.e. g = 0) and full anisothermal simulation

length λq,diff . The turbulence triggered by the SCW instability does not seem to be damped by

the inclusion of ion dynamics, in fact λqe,SCW,aniso > λqe,SCW,aniso Te . Hence, the inclusion of ion

temperature dynamics does not refute the conclusion of the previous section that the SCW instability

should be considered as a potential player in the divertor region or in start-up L-mode plasma.

Finally one can notice that the elevation of Ti does not affect λqe , λqi the same way. Indeed unlike

λqi which presents a positive dependencies on ζi, λqe is roughly constant with ζi. This difference

does not come from the cross-field transport of ion and electron energy, as λΓEe,turb
,λΓEi,turb

are both

increasing functions of Ti, but is a result of an increase of the parallel losses of electron energy with Ti.

This effect is due to the fact that the SOL width is not only set by the efficiency of the perpendicular

transport but results from a competition between parallel and perpendicular transport.

To summarize this section two main conclusions can be drawn:

• The predominant effect of the inclusion of ion temperature is attributed to the impact of the finite

ion temperature in the vorticity: explaining both the modification of turbulence characteristics

and cross-field transport.

• The ion temperature inclusion triggers an enhancement of the cross-field transport presenting

highly intermittent characteristics and is attributed to the interchange instability.

3.5 Conclusions

Even though the inclusion of temperature does not appear to drastically modify the general features

of turbulence, one observes a modification of the shape of the turbulent structures in anisothermal

models, and consequently a modification of the cross-field transport. In this chapter we underline the

principal effect of the inclusion of the electron temperature and of ion temperature explaining this

difference.
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The principal effect of the electron temperature inclusion is identified to be the presence of a

new instability mechanism. The characterisation of turbulence, using the input of linear analysis, has

revealed that the additional instability has a great impact on turbulence characteristic. This instability

appears also to play a significant role in the heat transport in conjunction with the interchange drive,

impacting thus the power decay length.

The impact of ion temperature fluctuations is studied separately. The finite ion temperature is

identified as the key player of the modification of the turbulence and heat transport. Its inclusion,

even though it does not bring a new instability, seems to trigger an enhancement of the perpendicular

transport, presenting highly intermittent features at high Ti. This increase of the perpendicular

transport is attributed to the interchange instability acting via non-linear effect.



Chapter 4

Large scale convective transport via

magnetic drifts

The current multi-machine scaling of λq in H-mode found that the strongest dependency is the one with

the poloidal field, Bpol, giving λq,target ∝ B−1
pol [Eich 13a, Eich 13b]. Even beyond these studies, theBpol

dependency seems to be a robust result and has been retrieved in several work [Thornton 14, Sun 15]

and even for L-mode scaling laws [Scarabosio 13, Gunn 13]. Theoretical models based on turbulent

transport have been proposed to predict λq in L-mode [Fedorczak 17, Ricci 09]. However in H-mode

turbulence is strongly reduced in the pedestal and near-SOL. It is thus not clear which is the main

mechanism driving the transport through the separatrix. Indeed turbulent process, like studied in

the previous section with Tokam2D, might not be the predominant mechanism of transport anymore

and other mechanisms like large scale convection by plasma drift are pointed out to play a significant

role in this regime. Especially the Heuristic Drift-based (HD) model [Goldston 12] proposed that

the curvature drift is the main mechanism driving the cross-field transport across the separatrix in

H-mode, determining entirely the SOL power width. Similar description of the edge transport were

earlier proposed by Ref. [Hinton 74] with a neoclassical approach. Such neoclassical drift-orbit effect

has attracted much interest for its good agreement with experience [Eich 13a, Faitsch 15, Sieglin 16],

in particular its prediction of the dependency on Bpol.

The work presented in this chapter aims at understanding the impact of the convective transport

via the curvature drifts in the limit of weak collisional and anomalous transport. Similar work has

been published [Reiser 17, Meier 16] assessing the existence of a regime where the SOL width is related

to the ∇B-drift. In this study we further investigate the implication of such a ∇B-drift dominated

regime: its characteristics, its parametric dependencies and its limits with a mean-field transport

code, SolEdge2D. In a first step, this approach allows us to study the impact of drifts separated

from the complexity of the turbulence phenomenology in realistic geometry and in different regimes

of transport. However it is worth keeping in mind that one should go towards more complete models,

which would take into account mechanisms of interplay between turbulence and large scale convection

(topic of the last chapter). Especially since the drift governed by ∇B is charge dependent. It thus

has the ability to govern charge separation or at least polarisation, therefore generates electric fields

and consequent E×B drift.
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4.1 Study of drifts convective transport with arbitrarily level of

anomalous transport in SolEdge2D code

SolEdge2D is a mean-field transport code: turbulence is not solved self-consistently but is arbitrarily

set via a diffusion coefficient, and thus permits to run simulation in a chosen regime of transport:

L-mode (high anomalous transport, i.e high diffusion) but also H-mode (low anomalous transport). In

this discussion, one assumes that the anomalous transport in the SOL is arbitrarily low, this statement

has a large impact on the physics and the way it is addressed. In this context, the transport code

with reduced numerical cost allows studying many cases, for example performing scans of parame-

ters, but also adding some additional physics like the implementation of the wall-plasma interaction,

physic of neutral species etc... In this section, the model used for this study is briefly described, see

[Bufferand 15] for more details. We also underline the strong simplifying assumptions made.

SolEdge2D is a mean-field transport fluid code that assumes toroidal axisymmetry of all fields

and solves Braginskii equations for electrons and an arbitrary number of ions species. In the single

ion case, of interest in this chapter, the equation of the ion density n, parallel ion velocity u‖, and

temperature of electrons and ions Te and Ti (4.1)-(4.5) are solved using a finite volume numerical

scheme. At the scale of the mesh grid, larger than the Debye length, the quasi-neutrality is justified,

and one has n = ne = ni. Moreover, in this work, we do not consider the physics of charge balance

following the framework of the HD-model, which was the starting point of our study. However, as

already mentioned, this is a restrictive assumption since the∇B-drift is charge dependent and induces

a charge separation.
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Where b denotes the direction of the magnetic field b = B
B , mi is the ion mass and Qei is an

energy transfer due to collision. The inertia and viscosity terms of electrons are neglected giving

enE‖ =∇‖ (pe)−Rei where E‖ is the parallel electric field and Rei is the parallel friction force. Note

that contrarily to TOKAM2D and TOKAM3X, the present equations are not normalized.

In standard 2D transport code, turbulence is inhibited as turbulence requires the treatment of the

two transverse directions which is not compatible with the toroidal axisymmetry assumption. Cross-

field anomalous and collisional transport is arbitrarily set via diffusion operator: ∇ · (−D⊥∇⊥n). The

cross-field flux is then equal to nu⊥ = −D⊥∇⊥n + nudrift. The diffusion coefficient D⊥ stands for

the local level of anomalous and collisional transverse transport. For all the following simulations,

D⊥ is set to 1 m2 s−1 on a zone of few millimeters at the inner and outer borders to avoid edge effect,
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Figure 4.1: Sketch of computational grid (black lines) for the diverted JET-like (a) and COMPASS-
like (b) plasma equilibria with the wall position (red lines), for the analytical circular equilibrium (c)
with the limitor position (red lines). For the purpose of readability only one in three edges in reported
for JET-like grid and one in four for circular geometry

and is a constant, labeled D, on the rest of the grid. D is the main free parameter of this work

and will be scanned to study the impact of the fluid drifts on the transverse transport for different

levels of anomalous and collisional transport. The viscosity ν is equal to the diffusivity D, and for

anisothermal simulations ion and electron thermal diffusivities, respectively χe and χi, are equal but

fixed separately from ν and D.

In this work, only the magnetic drifts are considered, udrift = u∇B,i+ucent, where u∇B denotes the

∇B-drift (4.6) (in the fluid approach nu∇B divergence coincides with the divergence of the diamagnetic

drift flux), and ucent (4.7) denotes the centrifugal drift [Chankin 97].

u∇B,i =
B×∇pi
qB2

(4.6)

ucent =
mv2
‖

qB2
B× b · ∇b (4.7)

The magnetic field is in the normal direction, that is to say u∇B is downwards for ions. Note that

as the charge balance is not solved, a reduced model of SolEdge2D is considered where the electric

drift is omitted. This restrictive assumption will be re-discussed in the section on the limits of the

model (4.4.3).

In the following, three set of simulations are considered:

1. simulations including no drifts, referred as diffusive simulations,

2. simulations including only ∇B-drift,

3. simulations including both ∇B and centrifugal drifts.

In a first stage, the plasma is supposed isothermal, and T is constant on all the domain, with

Te = Ti = 50 eV, and neutrals are not taken into account to stay within the assumptions of the
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HD-model. These assumptions are relaxed later to evaluate how they impact the transport and the

plasma equilibrium.

The simulated domain extends from closed flux surfaces in the vicinity of the separatrix, with Dirichlet

condition imposed to density n = 1019 m−3 at the core boundary, to open flux surfaces up to the wall.

In the parallel direction Bohm boundary condition are imposed at the sheath entrance. Simulations

have been run for three magnetic equilibria, as illustrated on Fig 4.1, a) a realistic diverted JET-like

geometry on a 80 × 139 (r, θ)-grid with the following parameters R0 = 2.895 m, a = 0.950 m, q95

defined as the safety factor on the flux-surface ψ such as ψ/ψsep = 0.95 is about 5 and B0 = 2.2 T, b)

a realistic diverted COMPASS-like geometry on a 48 × 139 (r, θ)-grid with the following parameters

R0 = 0.55 m, a = 0.17 m, q95 ≈ 4, B0 = 1.15 T, 2) an analytical circular geometry on a 240 × 180

(r, θ)-grid, with the following parameters R0 = 1.075 m, a = 0.287 m, q95 ≈ 4, B0 = 1 T. On diverted

equilibria, a penalization technique is used that enable simulation of the plasma up to the first wall

reported with a red line on Fig 4.1 a and b.

4.2 Properties and implications of the magnetic drift transport in

the edge plasma

Before investigating the cross-field transport by magnetic drift in numerical simulations, let us first

recall some properties of the diamagnetic drift and associated model of SOL at a reduced turbulent

transport. First, we proceed to an estimation of the SOL width associated with such mechanism. We

then study what would be the consequences, or the markers, of a large scale convective transport by

∇B-drift. Finally, we recall the assumptions and the derivation of the heuristic drift based model

which has been taken as a starting point for the simplified model used in the following work.

4.2.1 Estimation of a SOL width associated with the ∇B drift convection

As described in Chapter 1, the SOL width results from a competition between the parallel and cross-

field transport in the main SOL. Hence, one can define a fundamental SOL width associated with a

mechanism by taking the equality between the parallel characteristic time and the characteristic time

associated with this mechanism. We can thus get an estimate of the SOL width with:

τ‖ ∼ τ⊥ i.e
v‖
L‖
∼ v∇B

λ∇B
(4.8)

The characteristic velocity of the vertical ∇B-drift writes:

v∇B ∼
T

BR
(4.9)

Moreover, we take the acoustic speed cs ∝
√
T as the characteristic parallel velocity, and L‖ ∼ qR.

One thus has a fundamental definition of λ∇B:

λ∇B ∼
v∇BL‖
v‖

∼ TqR

BRcs
∝ A
√
TB−1

pol (4.10)
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where A = a/R is the aspect ratio a being the small radius.

4.2.2 Contribution of the diamagnetic drift to flux-surface averaged transport

In order to consider the contribution of the diamagnetic drift to the global transport, we study here

the flux surface averaging contribution, which conveniently provides a means to identify the transport

from one surface to another irrespectively of the flows within the surfaces. The flux surface averaging

for the source governed by the divergence of a flux, ∇ · (fu), writes:

〈∇ · fu〉FS =

ˆ
S(ψ)

f
u ·∇ψ
|∇ψ| dS (4.11)

where ψ is the label of the magnetic surface S(ψ), by construction one has
¨
∇ ·
Ä
f‖b
ä∂

FS
= 0.

The charge balance equation in steady-state or quasi-neutral condition is:

∇ · J = 0 (4.12)

with J = J‖b + J∗. Here, we consider only the contribution of ∇B-drift, as one can show that the

divergence of the diamagnetic current coincides with the one of J∇B under the assumption of low β.

Note that, for two species quasi-neutral plasma, the electric drift and diffusive transport are ambipolar,

i.e JE = eΓE,i − eΓE,e = 0 and JD = eΓD,i − eΓD,e = 0. One can then determine the flux surface

average of Eq.4.12 which gives the following constraint that charge conservation on a magnetic surface

requires a balance of the J∇B current (4.13).

〈∇ · J〉FS = 0⇔ 〈∇ · J∇B〉FS =

ˆ
S(ψ)

J∇B ·
∇ψ
|∇ψ|dS = 0 (4.13)

If one now considers the particle balance, the equation for the main ion species is given by:

∂tni +∇ · Γi = S (4.14)

with Γi = ΓE,i + Γ∇B,i + ΓD,i + Γ‖,ib. Moreover, Γ∇B,i can be expressed as a function of J∇B =

eΓ∇B,i − eΓ∇B,e: Γ∇B,i = Pi
Pi+Pe

J∇B. One can then determine the flux surface average equation for

the particle balance of ions with no particles source S = 0:

∂t〈n〉FS +

ˆ
S(ψ)

Ç
Pi

e (Pi + Pe)
J∇B + ΓE,i + ΓD,i

å
· ∇ψ
|∇ψ|dS = 0 (4.15)

In steady state and in the limit where no particle flux driven either by the electric drift or cross-field

diffusion, ΓE,i = ΓD,i = 0, the only transport term is associated to the ∇B-drift. Furthermore, Eq.

4.13 and Eq 4.15 impose that such transport has to come with strong pressure poloidal up/down

asymmetry, as already underlined in [Chankin 13], as Pi/(Pi + Pe) must exhibit a dependence on θ

to obtain a non-zero flux-surface averaged transport. In particular, a model with Te and Ti constant

leads to Pi/(Pi + Pe) = Ti/(Ti + Te) = constant. Hence, temperature inhomogeneity then appears
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essential for a transport associated with the∇B-drift. Indeed, without this inhomogeneity, no particle

transport is possible without violating the charge balance i.e. 〈∇ · J∇B〉FS 6= 0.

In fact, the neoclassical theory would give similar insight. Indeed, in the neoclassical description,

transport associated to the magnetic curvature depends on the collisions. Thus in this framework, one

needs a certain level of diffusion to have a transport associated with the magnetic drift.

4.2.3 Presentation of the HD-model

In this section, we recall the main assumptions and follow the calculation of the heuristic drift-based

model presented in the paper [Goldston 12].

The main assumption of the model is that turbulence does not play a role in the transport of

particles in H-mode and the only remaining source of particles for the SOL is attributed to the

∇B and centrifugal drift direct advection. The particle SOL width at the target is interpreted as

a neoclassical drift-orbit effect. Hence, λn is determined by the integrated radial displacement of

the poloidal flux, denoted ∆ψp, by ∇B and centrifugal drift transverse advection between the outer

mid-plane and the divertor entrance and remapped at the outer mid-plane. The radial displacement

writes:

∆ψp =

ˆ Xpt

MP
((u∇B + ucent) · ∇ψp)

dl‖
v‖

=

ˆ Xpt

MP
((u∇B + ucent) · ∇ψp)

B

Bpv‖
dlp (4.16)

The further assumption that the parallel speed is constant and equal to the half of the sound speed

between the mid-plane and the entrance in the divertor region v‖ ≈ cs/2 is made. Moreover, the

centrifugal component is implicitly neglected under the assumption that |u∇B/ucent| ∼
Ä
v‖/cs

ä2 ∼
0.25 is small, and only the contribution of the∇B-drift is taken into account, i.e u∇B = 2T

eZRBz. With

the poloidal magnetic field written as Bp =
|∇ψp|
R , the equation is simplified to:

∆ψ =
2T

Zev‖

ˆ Xpt

MP

Ç
z · ∇ψp
|∇ψp|

å
dlp =

4Ta

Zecs
(4.17)

It is worth stressing that such a displacement considered here as a kinetic calculation does not necessary

imply transport. As recall before, in the neoclassical theory, transport associated with such effect exists

only when adding collisions.

Finally the SOL width remapped at the outer mid-plane writes:

λn =
∆ψp
|∇ψp|MP

= 2
√

2a
B

(BpR)MP

ρL = 2
√

2
a
√
Tsep

(BpolR)OMP

∝
»
TsepB

−1
p (4.18)

Note that the parametric dependencies of λ∇B in (4.10) are the one found by the HD-model, as it

follows similar lines of thought. One retrieves here the dependence of the SOL width on B−1
p . Until

now only the particle SOL width were considered. The last assumption of the model is that the

electron anomalous heat transport (χanolamous = 1 m2 s−1) is fast enough to fill the particle plasma
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channel with electron heat, so that:

λq ≈ λn ∝
»
TsepB

−1
p (4.19)

Note that the assertion λn ≈ λq is equivalent to λT � λn.

4.3 Drift dominated regime characterised by a complex plasma equi-

librium

In this section one first seeks a regime where the cross-field transport through the separatrix is dom-

inated by the ∇B-drift. Even in a low turbulence regime it is not evident that such a regime could

exist. Indeed as presented in the previous section, the current conservation implies that an outward

∇B-drift transport requires a strong up/down pressure asymmetry, this result is also underlined in

Ref. [Chankin 13]. The second goal is to characterize such a regime and the associated SOL width.

In the last part, we compare our results with the HD-model.

4.3.1 Existence of a convective transport by magnetic drift at low anomalous

transport in JET-like geometry

In order to reach a regime of ∇B-drift dominated transport the anomalous and collisional transport,

set arbitrarily via the diffusion coefficient D in the model, is decreased until finding such a regime.

To study the role played by the ∇B-drift in the particle transverse transport, two sets of JET-like

isothermal simulations are first considered, the diffusive case, and the case including only the ∇B-

drift, for various levels of D. In these sets of simulations the coefficient D is scanned between 1 m2 s−1

and 2.0× 10−4 m2 s−1, with the aim to find out at which level of transport would appear a regime

where the large-scale convection by u∇B is the main mechanism of particle transverse transport and

what would be the properties of such plasma equilibrium.

On Fig. 4.2a. the total particle flux through the separatrix due to diffusion (4.20) and to the

convection via u∇B (4.21) are reported for both∇B-drift and purely diffusive simulations as a function

of D.

〈Γ⊥,D〉FS =

ˆ
sep
−D⊥∇⊥n ·∇ψ (4.20)

〈Γ⊥,∇B〉FS =

ˆ
sep
nu∇B ·∇ψ (4.21)

Note that all the plotted fluxes are normalized by the mean density at the separatrix. For D ≥
1× 10−2 m2 s−1, the diffusive operator is responsible of all the transport and the averaged convective

u∇B flux is even sightly negative. In that range of D, there is no significant difference of Γ⊥,n between

simulations with or without drift, in both cases the particle flux scales as
√
D, expected for a standard

diffusive process. At D =1× 10−2 m2 s−1, the u∇B convective contribution in the particles balance

starts to rise and its relative weight continues to rise with the decreasing level of diffusive transport to

end up largely dominant for D ≤ 1× 10−3 m2 s−1, with a contribution of more than 90% in the total

balance. Hence a ∇B-drift dominated regime is reached at low transverse transport.
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Figure 4.2: (a): Total particle fluxes through the separatrix normalized by the mean density due to
diffusion (full red square), to ∇B drift (empty red square) for ∇B-drift simulations, and for diffusive
simulations (black triangles) as a function of D. (b), (c): Poloidal distribution of the particle flux
in ∇B drift simulations: total (full line), by diffusion (dot-dashed line), by u∇B (dashed line) for
D = 1× 10−1 m2 s−1 (b) and D = 1× 10−3 m2 s−1 (c)

In the previous section, we have shown that in the limits of very low anomalous and collisional

transport, the ∇B-drift transport has to come with temperature inhomogeneity in the poloidal direc-

tion. In the studied isothermal, the transport should thus tend towards zero then D tends towards

zero. One has to keep in mind that it is somewhat a contradictory result probably linked the restrictive

assumptions made in the model, in particular, the lack of the charge balance and electric field. It

could also be due to spurious numerical effects. However, test of convergence with the grid seems to

point out that the spurious effect are not dominant as the results are stable with the grid resolution.

In the following, we denote Dth the threshold value of D, where we first observe a significant

contribution of ∇B-drift to the total flux, we take Γ⊥,∇B/Γtot > 10% as reference. In this set of

simulations, we find Dth = 5× 10−3 m2 s−1. Dth will also be referred as the transition towards the

∇B-drift dominated regime. At this level of D, the diffusion source in the ∇B-drift simulations

decreases faster than for the purely diffusive simulations due to a relative flattening of the radial
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profile around the separatrix (see section 4.3.3.2).

To evaluate where are the implications of these values of diffusion coefficients, let us recall some

typical value of the diffusion coefficient used when addressing anomalous transverse transport, as

well as classical and neoclassical processes. The typical diffusion for anomalous transport used in the

pedestal to match profiles in H-mode plasmas is of the order of 1× 10−1 m2 s−1 [Chankin 06, Horton 05,

Kallenbach 04, Gulejová 07]. Moreover, the estimation of diffusion representing the dissipative process

as established in Ref. [Fundamenski 07] gives a typical diffusion of DC ≈ 1.5× 10−3 m2 s−1 for classical

process and DNC ≈ 2.5× 10−2 m2 s−1 for neoclassical process. Thus the transition towards a drift

dominated regime appears to take place well below the neoclassical level and u∇B is predominant only

at a diffusion level lower than the classical level, which raises the question of the possibility of achieving

such a regime. The onset of such a transport regime agrees with the previous works of [Reiser 17,

Meier 16]. In [Meier 16] this regime appears at higher D, but this difference can be explained by the

parameters of the simulations, in particular a higher temperature at the inner boundary of Te = Ti =

500 eV, which seems of little relevance for a JET-like simulation, while a range of temperature of 50 eV

to 100 eV used in this work.

It is important to stress that the appearance of a flux-surface averaged particle transport by u∇B

is inevitably associated with strong poloidal asymmetries. On Fig. 4.2b. and 4.2c. the poloidal local

flux is reported, at relatively high diffusion D = 0.1 m2 s−1, u∇B convection is then found to contribute

a significantly locally, but with the symmetry the positive flux at the bottom strictly compensates the

sink at the top, so the flux-surface contribution is negligible. Conversely at low anomalous transport,

Fig. 4.2c, the u∇B convective flux exhibits an up-down asymmetry, and the source at the bottom of

the torus becomes bigger than the sink at the top, explaining the rise of its weight in the flux-surface

balance.

4.3.2 Complex equilibrium and supersonic transition in drift dominated regime

In the previous section, it has been shown that at D (D ≤ 1× 10−3 m2 s−1) the convection by u∇B is

the predominant particle source for the SOL, at both local and global scales. Let us now characterise

the plasma equilibrium in such a regime. On Fig. 4.3 poloidal profile in the near SOL of the density

(a) and parallel Mach number M =
√
mi u‖√
Te+Ti

(b) are reported. At D > 2× 10−2, the density is almost

constant in the poloidal direction, and the Mach number relatively low far from the target. At low D,

the most striking result is the appearance of a complex parallel equilibrium presenting a supersonic

transition that comes along with the rise of sharp gradients and strong asymmetry of the density in the

poloidal direction. Note that the density tends to be higher at the bottom of the torus, in agreement

with the direction of the u∇B convection which leads to an effective particle source in − sin θ where θ

is the poloidal angle with θ = 0◦ at the outboard mid-plane and θ = 90◦ at the top. This supersonic

transition at low D comes from the strong asymmetry of the effective particle source, composed of a

large source at the bottom of the torus and a large sink at the top, creating important Pfirsch–Schlüter

return flows. When decreasing the diffusion coefficient, the pressure gradient increases, and it enlarges

the Pfirsch–Schlüter flows amplitude (Γ‖,PS ∝ ∇P ), reaching a supersonic transition coming along

with a steady-state shock in the poloidal direction. It has been verified that the transition is in

agreement with the model of supersonic transition presented in [Ghendrih 11] with the annulation of

derivative the parameter control A = 2M
1+M2 at each transition between subsonic and supersonic flows.
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Figure 4.3: Poloidal profile in the near SOL ( ra = 1.004) of the normalized density (a), and the
parallel Mach number (b) for ∇B-drift simulations for D = 1× 10−1 m2 s−1 (red line with square),
D = 5× 10−3 m2 s−1 (blue line with triangles), and D = 2× 10−4 m2 s−1 (black line with circle)

In fact this transition can be explained by a reduced model for the parallel equilibrium Eq. (4.22).

In a steady-state equilibrium, the continuity equation and the momentum balance can be simplified

in Eq. (4.22) by assuming that:

1. the parallel particle flux distribution is of the form S1 + S2 cos
(

2πz‖
L‖

)
, where z‖ is the parallel

coordinate and L‖ the parallel length, representing a constant diffusive flux and a sinusoidal

u∇B flux in a circular geometry

2. the total pressure is uniform in the parallel direction, that is to say nT
(
1 +M2

)
is conserved.

It can be rewrite as
Γ2
‖
N +N is constant in the isothermal case (with Γ‖ = nu‖).

3. the Mach number is equal to 1 at both targets





∂z‖Γ‖ = S1 + S2 cos
(

2πz‖
L‖

)

∂z‖

Å
Γ2
‖
N +N

ã
= 0

|M | = 1 for z‖ = 0, L‖

(4.22)

This system has the following analytical solution:





Γ‖
Ä
z‖
ä

= S1(z‖ − 0.5) + S2 sin
(

2πz‖
L‖

)

M
Ä
z‖
ä

= 1
2

Ä
−1±

√
∆
ä

with : ∆ = S2
1 − 4Γ2

‖
Ä
z‖
ä (4.23)

and it is found that for S2
S1
> 4.6 no subsonic smooth solution exists, thus it allows us to predict

the threshold in D when the supersonic bifurcation first appears. The diffusive particle flux is equal to
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Figure 4.4: Density radial profile for diffusive (dashed lines) and ∇B-drift (full lines) simula-
tions at the outer mid-plane (a), and at the outer target (b), for D = 1× 10−1 m2 s−1 (red), and
D = 2× 10−4 m2 s−1 (black)

D∇N = D n
λn

, with λn =
√

2πqR0D
cs

for a standard diffusive process. For the contribution of the ∇B-

drift, the coefficient S2 correspond to the maximum of the flux by diamagnetic drift S2 = nu∇B,max.

Note that u∇B in the isothermal case in only a function of the geometry as the temperature is imposed.

Thus the bifurcation towards a supersonic transition should appear at value of diffusion, labelled here

Dtrans, described by the following equation:

u∇B,max
Dtrans
λn

=

√
2πqR0u∇B,max√

csDtrans
= 4.6 i.e Dtrans =

2πqR0u
2
∇B,max

4.62cs
(4.24)

The numerical application of Eq. 4.24 givesDtrans ≈ 1.5× 10−2 m2 s−1 for a JET-like configuration.

In simulations supersonic flows first occur at D = 5× 10−3 m2 s−1 that it to say at lower diffusion than

predicted. This discrepancy can be explained by the assumption of a circular geometry in our model

Eq. (4.22). Moreover, the numerical scheme order was shown to impact the value of the transition

through its ability or not to capture shocks accurately. In fact for a circular geometry with a 2nd

order WENO scheme, the 1D-model predicts the correct value of Dtrans.

It is worth noting that the rise of the u∇B convective transport appears in our numerical simulation

at the same diffusion than supersonic transition, i.e Dtrans = Dth, therefore it seems to be a necessary

condition to be in a drift dominated regime of transport as it allows strong symmetry breaking of the

density.

4.3.3 Saturation of the SOL width at low anomalous transport

4.3.3.1 On definitions of the SOL width

We now aim to define a SOL width looking at the radial profiles Fig. 4.4 at the outer mid-plane (a)

and at the outer target (b). For D < Dth radial profiles follow the classical description of a decreasing

exponential. Profiles of both set of simulations, with or without u∇B, coincide except for a small

inward shift of the peak at the outer target due to the inward direction of u∇B below the X-point Fig.
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4.4 b. However for simulations with supersonic transitions, profiles of simulations with and without

drift differ significantly. Moreover, profiles at the outer mid-plane of ∇B-drift simulations are not

well fitted by an exponential function, thus the definition of SOL width by a single e-folding length

is no longer relevant. Hence we use the so-called integral decay length, denoted λn,int and defined

by λn,int =
´

SOLN(r)dr/Nsep. This is a convenient definition as it permits to compare exponential

profiles with more complex ones.

Another way to define the SOL’s width, most commonly used in experiments [Eich 13a], is to proceed

with an Eich’s fit [Eich 11], convolution of a decreasing exponential and a Gaussian at the outer

target profile (see Chapter 1 (1.12) for more details), the resulting estimation of the SOL width is

denoted λn,Eich. Since it is the most commonly used in experiments, this Eich’s definition is prioritized

to investigate this model. Nevertheless, if in this set of simulations profiles at the outer target are

well described by an Eich’s fit, it is not always the case, and in such cases we settle for the integral

description. Note that all estimates of SOL width take into account the flux expansion by remapping

profiles at the outer mid-plane in order to get rid of geometry effects.

It is also important to point out that gradients vary not only in the radial direction but also in the

poloidal direction. On Fig 4.5 we observe that at low diffusion λn,int is uniform for purely diffusive

simulations, but presents variation in the poloidal direction in the drift dominated regime. In this

set of JET-simulations variations stay at a moderate levels (of a factor about 1.5) but in other set of

simulations (see section 4.4.1) poloidal variation amplitude of λn,int can reach a factor 4. In conclusion

one must keep in mind that an estimation of a SOL width by a single value summarises the transverse

transport but is an oversimplification and hides the complexity of the plasma equilibrium.
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4.3.3.2 SOL width saturation in ∇B-drift dominated regime

On Fig. 4.6, λn,Eich is reported as a function of D. The estimate of the HD-model for the simulation

parameters and geometry is also reported in blue dashed line, but the comparison with the model

will be discussed latter in the section 4.3.7. We observe a perfect
√
D scaling for purely diffusive

simulations. The code is therefore robust in this low diffusion regime and is not dominated by spu-

rious numerical diffusion. As the use of low diffusion coefficient are numerically challenging we also

proceeded to a test of convergence with the grid spatial resolution, and found that the estimate of λn

does not change when increasing the resolution of the grid in ∇B-drift simulations.

For ∇B-drift simulations, λn,Eich scales also as diffusive simulations for D ≥ 5× 10−3 m2 s−1 that

is to say for D > Dth, which is in agreement with the result of section 4.3.1 where we have established

that the diffusive operator is largely dominant in the transport in that range of D. This transport

mechanism is thus the one setting the SOL width. This is followed by a stagnation of λn,Eich corre-

sponding to the transition towards the drift dominated regime, and λn,Eich saturates at a non-zero

value when D tends towards zero. Hence, at low diffusion, one finds indeed a regime where the ∇B-

drift is the mechanism determining entirely the SOL width. In such regime, λn,Eich does not depend

on the diffusion level. One can then define the SOL width associated with the ∇B-drift large scale

transport by λ∇B = limλD→0. Here, we find λ∇B ≈ 1.5 mm.

The same scan can be made for λn,int estimated at the outer mid-plane, that gives similar trends

but with a lower value of stagnation ≈ 1 mm. Note that once again the λ saturation appears at the

same time as the supersonic transition, that is to say Dth = Dtrans, confirming that the ∇B-drift

dominated regime is governed by a complex parallel equilibrium.

4.3.4 Parametric dependencies

In order to have further insight in this transport regime, we now look at the parametric dependencies of

the SOL width in λ∇B-drift in such regime. The scanned parameters are: the temperature Te = Ti = T

for T = 25 eV, 50 eV, 75 eV and 100 eV, and both poloidal and toroidal magnetic fields Bpol and Btor,

which vary independently. Note that here the scaling is done for λn,int because the target profiles at

high T and low Bpol are not well fitted with an Eich’s description. However, we have already assessed

that the trends of λn,Eich and λn,int are similar.

On Fig. 4.7 we report λn,int for the lowest diffusion coefficient D = 2× 10−4 m2 s−1 as an estimate

for λ∇B = limD→0 λint as a function of the main parameters. Note that for all parameters, the plasma

is in a ∇B-drift dominated regime at such low value of D. We find that the SOL width depends from

two principal parameters: the temperature and the poloidal magnetic field. First, λ∇B presents a

positive correlation with T , of the form Tα with α strictly lower than 0.5 (λn,int ∝
√
T is indicated by

dashed lines). The scaling in Bpol shows a decreasing dependency of λ∇B with Bpol, close from the

inverse dependency λn,int ∝ B−1
pol observed in experiments.

The discrepancies of the numerical results with the rough estimation λ∇B ∝ A
√
TBpol

−1 Eq.

4.10 can be explained by the fact the parallel flows evolve with Bpol and T , but this evolution is

not captured by the simplified estimation. In fact, the estimation of λ∇B as the integrated radial

displacement driven by the ∇B-drift should depend on the parallel velocity and on the parallel length

travelled by particles flowing toward the outer divertor target. On Fig. 4.8, we observe that the

stagnation point, separating particles flowing to the outer target and to the top of the machine, moves
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Figure 4.7: λn,int SOL for ∇B-drift simulations at D = 2× 10−4 m2 s−1 as a function of the temper-
ature with red dashed lines representing the

√
T scaling (a) and as a function of the multiplicative
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downward with an increase of T or a decrease of Bpol. This explain the weaker correlation between

λ∇B and T as the effective parallel length travelled by the particles decreases with T , which is not

accounted in the estimation of λ∇B scaling.

Finally, it is worth noting that there is an additive functional dependencies with Btor Fig.4.7 b),

weaker than the one in Bpol (15% of relative variation of λ for Btor against 60% for Bpol), but not

completely negligible either. This effect is also explainable by the parallel flows evolution, following

the same lines of thought as given above.

4.3.5 Drift dominated regime in a other geometries

The scan of the level of anomalous transport has been made for two other geometries: a circular limited

and a COMPASS divertor magnetic equilibrium (Fig 4.1), to study whether the conclusions drawn

in the previous sections are robust in other equilibria and what is the impact of the geometry on the

results. Though the HD-model has been developed for divertor configuration, it is also interesting to

study its application in circular configuration since the model has been pointed out to be a potential

explanation for the narrow feature in start-up plasma [Kočan 15, Goldston 15]. In this section λn,int

at the outer mid-plane is used for the definition of the SOL width in order to compare the circular

and the divertor geometry.

The same pattern is retrieved, with two regimes depending of the level of anomalous transport:

1. a diffusive dominated regime at high D where λn,int scales as
√
D

2. a drift dominated regime with a stagnation of λn,int and a non zero limit when D tends toward

zero.

Let us stress that the threshold value of D, Dth for the stagnation of λn,int occurs in both case

at Dtrans, that is to say the bifurcation towards supersonic flows, hence the supersonic flows are a
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Figure 4.8: Mach number poloidal profile in the near SOL, for ∇B-drift simulations for
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characteristic inherent to the ∇B-drift dominated regime which does not depend on the geometrical

configuration. In both geometry Dtrans is correctly predicted by the simplified 1D-model presented

in section 4.3.2 predicting Dtrans = 1.8× 10−1 m2 s−1 for circular geometry with a transition for D

between 1× 10−1 m2 s−1 and 5× 10−1 m2 s−1 in the simulations, and Dtrans = 2.8× 10−1 m2 s−1 for

COMPASS geometry with a transition for D between 1× 10−1 m2 s−1 and 5× 10−1 m2 s−1 in the

simulations.

We now compare the value of stagnation λ∇B with the HD-model estimate, that is to say a SOL

width proportional to a
R

√
TB−1

pol also obtained in (4.10). We observe on Fig 4.9a) that the ratio

λ∇B/λHD is approximately constant ∼ 2 − 3 for the three geometries. This invariable ratio in the

three geometry could be explain by the similarity of the parallel equilibrium. Indeed, on Fig 4.10

reporting the Mach number poloidal SOL profile at a distance λn,int from the separatrix, one can

observe that the profiles at the LFS coincide for the three geometry. This interpretation is consistent

with the previous assertion that the parallel equilibrium has a strong impact on the establishment

of λ in this regime and that the discrepancy with the rough scaling law comes from the assumption

of constant parallel speed and parallel length. This also explains that we find about the same ratio

for all geometries for the same LFS parallel flows. At the high field side, the parallel flows differ

greatly because of the symmetry breaking of divertor configuration: for COMPASS geometry the u∇B

contribution is weaker at the HFS due to the triangularity implying weaker Pfirsch–Schlüter flows.

On the contrary the circular geometry presents a relatively symmetric parallel profile.

4.3.6 Power SOL width

The previous model does not address explicitly the heat transport. In this section, we further look

at the impact of self-consistent electron and ion temperatures variations on particles and power SOL

width.

Simulations are run for two values of thermal diffusivities χi = χe = 1 m2 s−1,χi = χe = 0.1 m2 s−1,

chosen as they are representative of the classical value of thermal conductivities in the pedestal used

in mean field fluid simulations to fit H-mode experiment [Chankin 06, Horton 05, Kallenbach 04,

Gulejová 07]. Concerning the boundary conditions, the electron and ion temperatures at the inner

boundary is taken constant, are equal to 100 eV. On Fig. 4.11, we observe that, for 1 m2 s−1, the value

of λn,int as a function of D follows the same trend as in the isothermal simulation, and the value of

saturation of λn,int is similar to the one found in isothermal simulation λn,int = 1.1 mm. Moreover, we

find that λn,int ≈ λq,int, under the assumption of high thermal diffusivity. Let us also underline that

the equilibrium presents the same feature than in isothermal simulations, that is to say the presence

of supersonic flows and steady-state shock.

Simulations have been also run for this χ = 0.1 m2 s−1. It is found that the value of λn,int at

low D is not impacted, but as we could expect the value of stagnation of λq,int is smaller but only by

about 15%. In this range of χ, the power SOL width are not strongly impacted due to the fact that

λT � λn.

Thus, in the ∇B-drift dominated regime, and for the chosen thermal diffusivities, the assumption

that λq ≈ λn seems reasonable, and the inclusion of temperature variations does not impact drastically

the equilibrium.
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Figure 4.11: λn,int and λq,int for ∇B-drift simulations as a function of the diffusion coefficient in
anisothermal JET-like simulation (a)

4.3.7 Comparison of the numerical results with HD-model

The reduced model used in this section corresponds to the main assumption made in the heuristic drift

based model. Hence, it is worth comparing λn,Eich with the one predicted by the HD-model λHD =

2
√

2
a
√
Tsep

(BpolR)
OMP

. The numerical application for the JET geometry gives λHD ≈ 3 mm namely twice the

limit found in simulations limD→0 λn,Eich ≈ 1.5 mm. Let us recall that this discrepancy between our

numerical results and the HD-model estimate is also retrieved for the other geometry (section 4.3.5).

Moreover, the functional dependency on T (λHD ∝
√
T ) is not retrieved in our simulations. The

scaling in Bpol, although it shows a better agreement with the model, is not unquestionable. Indeed,

the dependency seems to be weaker than predicted, as highlighted by the lower Bpol point, showing a

variation 40% lower than the HD-model prediction Fig. 4.7b).

The discrepancy between numerical results and the model is readily explainable by the parallel

equilibrium, important in the establishment of the SOL width in the drift dominated regime. Indeed,

the reduced model predicts λn,Eich under the assumption that the parallel velocity is constant and

equal to cs/2 in the lower outer quadrant of the SOL, while the Mach number at low diffusion varies

between -cs and cs in this poloidal extent (Fig 4.3). Moreover, it assumes that particles flow from

the outer target to the entry of the divertor when in low diffusion simulations the stagnation point is

halfway between the outer mid-plane and the X-point so particles crossing the separatrix at the outer

mid-plane flow to the top of the machine and not downward to the divertor target. In conclusion,

within the main hypothesis of the model, the assumption of a ∇B-drift dominated regime seems to

lead to a contradiction with the first heuristic made that ”the parallel flow along B to the divertor

competes at order unity with the usual Pfirsch–Schlüter parallel flow to the opposite side of the

plasma” [Goldston 12].

4.4 Consequence of the relaxation of the simplifying assumptions

In the previous section we have analysed outstanding features of the ∇B-drift dominated regime.

However, we know that important simplifying assumptions have been made for this model. In this
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section, we discuss the inclusion of missing physics: drifts not accounted for, recycling physics, charge

balance, and their potential impact on the SOL plasma balance.

4.4.1 Inclusion of the centrifugal drift

In fluid models, the centrifugal drift is often neglected under the assumption of small mach number

in the SOL, |ucent|
|u∇B | = M2 << 1. However, we have previously assessed that in ∇B-drift driven

simulations supersonic flows are at play, thus neglecting ucent is not relevant. In this section, the

impact of the centrifugal drift on the transverse transport, parallel equilibrium and resulting SOL

width is investigated in a JET-like magnetic configuration. For this purpose, we compare simulations

including both ∇B and centrifugal drifts with ones including only the ∇B-drift.

On Fig 4.12 we observe that the centrifugal drift flux is the largest term in the local particle flux

crossing the separatrix. However, its flux-surface averaged contribution is negligible 〈Γcent〉FS / 〈Γtot〉FS <

10%. Contrary to the ∇B-drift flux, the centrifugal drift flux is not only dependent on the density

but also on the parallel flows amplitude. Now, the later presents opposite asymmetry to the one of

density, as a result the centrifugal drift has a negligible contribution to the particle flux averaged

on a flux-surface. Nevertheless ucent has an indirect impact on the transverse transport, through

the modification of the poloidal equilibrium and 〈Γ∇B,with ucent〉FS ≈ 1.25× 〈Γ∇B,without ucent〉FS. The

plasma equilibrium response to the centrifugal drift is complex, and hard to capture as it results from

a complex inter-play between symmetry breaking of both the parallel velocity and the density, however

several effects on the plasma equilibrium and the transverse transport can be underlined.

The first impact of ucent is to stimulate the symmetry breaking. Poloidal profiles present greater

variation for the parallel Mach number but also for λn,int (Fig 4.13 and 4.5) when it is included in

the model. The amplitude of variation in the poloidal direction of λn,int at the LFS for simulation

with centrifugal is twice the one for the same simulations without ucent, and the maximum of the

Mach number is 1.5 times greater in the case with ucent. Moreover, ucent favors the transition towards

supersonic flows which appears at higher D for simulations including ucent (above 1× 10−2 m2 s−1

against 5× 10−3 m2 s−1 for simulation including only ∇B-drift).

This drift has also an impact on radial profiles. At D < Dth, radial profiles exhibit three distinct

layers (Fig 4.14) in simulation including ucent. When moving from the separatrix to the far SOL, one

first finds a boundary layer, of about 1.5 mm wide, characterized by flat gradient, followed by a second

layer with steeper gradients and finally the last layer with intermediate gradients. The first layer can

be interpreted as a thin layer due to the radial displacement via drift convection of particles from

the core. Simulations with only ∇B-drift included present also the same kind of pattern although

less marked. The second layer is a layer where the transport would be essentially diffusive, in fact

the e-folding length in this layer is about the same as the one in simulations without diffusion. The

explanation of the third layer is not straightforward, but is most probably link to the rise of the

diffusion coefficient at the outer border of the mesh, or to the boundary condition at the wall. Note

that this feature is also retrieved at the outer target, with irregular radial profile presenting a flat

layer in the area of the strike point. The scaling of λn,int as a function of D gives the same trend with

or without the inclusion of ucent (Fig 4.15), λn,int saturates at a higher value in simulation with ucent

than in the one with only ∇B (λlim ≈ 1.5 mm), but is still 2 times smaller than the value predicted

by the HD-model.
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Figure 4.12: Poloidal profile of the local radial flux
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Figure 4.17: Heat flux radial profile∇B-drift simu-
lations at the outer target for D = 2× 10−4 m2 s−1

for simulation without (red line) and with (black
line) the inclusion of neutral species

4.4.2 Impact of recycling

Finally, we study the impact of the inclusion of neutral species in a low recycling regime in the case

where only the ∇B-drift is taken into account. Simulations have been run with tungsten PFC for the

divertor target and beryllium PFC for outer wall, with recycling coefficients of 0.99 and 1. respectively,

the density is set at 1× 1020 m−3 at the inner boundary and the density at the separatrix is about

1× 1019 m−3 in order to be in a low recycling regime (i.e. the framework of the HD-model) and

a diffusion coefficient is taken equal to 2× 10−4 m2 s−1 to study the ∇B dominated regime. The

inclusion of neutrals is expected to impact the results as it modifies the value of parallel velocity in

the divertor region, and we have previously showed that the parallel equilibrium plays a major role

in the establishment of the SOL width. On Fig. 4.16 we observe that the inclusion of neutral species

results in smaller amplitude of parallel flows, even if a supersonic transition is still reached in this

case. This also impacts the parallel variations of the density which are of a smaller amplitude and less

abrupt.

Looking at the profiles at the outer mid-plane, we observe that the simulation including neutral

species presents radial profiles (not reported here) with flatter gradient, resulting in a larger SOL

width, λn,int = 1.7 mm and λq,int = 1.5 mm. This can be explained by the fact that the Mach number

amplitude is lower in the lower-outer quadrant, so that particles crossing the separatrix at the bottom

and flowing toward the top of the machine, are drifting during a longer time, resulting on a larger

SOL width at the outer mid-plane. But the SOL width are of the same order of magnitude and still

lower than the prediction of the HD-model. However, if we now look at the outer target profile, we

observe the inverse effect, both density and heat flux profiles of simulation without the inclusion of

neutral are more spread than in the case with inclusion of neutral Fig 4.17. The detailed study of the

physic in the divertor region is out of the scope of this work, but let us mentions several mechanisms

that can explain this effect. First it is important to underline that the repartition of particle sources

is completely modified, and the ionization of neutrals in the divertor region becomes a major player in
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the source for the plasma. This tends to decouple the physic of the main SOL and divertor explaining

that we observe opposite variation of the profile in the two regions. This effect can also be observed in

the parallel flow amplitude, in simulations without neutral only a thin boundary layer at the vicinity

of the separatrix presents a Mach number close to zeros, when in simulation with neutral the Mach

number is close to zero at the divertor entrance on all the radial domain of the SOL. The fact the

radial profile at the outer target presents sharper gradients at the strike point in the case including

neutrals could be partly due to ionization. Indeed this mechanism is proportional to the local density,

so will be maximum at the strike point, this way reinforcing the plasma source at the peak location.

4.4.3 Inclusion of the charge balance and electrostatic drift

In the model studied in this chapter the charge balance is not considered, and therefore E ×B drift

is not included, following the framework of the HD-model. However, we know that the ∇B drifts

are charge dependent, and in the ∇B-drift dominated regime, the principal mechanism of transport

leads to a charge separation and must therefore drives significant electric fields. Moreover, it has been

shown that the electric drift has not only an importance in E × B turbulence but also drives large

scale transport that need to be taking into account even for a laminar approach [Galassi 17].

Due to numerical constraint, too demanding in the regime of low D considered here, no simulation

including the drift E×B have been run yet. However one could expect a strong effect of the addition

of the drift, especially in the low anomalous transport regime. Indeed, for a quasi-adiabatic electric

field model, one has φ (θ) ∝ lnN (θ). Considering the large poloidal inhomogeneities of density, it

would create a large ∂θφ, i.e. a large radial E×B drift velocity urE . Such E×B flows could modify

significantly the equilibrium.

Finally, in the ∇B-dominated regime, we expect high amplitude parallel Pfirsch-Schlüter return

currents (if they were considered) of the order of jsat ∼ 105 A.m−2. Even though this is still several

order of magnitude lower than the plasma current one could question to what extent it would impact

the plasma local equilibrium.

In conclusion, the question of the charge balance and consequent electric drifts is critical for the

studied regime and should be a priority for further investigations.

4.5 Interpretation and conclusion on the drift dominated regime

In this chapter, we have studied the impact of the ∇B-drift on the cross-field transport and on the

SOL’s width for different levels of anomalous transport using the fluid code SolEdge2D.

The first conclusion of this work is that in all cases, including anisothermal simulations, simulations

taking account neutral species, and all geometries, a ∇B-drift dominated regime is reached at low

D. In such regime, the cross-field transport is dominated by the ∇B-drift contribution and the value

of SOL particles or power width is set by the magnetic drift and does not depend anymore on D.

However, the relevance of such a regime, beyond the neglected physics, is disputable as it presents

some intrinsic problematics:

• Existence only at level of diffusion way below the neoclassical level. As underlined in the section

4.2, the existence of a regime where the∇B-drift is responsible for non-zero cross-field transport
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in the limit of extremely low diffusion level is problematic, as the neoclassical transport associated

with curvature drift requires collisions. In particular, in the isothermal model, it raises the

question of the charge conservation in the model (see section 4.2.2).

• Complex equilibrium presenting steady-state shocks associated with supersonic transitions that

should have been observed in experiments. Furthermore, in this regime characterized by large

Mach number amplitude, the impact of the centrifugal drift should be explicitly taking into

account, as discussed in section 4.4.1.

The comparison with the HD-model shows that in all the numerical studies in section 4.2, corre-

sponding to the framework of the model, the resulting SOL width differs from the HD-model estimate

by a factor at least 2 (up to 3). This discrepancy can be explained by the hypothesis on the parallel

equilibrium in contradiction with a ∇B-dominated regime as proven by the 1D-model presented in

section 4.3.2. As for the turbulent 2D-models, we hence observe that one can not abstain from a

coherent resolution of the parallel transport, which impacts also the SOL width.

Finally, the problematics raised by the study of the ∇B-drift dominated regime call for further

investigations of the model. In particular, it calls for a self-consistent resolution of the charge balance

and of the electric field.



Chapter 5

Turbulent heat transport in 3D

toroidal geometry

Study of 3D turbulent simulations is mandatory to understand the mechanism of heat turbulence,

approached with a 2D model in Chapter 2, together with large-scale convective transport, approached

with a transport code in Chapter 3. Moreover, the 3D geometrical effects can also impact turbulence.

In particular, the third dimension allows to study a more realistic E × B plasma rotation known to

impact turbulence particles flux at the separatrix and to play a role in the apparition of the H-mode.

The fluid code TOKAM3X, used in this chapter, includes the physics suspected to play a significant

role in the heat transport: diffusion, drifts and turbulence, and solved the fluid equations in a realistic

geometry. The study of the physics of SOL power width is one of the long-term objectives of the

code, however, the code has been used only in its isothermal version until recently. Here, the recent

version of the 3D fluid code TOKAM3X, including self-consistent variation of both electron and

ion temperature, is used to investigate the impact of the addition of temperature dynamics on the

properties of turbulence and heat transport. In particular, the objective of this chapter is to answer

two questions:

• Does the inclusion of temperature dynamics have a significant impact on the turbulence and

transport characteristic ?

• Does the heat transport present the same characteristics as the particles transport. Indeed, this is

not evident since the recent experimental observation on various machines found an unexplained

narrow features in the radial decay of the parallel heat flux [Arnoux 13, Kočan 15].

Particle turbulence and transport have been already described using the previous version of

TOKAM3X in Ref. [Tamain 14, Tamain 15, Colin 15a], but this is the first study addressing the

question of heat transport in this code. A comparison between results of one isothermal and one

anisothermal equivalent simulation is drawn to point out the impact of temperature dynamics. The

simulations run for the study are all in a L-mode like regime, with electrostatic turbulence largely

dominating the transport.
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5.1 TOKAM3X anisothermal simulations : numerical and geometry

set up

The equations of TOKAM3X : the density conservation (5.1),the parallel ion momentum conservation

(5.2), the charge conservation (5.3), the electron and ion energy conservation (5.4)–(5.5), and the

parallel Ohm’s law (5.6), detailed in chapter 2 are recalled here below :
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2NiTi + 1
2

Γ2
i
N , Γi = Nu‖.

Three simulations have been run:

• An isothermal simulation with Te = Ti = 1

• An anisothermal simulation where the amplitudes of the energy sources (SEe , SEi) have been

chosen so that the electron and ion temperature at the separatrix are of the same order than in

the first isothermal simulation (Te,aniso + Ti,aniso ≈ 2)

• An isothermal simulation with the same temperature radial profiles as the anisothermal simula-

tion, denoted as isothermal ∇T simulation in the rest of this chapter.

The three simulations are in a limiter geometry with circular concentric flux surfaces, the minor

radius, a, is equal to 256ρL, and the aspect ratio to 3.4. This size is of the order of a small Tokamak

for example COMPASS. This simple geometry allows in a first approach to understand the basic

properties of turbulence and transport in the anisothermal model. The studies on divertor geometry

are out of the scope of this chapter and should be discussed in future work in complement of those

already led with an isothermal model [Galassi 17].

The simulated physical domain extends from the closed flux surface rmin/a = 0.8, to the open flux

surfaces rmax/a = 1.2. In the parallel direction, only half of the torus is simulated, and Bohm-Chodura

boundary conditions are imposed at the sheath entrance. Simulations are run for a 64× 512× 64 (ψ,

θ, ϕ)-grid and with an integration time of 1 Ω−1
s .

Under the TOKAM3X normalization described in chapter 2, the parallel resistivity of the plasma

η‖ is taken constant in space and time and equal to 1× 10−5 in this set of simulations. Note that its
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dependency on Te (η‖ ∝ T
−3/2
e ) is not taken into account as it is a first stage work towards a more

complete model. Moreover, given the chosen normalization, the typical value of η‖ in a medium-size

Tokamak is about 10−6, thus larger than the parameter retained here. This choice is due to numerical

cost considerations. The influence of the value and dependency of the parallel resistivity will have to

be discussed in future work. The cross-field diffusion coefficients, D⊥,F , for each field F , are fixed to

D⊥,F = 5×10−3 and the coefficients of parallel conduction for electrons and ions, K
e/i
0 , are respectively

equal to 1×106 and 1×104. Unlike the parallel resistivity value, the chosen value for these coefficients

is of the same order as the typical value in a medium-size Tokamak.

In Tokam3X, the computation of the electrostatic potential requires the inversion of the vorticity

operator, a highly demanding computational step. In the isothermal simulation, this operator does

not depend on time and can be inverted once and for all at the beginning of the simulation within the

Boussinesq approximation. However, in anisothermal simulation, the operator expression depends on

electron temperature via Bohm boundary conditions. The operator is thus time dependent, and should

be inverted at each time step. In order to reduce the computational cost, this operator expression

is modified only every 50 time steps, and the operator is inverted accordingly. Nevertheless, the fact

that the characteristic time of turbulence is about 400 Ω−1
s >> 50 Ω−1

s suggests that the dynamics are

probably recaptured correctly even though the operator is not solved at each time step.

5.2 Turbulence characteristics in anisothermal 3D simulation

In this section, we characterise general features of particle and energy fluctuating structures observed in

the anisothermal simulation, and we draw a comparison with the isothermal simulation with constant

temperature Te = Ti = 1.

5.2.1 Common features and differences between isothermal and anisothermal sim-

ulations

Both isothermal and anisothermal 3D simulations exhibit turbulent fluctuations of density, potential

and also electron and ion temperatures in the anisothermal case represented on Fig. 5.1. On Fig. 5.2

representing the density on a flux surface at an arbitrary time, one can observe that the turbulent

structures form quasi field-aligned filaments, usually referred to as blobs by analogy with 2D sim-

ulations. They propagate intermittently through the SOL as coherent structures on long distances

reminiscent of experimental observations [Fedorczak 11, Dudson 08]. Furthermore, fluctuations of

density and electron temperature present the classical ballooning feature signature of interchange-like

turbulence. Indeed, fluctuations in the SOL region exhibit a poloidal asymmetry, and turbulence in-

tensity is higher at the outer mid-plan than at other poloidal locations. Note that these characteristics

were already obtained for the transport of particles in the isothermal previous version of TOKAM3X

presented in Ref. [Tamain 14, Tamain 15, Colin 15a].

These blobs are advected by the E ×B drift leading to a turbulent outward flux for each field F

denoted ΓF,turb (5.7). And the flux-surface averaged of the E×B turbulent flux (〈ΓF,turb〉θ,ϕ) exhibits

long radial structures penetrating into the SOL Fig. 5.13.

ΓF,turb = ‹F ũE×B,ψ (5.7)
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Figure 5.1: Snapshots of poloidal cross-section of density fluctuations for isothermal simulation (a) and
anisothermal simulation (c), of potential for isothermal simulation (b) and anisothermal simulation
(d), and of electron (e) and ion (f) temperature fluctuations for anisothermal simulation
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Figure 5.2: Snapshots density on a flux-surface in the near SOL

Even though the intermittent main features are observed both in isothermal and anisothermal

simulations, one can already note differences on turbulent structures on Fig. 5.1 :

Radial potential profiles : in the anisothermal simulation, the potential profile presents a maximum

in the vicinity of the separatrix, when in isothermal simulation the radial variation of the potential

is more or less monotone. This ring of high potential corresponds to a zone of high shear discussed

in section 5.3.2. This difference on potential between the two simulations will be explained by two

different effects in the core and in the SOL region :

• In the core region, the diamagnetic contribution to the polarization drift in the vorticity expres-

sion (the second term in W =∇ ·
Ä

1
B2∇φ+ 1

NB2∇Pi
ä
) pulls the potential to follow the opposite

of the ion temperature gradient.

• In the SOL region, the Ohm law forces the potential to follow the electron temperature via the

sheath boundary condition. Thus the potential presents a radial gradient in the anisothermal

case when it is rather flat in the isothermal case.

Penetration of density intermittent structures into the SOL : in the isothermal simulation,

density intermittent structures present a larger radial extend, and some of the structures even cross

all the SOL and go up to the wall. In anisothermal simulation, it is not anymore the case and it seems

that density turbulent structures are decorrelated from structures in the core plasma after crossing

the separatrix. In fact, this observation could be linked to the presence of a high amplitude shear

layer at the separatrix. This effect will be discussed in section 5.3.2 of this chapter.

Finally, one can observe that the turbulent structures of both electron and ion temperature presents

different spatial repartition than the one of density, indeed there are no large amplitude fluctuations

of the temperature in the core region, and there are only evident in the SOL region. This point will

be further discussed on properties of turbulence in section 5.2.2.

5.2.2 Characterisation of turbulence structures in TOKAM3X

To study turbulence properties, we start by a characterisation of the shape of intermittent bursts of

density, potential, and ion and electron energy in the poloidal and temporal directions. In order to
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Figure 5.3: Poloidal profiles of intermittent structures using conditional averaging of density, potential,
ion and electron energy and ion and electron temperature for isothermal (left) and anisothermal
simulations (right) in the core region ψ/a = 0.9 (top), and in the core region ψ/a = 1.05 (bottom).

discriminate the high amplitude events, we proceed to a conditional averaging for density, energies

and electric potential. The conditioning is made on N , and only the events with an amplitude higher

than 2 local standard deviation above the local mean field in toroidal and temporal direction are

considered, as done in section for Tokam2D.

In 3D simulations, the intermittent structures are determined by their position in temporal, and

both poloidal and toroidal directions (tb, θb, ϕb). Due to the ballooning nature of turbulence, the dif-

ferent poloidal position are not equivalent, as turbulence characteristics exhibit large inhomogeneities

in this direction [Tamain 14]. For this reason, the area of averaging is restricted to a poloidal extend

of 15◦ on both sides of the outer mid-plane, i.e. the region where turbulence is the most developed.

One can also define an averaged phase-shift, denoted δ, in order to quantify a phase shift between

two fields. δ is defined as the arc-cosine of the correlation coefficient of fluctuations between the two

fields 5.8 (here no conditional averaging is applied).
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Figure 5.4: Temporal profiles of the intermittent structures using conditional averaging of density,
potential, ion and electron energy for isothermal (left) and anisothermal simulations (right) in the
SOL region ψ/a = 1.05.
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On Fig 5.3. the typical bursts of density, potential, energies and temperatures are reported for

isothermal (Te and Ti constant) and anisothermal simulations. The radial positions (ψ/a = 0.9,

ψ/a = 1.05) have been chosen to be both far from the source area and the walls. The averaging is

made on at least 300 events. We check that the sample size is statistically significant by drawing

different sub-samples of 150 events with almost no variability in the conditional averaging results.

First, if one compares the density and energy turbulence, one observe that the structures of N and of

both 2/3 ∗ Ee and 2/3 ∗ Ei coincide almost perfectly in shape and in amplitude. In the core region,

this can be readily explained by the fact that the amplitude of temperature fluctuations are negligible,

about 10 times smaller in comparison to the ones of density. Hence, in the core region, the energy

turbulence is entirely due to the fluctuation of density and can be resumed by the study of particles

turbulence.

In the SOL region, the T̃e and ‹Ti amplitudes are also smaller than the one of ‹N , but not negligible

(about 2 times smaller for T̃e and 3 times for ‹Ti). However, T̃e and ‹Ti are rather well correlated with‹N with δN,Te/i (ψ, θ) < 20 ◦, which explains the fact that density and energy structures coincide also

in this region.

We now compare the results between isothermal and anisothermal simulations. In the core region the

structures of density and potential of the two types of simulations present similar characteristics. In

both simulations, we find the same poloidal correlation length ∼ 10ρL (defined in section T2D), and

a quasi perfect phase quadrature between density and potential fluctuations in agreement with the

experimental observation that found the potential to be in phase with the electric field i.e δN/φ ≈ π/2
[Fedorczak 11].
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In the SOL region, we observe a strong re-correlation between density and potential structures in

the anisothermal simulation. In fact, this correlation gets stronger when moving from the separatrix

to the far SOL, and the averaged phase shift between ‹N and φ̃ at the outer mid-plane, δN/φ,iso (ψ, 0◦)

goes from ∼ π/2 in the core region down to 0.2π in the far SOL. In the isothermal simulation, ‹N and

φ̃ present also a re-correlation in the SOL, however this is less marked than in the anisothermal case,

and δN/φ,iso (ψ, 0◦) goes only down to ≈ 0.3π. One can speculate that this could be attributed to the

fact that electron temperature fluctuations are taken into account in the Bohm boundary condition

at the target, which has been proved to trigger a re-correlation of the structures of N and φ in the

2D models Tokam2D due to the sheath-driven conductive wall instability. Note that the turbulent

structures have been studied at other poloidal locations, and similar characteristics are retrieved both

at the top and at the inner mid-plane.

Finally, if we consider the temporal profile of the intermittent structures in the SOL region Fig 5.4 we

find that the shape of the turbulent structures in isothermal and anisothermal simulations presents

once again similar shape, in particular they exhibit the same time scale ∼ 400Ω−1
c .

Note that all the conclusions presented on turbulent structures on isothermal simulation with constant

temperature are also valid for the isothermal simulation with temperature profiles thus the differences

observe in this section can indeed be attributed to the temperature dynamics.

5.2.3 Statistical properties

One can further study the intermittent features by looking at the statistical properties of turbulence.

In agreement with experimental results, turbulence in 3D simulations presents a high fluctuation level

of density at the outer board SOL, with the same order of magnitude in isothermal and anisothermal

simulations, comprised between 30% and 40%. The density fluctuations exhibit a poloidal asymmetry,

with a smaller amplitude at the inner board, lower than 20% for both type of simulations.

The low fluctuation level of temperatures in the core region, lower than 5%, is in agreement with

the previous results showing that the temperature fluctuations are negligible in the core region. In the

SOL region, the temperature fluctuation levels at the outer board are smaller than the ones of density,

∼ 20% for Te and ∼ 10% for Ti. Moreover they do not present any evident in/out board asymmetry

in comparison with density. However, as the temperature fluctuations are coherent with the ones of

density, it results in a high level of energy fluctuation level at the outer board, higher than for density,

40% to 70% for Ee and 30% to 50% for Ei, with important in/out board asymmetry.

In fact the statistical properties of the temperature could have two main physical explanations detailed

below.

First, a significant difference between the equation of density and the ones of energy is the presence

of the fast parallel diffusive terms ∇ ·
(
K
e/i
0 T

5/2
e/i ∇‖Te/ib

)
with K

e/i
0 ∼ 104− 106 � 1 in the equations

of energy. The expression in the divergence is of several orders of magnitude higher than other terms

of advection of the order of one or less. If one considers a flux-surface in the core region with an

irrational safety-factor value, all points in this flux surface would be fast linked with each other due to

the strong parallel transport. This homogenization on a flux surface could thus explain the low level

of temperature fluctuations in the core region. This argument can also explain the low fluctuation
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Figure 5.5: Poloidal map of level of fluctuations of density in isothermal simulation (a) and for density
(b), electron (c) and ion temperature (d) in anisothermal simulations
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level in the SOL, however the symmetry breaking due to the presence of the wall can explain that

the intermittent structures of temperatures are more developed in this region. In the same way, the

smaller poloidal asymmetry of the fluctuation level of temperatures (i.e. less ballooned) can also be

attributed to this fast homogenization in the parallel direction.

It is worth to note that this high parallel diffusion is difficult to handle computationally and neces-

sitate a specific numerical scheme [Günter 05]. This term could also be a source of an artificial spurious

effect damping partially temperature fluctuations. This question has not been investigating yet but

would need further numerical verification such as the one presented in Ref. [Cartier-Michaud 16].

The second explanation comes from the fact that, in the code, both sources of particle and energy

are located at the inner boundary, as TOKAM3X does not include self-consistent particle fulling. On

the contrary, in the reality, the principal source of particles comes from the wall region, and only the

source of energy is located in the core region, as illustrated on Fig. 5.7. In TOKAM3X, the source

location has for consequence that the density profile presents an important gradient in a core region

Fig. 5.6. This important gradient combined with the high density fluctuation level is responsible for

a large intermittent particle transport, efficient enough to transport both particles and energy from

the core to the SOL region, without further fluctuations or gradients of temperature. In fact, the

temperature gradients in the core are negligible compared to the one of density Fig. 5.6, and ion

and electron pressure profiles coincide almost with the density profile. If the fulling in particles were

self-consistent, one could expect a different pattern with a flatter density profile in the core region and

sharper temperature profiles, inducing more temperature fluctuations in the core region.

On Fig. 5.8, the PDF of the particles and energy turbulent fluxes at the outer mid-plane are

reported for anisothermal simulations in the SOL at ψ/a = 1.05. The PDFs of particles and energy

turbulent fluxes are representative of a highly intermittent transport, with a shape far from a Gaussian

distribution representative of a diffusive-like transport. They exhibit a long tail both for large positive
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or negative values. The weight of the PDF wings can be quantified by the kurtosis momentum K,

the kurtosis has a strong radial dependency and goes from 1 in the core region up to more than 10

in the far SOL Fig. 5.9. In spite of the presence of a tail in the negative part, the distribution of the

turbulent transport is nonetheless positively skewed, from about 1 in the near SOL up to 4 in the far

SOL, explained by the fact that the tail in the positive part is longer. The amplitudes of skewness and

kurtosis are about the same in isothermal and anisothermal simulation, presenting similarity with the

work presented in [Tamain 15], small skewness and kurtosis in the core region and increasing in the

vicinity of the separatrix and all along the SOL.

In conclusion of this section, we have shown that in the studied regime:

• Turbulence exhibits similar characteristics in isothermal and anisothermal simulations : similar

intermittent structures, level of fluctuations, characteristic scales...

• In the present regime, we observe flat temperature profiles and little temperature fluctuations in

the core region. This has for consequences that in the core region the energy structure coincides

with ones of density, and the E×B turbulent transport is transported by density fluctuations.

5.3 Transport of particles and energy in Tokam3X

5.3.1 Intermittent transport of particles and energy in Tokam3X

We now characterise the cross-field transport averaged on flux surfaces. On Fig 5.10, the different

contributions to the ion energy flux on the flux-surfaces are reported as a function of the radial

position for anisothermal simulation. The figure is not reported for the electron energy flux, as the
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fluxes present exactly the same characteristics. Note that here, the fluctuating and the mean-field

components of E×B cross-field fluxes are separated and defined as follows :

〈FuψE×B〉t,θ,ϕ = 〈F 〉〈uψE×B〉t,θ,ϕ︸ ︷︷ ︸
Γmean-field
E×B

+ 〈‹FũψE×B〉t,θ,ϕ︸ ︷︷ ︸
Γturb
E×B

for F ∈ N,Ee, Ei (5.9)

The flux surface balance reveals that, in the studied regime, the radial transport of both particles

and energy is governed by the E × B-advection of intermittent structures Γturb
E×B which weights for

more than 80% of the total flux at the separatrix Table 5.1. This result is also valid for the particles

flux of the two isothermal simulations, thus one can conclude that the studied regime here is a L-mode

like regime for the three types of simulation.

F Niso Niso,∇T Naniso Ee Ei

ΓE×B,F

Γtot,F
90% 70% 84% 90% 93%

Table 5.1: Contribution of the Γturb to the total flux at the separatrix for particles, electron and ion
energy balance and for both isothermal and anisothermal simulations

Moreover, the E×B radial fluxes present the classical ballooning feature, which can be estimated

by P the fraction of transport E×B advected within a poloidal extend of θ around the outer mid-plane:

P(ψ,∆θ) =

´ +∆θ/2
−∆θ/2 〈Γψ,E×B〉t,ϕ dθ¸
〈Γψ,E×B〉t,ϕ dθ

(5.10)

On Fig. 5.11 P is reported for the ion energy flux in the anisothermal simulations and at several

radial positions. As for the radial profiles of the flux, the figure for electron energy is not reported,

as the E × B flux presents exactly the same ballooning characteristic. One can observe that the

ion energy E ×B flux averaged in time and φ-direction presents a ballooned distribution, and more
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than 75% of the E × B flux crosses the separatrix in outer half of the torus, as already reported in

[Colin 15b]. This ballooning property is retrieved both in the core and in the SOL region. Thus this

is a property of edge turbulence and not only the SOL, even though the ballooning distribution is

less marked in the core region. Note that for radial positions in the SOL, the curves decrease in the

vicinity of ∆θ = 180◦ that is to say when the poloidal extend comes close to the limiter. This effect

is due to inward flux in the limiter region.

In Table 5.2, the values of P for ψ/a = 1.1 and ∆θ = 120◦ are reported for the fields N , Ee

and Ei for the three studied simulations. We deduce that the ballooning property is retrieved for all

fields and both isothermal and anisothermal simulations. However one can note that the simulation

without temperature gradient exhibits a lower value of P in the SOL, which is also true for other

radial location.

This ballooning transport is responsible for important poloidal asymetries on density which presents

a variation of a factor about almost 2 between inner and outer mid-plane.

F Niso Niso,∇T Naniso Ee Ei

P (ψ/a = 1.1,∆θ = 120◦) 60% 77% 73% 73% 71%

Table 5.2: P at the radial position ψ/a = 1.1 for particles, electron and ion energy balance and for
both isothermal and anisothermal simulations

Finally, in the three simulations, the transport driven by ∇B-drift advection does not contribute

significantly to the total flux neither in particle nor in energy balance (|Γ∗/Γtot| < 5%). The observed

plasma regime is thus far from the ∇B-dominated regime presented in Chapter 4. Nevertheless,

this is in agreement with results presented previously. Indeed, a coarse estimation of the diffusion

corresponding to the anomalous transport in the simulations gives Danomalous =
√

2λ2
N

2πqR0
≈ 2 m2 s−1,

well above the diffusion values of transition towards the ∇B-drift dominated regime. Hence, no

universal conclusions on the role of this type of mechanism can be drawn without further investigations,

specifically concerning H-mode like regime.

5.3.2 Impact of the shear layer on the cross-field transport

Even though the cross-field transport at the separatrix is dominated by E×B turbulence in the three

studied simulations, there is a significant difference of the radial shear of the poloidal E×B velocity

Eq. 5.11 in the vicinity of the separatrix.

∂ψ

≠
1

B
∂ψφ

∑
θ,ϕ

(5.11)

In anisothermal simulation, the amplitude of the shear is twice the one in isothermal simulation

Fig. 5.12 a). Moreover the isothermal simulation with temperature gradients also exhibits this shear

increase with the same amplitude. Thus the shear increase can be attributed to presence of tempera-

ture gradients and not to the addition of temperature dynamics. The addition of temperature gradient

combines two different effects :

• Ti-gradient impacts the potential profile in the core region via the modification of the second
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Figure 5.12: Flux-surface averaged radial profile of the radial shear of the poloidal E×B velocity (left)
and of the electrostatic potential (right) for anisothermal, isothermal ∇T and isothermal simulations
(right)

term of the generalized vorticity. However, considering the flat ion temperature profiles in the

core region Fig 5.6, one expects little impact of the Ti-gradient on the potential profile in the

core region.

• Te-gradient modifies the potential which follows 3Te in the SOL due to the sheath boundary

condition.

Now, on Fig. 5.12 b), one can observe that the potential radial profiles of anisothermal and

isothermal simulations present similar slope in the core region, as expected from the similar gradients

of N and Pi Fig 5.6. The principal difference is observed in the SOL region where the potential

decreases in the simulations including ∇Te, when it stays rather constant in the case with constant

temperature. Hence one concludes that, in this regime, the increase of the shear amplitude can be

attributed to the additional ∇Te modifying the potential in the SOL region.

The electrostatic shear is known to be responsible for a decorrelation of the turbulent structures

[Fedorczak 13], which penetrates deeper into the SOL in the presence of a smaller shear amplitude.

On Fig. 5.13, we report the flux-surface averaged of the particular E ×B flux as a function of time

and the radial position. We observe indeed that the E×B flux in isothermal simulation with constant

temperature presents a longer penetration length than in the simulations presenting a high amplitude

shear layer (i.e the anisothermal and isothermal ∇T simulations). This would lead to think that the

shear amplitude is the mechanism responsible for a reduction of the penetration of turbulent structures

into the SOL.

If we now look to the ratio of E×B particles turbulent flux in the total flux Fig. 5.14, we observe

that for the isothermal ∇T and anisothermal simulations, the proportion of the turbulent transport

in the total flux falls down to respectively 50% and 65% in the SOL. However, in the anisothermal

simulation, the maximal reduction of turbulence (ψ/a ≈ 1.05) is located after the radial position of

the shear layer (ψ/a ≈ 1.005). Hence, even though we expect the high amplitude shear layer and the



100 Chapter 5. Turbulent heat transport in 3D toroidal geometry

0.9 1.0 1.1
ψ/a

0

2

4

6

t 
(1
/Ω

c
)

1e4 anisothermal

0.9 1.0 1.1
ψ/a

0

2

4

6

1e4 isothermal

0.9 1.0 1.1
ψ/a

0

2

4

6

1e4 isothermal ∇T

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

Figure 5.13: Color plot of the flux-surface averaged radial E ×B particles flux as a function of time
and radius for anisothermal simulation (left), isothermal simulation with T constant (middle), and
isothermal ∇T (right)

0.9 1.0 1.1
ψ/a

0.0

0.5

1.0

〈 Γ
E
×
B

〉 F
S
/〈 Γ

to
t〉 F

S

anisothermal
isothermal ∇T
isothermal

Figure 5.14: Ratio between the flux-surface averaged of radial E×B particles flux and total radial flux
as a function of the radius for anisothermal simulation (blue), isothermal simulation with T constant
(green), and isothermal ∇T (red)

reduction of the turbulence in the SOL to be link somewhat, the mechanism of interplay between the

shear layer and the reduction of the turbulent flux in the SOL remains unclear, and requires further

investigations. So far, one can not talk about a transport barrier since the E×B transport proportion

in the global balance does not decrease significantly in the vicinity of the separatrix, i.e., the region

of high shear amplitude.

It is worth noting that the reduction of the turbulent transport is less pronounced in the anisother-

mal case, which could be attributed to a modification of the turbulence dynamic, for instance due to

the existence of an additional mechanism of instability at play in the presence of temperature fluctu-

ations.

The amplitude of the shear seems also to have an impact on the SOL density profiles. In isothermal

simulation with Te = Ti = 1, others things being equal in particular transverse transport, the density
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Figure 5.15: (a): Radial profile of density at the outer-mid plane for isothermal, isothermal ∇T
and anisothermal simulations. (b): Radial profile of the heat fluxes at the outer-mid plane, grey
dots represent the dispersion of the value at each radial position, and the dashed lines the standard
deviation for the total heat flux.

profiles should be steeper than in anisothermal and isothermal ∇T simulations. Indeed, in the SOL

Te,aniso + Ti,aniso < 2 : Te,aniso + Ti,aniso ≈ 1.3 at ψ/a = 1.05 and ≈ 1 at ψ/a = 1.1 and ≈ 1. Thus,

the parallel sheath losses (∝
√
Te + Ti) are smaller by a factor up to

√
2 in the anisothermal case.

However, one can observe on Fig. 5.15 a), that the density gradient in the isothermal simulation is of

the same order as the one in the anisothermal and isothermal ∇T simulation, the SOL’s profiles are

even flatter in the isothermal case Fig. 5.17. This can be explained by the diminution of cross-field

transport due to the smaller penetration length of turbulent structures into the SOL in anisothermal

simulation, which compensates the diminution of the parallel losses.

5.4 SOL width in TOKAM3X

In this final section, we draw some characteristics of the power SOL width observed in the anisothermal

simulation, the objective is not to give a quantitative description of λq for a experimental comparison

but to look at the qualitative features of the heat flux profiles.

Here, we define the power SOL width (λq) as the e-folding length of the parallel heat flux (5.12).

q‖ = q‖,e + q‖,i = γe
√
Te + TiNTe + γi

√
Te + TiNTi (5.12)

The e-folding length is estimated by a least squares regression.

On Fig. 5.15 b), the radial profiles averaged in the toroidal direction and time of electron, ion and

total heat flux are reported at the outer mid-plane. On qe profile, one can observe a slight stiffening

of the profile at the separatrix. This feature, if not striking on radial profiles, is easily observed on the

radial profile of the local gradient Fig. 5.16 b), presenting higher gradient amplitude in the vicinity

of the separatrix. This increase of the gradient is more significant for the heat flux profiles than for

the density profile, which is reminiscent of the narrow feature observed in experiment. This feature
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is probably linked to the presence of the shear at the separatrix as suggested by Ref. [Halpern 17],

however further work on this question would be required to have a better understanding of this physics.

Moreover, as said in the previous section, ∇B-drift transport does not contribute significantly to the

global energy transport, which seems to point out that it is not the mechanism responsible for the λq

narrow feature as suggested by Ref. [Kočan 15, Goldston 15].

On Fig. 5.15 b), the values of each temporal and toroidal point are reported as small scatter, which

also permits to remark that the heat flux profile in the SOL is highly intermittent. In particular, the

maximal value of the heat flux is about 3 times the mean values at the separatrix, but this ratio goes

up to more than 5 in the far SOL, thus the temporal variation of heat flux should not be overlooked.

Finally, on Fig. 5.17, the estimation of λq is reported as a function of the poloidal location. Observe

that the SOL width presents also significant poloidal asymmetry, observed experimentally in L-mode

for particle SOL width [Gunn 07], the factor between the maximal and minimal value of the λq as

function of the poloidal location is about 2. The poloidal asymmetries are the same for all the fields

N , qe and qi, with the highest values of λq around the outer board, where turbulence takes place.

5.5 Conclusion

In this chapter, we have shown that turbulence in the anisothermal simulation presents similar char-

acteristics (fluctuating structures and statistical properties) than in the isothermal ones. Hence, the

impact of the temperature fluctuations on turbulence in 3D simulations is less striking than in 2D

simulations. The clear impact of the SCW instability described with TOKAM2D is not observed,

even though the high correlation between density and potential fluctuation in the SOL region in the

anisothermal simulation is reminiscent of this mechanism. However, only one anisothermal simula-

tion has been run so far, and further investigations, in particular with a parametric scan, would be

necessary to study the presence of the SCW instability in 3D simulation.

In the present simulations, the plasma regime is close to a L-mode like regime where the transport
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is dominated by turbulence. The transport of particles and energy presents the same characteristics

(highly intermittent, ballooned) and is close from the ones observed in the isothermal simulations.

This is in agreement with the fact that, in the studied simulations, the density fluctuations are the

ones responsible for the turbulent fluxes of energy, and that temperature fluctuations are rather low.

Nevertheless, a key difference between the isothermal and anisothermal simulations is observed with

the apparition of a shear layer of larger amplitude in anisothermal simulations. The shear amplitude

is due to the presence of an electron temperature gradient, which pulls the potential to follow Te in

the SOL region. However, such a shear does not seem driven by the addition of temperature dynamics

as a shear layer of the same amplitude is retrieved in an isothermal simulation with corresponding

temperature gradients. Moreover, this shear layer seems to be come along with a reduction of the

flux penetration length observed both in isothermal ∇T and anisothermal simulations, but the clear

interplay between turbulence and this shear layer remains unclear.

Considering all the characteristics observed in this work it seems to point out that in the studied

regime, the addition of temperature dynamics has not a strong impact apart from the one due to the

addition of temperature gradient.

Finally, we have shown that the power heat fluxes are highly inhomogeneous (in time and space)

in particular a narrow features reminiscent of experimental results is observed on the heat flux profile.

However, the mechanism responsible of such feature is not clear identify, and this problematic would

need further investigations.



Conclusions and perspectives

This work was motivated by the power exhaust problematics. This is a critical issue for the economical

viability of future fusion devices requiring a sufficient power spreading on Plasma Facing Component

potentially damaged by high energy deposition. For a given input power, the peak heat flux at the

target is set by the SOL heat channel width, λq, and divertor spreading. Hence, the heat channel

width is a key parameter for tokamak operation. This work is dedicated to the improvement of the

understanding of the physic underlying the heat transport, a critical task for the engineering design

of future Tokamak devices like ITER and DEMO.

The study of turbulent heat transport in anisothermal L-mode like simulations has been realised using

two fluid codes: TOKAM2D, a 2D model with simplified geometry, which has permitted us to review

the basic properties of energy turbulent structures and transport and TOKAM3X which has allowed

us to have a more complete approach with the study of 3D properties of the turbulence.

The first conclusion drawn from the comparison between isothermal and anisothermal model is that

the inclusion of self-consistent fluctuations of temperature does not change the general phenomenol-

ogy of the turbulence. Indeed, in isothermal and anisothermal simulations, one observes the same

kind of intermittent structures with comparable shapes and an highly intermittent transport. In 3D

simulation, one retrieves the same poloidal asymmetries (ballooned fluctuation levels and ballooned

turbulent fluxes) which are characteristic of interchange turbulence. Furthermore, in 3D simulations,

we point out that the turbulent flux of energy seems to be transported almost entirely by density

fluctuations. One should be caution with this conclusion, as no parametric scans has been performed

so far with TOKAM3X simulations. Thus, the result of the present studied regime might not stand in

other types of regime (for example H-mode, divertor simulations, or other regime of collisionality). In

particular, we point out that if the neutral description was included, the modification of the particle

source localisation could lead to a completely different pattern with a flatter density profile in the core

region, inducing more temperature fluctuations. Nevertheless, if this were proved to be true, at least

in a certain range of parameters, this is significant information permitting to reduce the numerical

cost of the simulation under certain conditions.

Although the general phenomenology of turbulence stays the same, one can also point out dif-

ferences between isothermal and anisothermal models. First, the inclusion of electron temperature

fluctuations drives a drift-wave-like mechanism of instability, the sheath negative resistance instability,

triggered by the Te fluctuations in the Bohm boundary conditions. In the simulations, this additional

mechanism acts on top of the well known interchange drive. The characterisation of the turbulence

features in TOKAM2D simulations, using the input of linear analysis, has revealed that the additional
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instability has a significant impact: it increases the turbulence scales, triggers a re-correlation be-

tween density and potential fluctuation, and a diminution of the statistical skewness. This instability

impacts not only the turbulence characteristics but also the steady-state equilibrium, thus the SOL

width, through the modification of the level of cross-field turbulent transport and of the parallel losses.

Although this mechanism has been clearly identify only in the 2D simulation, some features in 3D

simulations seems to point out that such mechanism could also be at play in anisothermal simulations.

Finally, another key difference between isothermal and anisothermal simulations can be underlined.

In 3D simulations, the addition of temperature gradients, whether one takes into account temperature

fluctuations or not, triggers a high amplitude shear layer via the modification of the potential profile.

This shear layer seems to impact somewhat the turbulence, resulting in a consequent reduction of

turbulent flux penetration length. However, the mechanism of interaction between the shear layer

and the turbulence remains unclear. This impact on turbulence might also have something to do with

large inhomogeneity observed on the heat flux radial profiles in the SOL region. More specifically, the

heat flux radial profiles present a sharp narrow feature reminiscent of experimental results. However,

as for the role of the shear layer, the physic of the formation of such a narrow feature remains unclear

and requires further investigation.

Going towards the understanding of transport mechanisms at play in the H-mode regime, we have

studied the plasma equilibrium in the limits of low anomalous transport with the means of transport

code. In this paradigm, the work on SolEdge2D was entirely dedicated to the study of the large scale

transport by magnetic drifts as such drift orbits effects has been pointed out as a potential key player

in the transport in H-mode plasma. The first conclusion of this work is that in all cases, including

anisothermal simulations, simulations taking account neutral species, and all geometries, a ∇B drift

dominated regime is reached at low anomalous transport level. In this regime, the value of the SOL

particle or power width is set by the ∇B drift and does not depend anymore on the diffusion level.

However, the relevance of such regime remains questionable as it exits only at extremely low level of

transverse transport, way below the neoclassical level.

Furthermore, this regime is also characterized by a complex plasma equilibrium presenting super-

sonic transition and steady-state shocks. If this regime indeed exist, one should be able to retrieve

its highly distinctive characteristic in experiments, namely high poloidal inhomogeneities as well as

important poloidal gradients of the density and the parallel Mach number. So far, such characteristic

has never been reported in experience. However, this is to balance with the fact that one has only

an incomplete picture of the plasma state for each experiment. This is specially true for H-mode

experience where it is challenging to dive probes into the plasma without taking risks for the integrity

of the diagnostic. Hence, to draw further conclusions on the relevance of such mechanism one should

design dedicated experimental sessions.

In any case, if this ∇B drift dominated regime was proved to exist, one should take into account

the complexity of the parallel equilibrium in order to make a reliable estimate. In particular, the

centrifugal drift should not be neglected.

Our results cast also a new light on the heuristic-drift based model, which relies on such a type of

regime, and allows us to discuss its validity and its limits. We show that the oversimplification of the

parallel dynamics leads to discrepancies with the numerical estimations. The SOL widths found in
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numerical simulations are significantly lower, of a factor comprise between 2 and 3, than the estimate

of HD-model. Moreover, the parametric functional dependencies of the estimate, in particular the one

on T , are not perfectly retrieved.

Finally, to further investigate large scale convective transport it would be necessary to look deeper

into the role of additional physics. In particular one should investigate the role of neutral in different

recycling regimes and above all the impact of the inclusion of E×B drift. If the study of the charge

balance is out of the scope of this work, due to its high numerical complexity, we expect an important

response with it inclusion. Indeed, in the ∇B-drift dominated regime, the principal mechanism of

transport leads to a charge separation. Hence, taking into account the charge balance would lead

to an important response of the electric field, and to large parallel Pfirsch–Schlüter return currents.

Further work on this question is mandatory in order to have a better understanding of this physics

Conclusions on both turbulence and large-scale transport have been drawn in this work. However, we

should goes further into the investigation of their interplay and predominance in different regimes with

3D turbulent simulations in realistic geometry. So far, no parametric scans has been performed for

TOKAM3X anisothermal simulations due to their numerical cost. The anisothermal simulation stud-

ied in the present work exhibits a regime close to L-mode, where both particle and energy transports

are largely dominated by turbulence, with Γturb/Γtot ∼ 75%. Thus, we can not draw any statement

on the existence of a ∇B drift dominated regime in a turbulent simulation. In fact, the high level of

anomalous transport observed in the turbulent simulation is well above level of the transition towards

a ∇B-drift dominated regime found in Chapter 4. Hence, the fact the ∇ drift does not contribute to

the total flux of the turbulent simulation is in agreement with the results of the work dedicated the

large-scale drift transport.

Likewise, the conclusion on the high similarity of turbulence phenomenology between anisothermal

and isothermal simulations only stands for the studied regime (L-mode) at relatively high collisionality.

Especially, the result that the energy transport is essentially driven by the density fluctuations is

susceptible to change, in particular as mentioned earlier with a self-consistent description of the neutral

species. Furthermore, in 3D simulations, we could expect a greater impact of temperature fluctuations

for higher SOL temperatures (for example by a injected power scan). Indeed, it would increase the

parallel thermal conductivity (∝ T 5/2) and might impact the parallel gradients coming along with

new mechanisms. However, one could be confident on the fact that the general phenomenology of

turbulence would stay the same as this result is true for all the parameters tested in 2D simulations.

In future work, we will aim to obtain a transport barrier, and to reach a H-mode like regime to

study the mechanisms at play in such case. In particular, one should proceed to a scan of the ion

power injection, pointed out to trigger the creation of transport barrier in experiment [Ryter 14] and

in 2D fluid code [Rasmussen 15]. Furthermore, we should also study divertor configurations which

contributes to the appearance of an edge transport barrier both in experiments but also in TOKAM3X

isothermal simulations (work of Davide Galassi).

Taking a step back, we have seen all along this thesis that the SOL width is a notion of usually resumed

to a single value, but hiding a more complex picture. Indeed the heat channel has no reason to be

uniform neither in time, in particular for turbulent regime, nor in space. Moreover, the SOL width
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results from a complex interplay between the parallel dynamics and the perpendicular transport and

none of them should be overlooked.



Appendix A

Details for derivation of fluid equation

A.1 Equality of divergence of the particle flux associated to the

diamagnetic drift and to drift

∇ · (nu∗) = −∇ ·
Å
n

B×∇p
nqB2

ã
= −∇

Å
1

B2

ã
· (B×∇p)− 1

B2
∇ · (B×∇p)

= −∇
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B2

ã
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Ö
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è
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Å
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ã
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Ö
(∇×B)︸ ︷︷ ︸
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·∇B −B · (∇×∇B)

è
= − 2
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Å
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B3

ã
· (B×∇B)

= − 2

B3
∇B · (∇p×B)− 6p
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∇B · (B×∇B)

=∇
Å

1

B2

ã
· (∇p×B)

We thus get ∇ · (nu∇B) =∇ · (nu∗)
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A.2 Braginskii’s closure

In the following, we consider a plasma of two species: electrons and one ion species of hydrogen isotope.

The limit case of strongly magnetized plasma (ωceτe � 1 and ωciτi � 1) is considered in Braginskii’s

closure.

The total pressure tensor ¯̄Πtot
s is decomposed into a scalar pressure ps and a residual tensor ¯̄ΠBrag

s :

¯̄Πtot
s = ps

¯̄I + ¯̄ΠBrag
s (A.1)

For a standard basis (ex, ey, ez) in which b = ez, this Braginskii’s stress tensor ¯̄ΠBrag
s writes :




−η
s
0

2 (Wxx +Wyy)− ηs1
2 (Wxx −Wyy)− ηs3Wxy −ηs1Wxy +

ηs3
2 (Wxx −Wyy) −4ηs1Wxz − 2ηs3Wyz

−ηs1Wxy +
ηs3
2 (Wxx −Wyy) −η

s
0

2 (Wxx +Wyy)− ηs1
2 (Wyy −Wxx) + ηs3Wxy −4ηs1Wyz + 2ηs3Wxz

−4ηs1Wxz − 2ηs3Wyz −4ηs1Wyz + 2ηs3Wxz −ηs0Wzz




In this formulation, the rate-of-strain tensor ¯̄W is a measure of the deformation of plasma volume

elements and is defined as:

Wjk =
∂uj
∂xk

+
∂uk
∂xj
− 2

3
δjk∇ · u (A.2)

The Braginskii’s stress tensor formulation (A.2) involves three different viscosity coefficients which

differ slightly for ions and electrons:

ηi0 = 0.96piτi ; ηe0 = 0.73peτe

ηi1 = 0.3 pi
ω2
ci
τi

; ηe1 = 0.51 pe
ω2
ce
τe

ηi3 = 0.5 pi
ωci

; ηe3 = −0.5 pe
ωce

(A.3)

One can notice that the ratios between these three viscosity coefficients are proportional to powers of

ωcsτs:
ηs0
ηs3
∝ ωcsτs � 1 ;

ηs0
ηs1
∝ (ωcsτs)

2 � 1 ;
ηs3
ηs1
∝ ωcsτs � 1 (A.4)

which leads to:

ηs0 � ηs3 � ηs1 (A.5)

It is thus convenient to separate the Braginskii’s stress tensor into three tensors according to the

dependency of these different viscosity coefficients:

¯̄ΠBrag
s = ¯̄Πvis

s + ¯̄ΠFLR
s + ¯̄Πres

s (A.6)
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Viscous tensor: Terms proportional to ηs0 correspond to the viscous part of Braginskii’s stress

tensor:

¯̄Πvis
s =




−ηs0
2 (Wxx +Wyy) 0 0

0 −ηs0
2 (Wxx +Wyy) 0

0 0 −ηs0Wzz




(A.7)

Gyro-viscous or Finite Larmor Radius tensor:

¯̄ΠFLR
s =




−ηs3Wxy
ηs3
2 (Wxx −Wyy) −2ηs3Wyz

ηs3
2 (Wxx −Wyy) ηs3Wxy 2ηs3Wxz

−2ηs3Wyz 2ηs3Wxz 0




(A.8)

Residual viscous tensor:

¯̄Πres
s =




−ηs1
2 (Wxx −Wyy) −ηs1Wxy −4ηs1Wxz

−ηs1Wxy −ηs1
2 (Wyy −Wxx) −4ηs1Wyz

−4ηs1Wxz −4ηs1Wyz 0




(A.9)
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A.3 Derivation of energy equation
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︸ ︷︷ ︸
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︸ ︷︷ ︸
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(A.10)
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Linear analysis of Tokam2D

B.1 Tokam2D Conservation Equations

∂tN + [φ,N ] = −σN
√
Te + Tie

Λ−φ/Te +D∇2
⊥N (B.1)

∂tW + [φ,W ] = − g

N
∂y (N (Te + Ti)) + σ

√
Te + Ti

Ä
1− eΛ−φ/Te

ä
+ ν∇2

⊥W (B.2)

3

2
∂t(NTe) +

3

2
[φ,NTe] = −σγeNTe

√
Te + Tie

Λ−φ/Te + χe∇2
⊥NTe (B.3)

3

2
∂t(NTi) +

3

2
[φ,NTi] = −σγeNTi

√
Te + Ti + χi∇2

⊥NTi (B.4)

WithW =∇2
⊥φ+∇·

Ä
1
N∇⊥Pi

ä
Note that in this derivation the collisional terms±3me

mi
τ−1
e (Pe − Pi)

are neglected in the following derivation as they have no impact on the results (in agreement with

their low order of magnetude ∝ me/mi)

B.2 Linear Analysis

Each field f is split into a mean and a fluctuating part f = f + f̃ , and an assumption of small

amplitude of fluctuations, f̃

f
<< 1 is made

B.2.1 Steady State Solution

In order to study the linear stability of the system, we supposed that a quasi steady-state is reached

so we have ∂tN = ∂tφ = ∂tW = ∂tTe = ∂tTi = 0. And the steady-state regime gives us the following

set of equations. In the linear analysis we keep only the first order of development with respect to the
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small value f̃

f





0 = −σN
√
T +D∇2

⊥N

W = ν∇4
⊥φ+ νTi∇4

⊥N

0 = −σγeNTe
√
T + χ∇2

⊥NTe

0 = −σγiNTi
√
T + χ∇2

⊥NTi

(B.5)

where T = Te + Ti

In the following will make the assumption that:

• all mean fields N, φ, Te, Ti, W are independent of y

• the mean potential follows the value of the floating potential φ = ΛTe (so we have eΛ−φ/Te = 1)

• all mean field radial profiles are decaying exponential X ∝ exp
¶
−x
λX

©
the e-folding length is noted

λN

B.2.2 Preliminary calculation

For two fields X and Y :î
X + ‹X,Y + ‹Y ó =

����
î
X,Y

ó
+
î
X, ‹Y ó+

î ‹X,Y ó+
��

��
î ‹X, ‹Y ó

= ∂xX∂y‹Y −�����
∂yX∂x‹Y +�����

∂x ‹X∂yY − ∂xY ∂y ‹X
= ∂xX∂y‹Y − ∂xY ∂y ‹X

»
Te + Ti + T̃e + ‹Ti =

»
Te + Ti +

1

2

T̃e + ‹Ti»
Te + Ti

=
√
T +

1

2

T̃e + ‹Ti√
T

e
Λ− φ+φ̃

Te+‹Te = 1 + Λ
T̃e

Te
− Λ

φ̃

φ
= 1 + Λ

T̃e

Te
− φ̃

Te

Let us also introduce E = lnN for simplification of the calculation and to overcome the dependence

on N . Using: ln
(
N
(
1 + Ñ

N

))
= lnN + ln

(
1 + Ñ

N

)
' lnN + Ñ

N
, we obtain that at first order

of development E = lnN and ‹E = Ñ
N

. It is evident that ∂xN
N = ∂xE = − 1

λN
. We also have

∂y‹E = ∂y
(
Ñ
N

)
=

∂yÑ

N
= ∂y‹E as N is independant of y, the same way we have ∂t‹E = ∂tÑ

N
Finally we

have ∂xÑ
N

= ∂x‹E + ‹E∂x, and ∂2
xÑ

N
= ∂2

x
‹E + 2∂xE∂x‹E + ∂2

xE
‹E
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B.2.3 Density equation

∂t(N + ‹N) +
î
φ+ φ̃, N + ‹Nó = −σ(N + ‹N)

»
T + ‹Ti + T̃e e

Λ− φ+φ̃

Te+‹Te +D∇2
⊥(N + ‹N)
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√
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Λ
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)
− σN T̃e + ‹Ti
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T
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√
T ‹N +D∇2

⊥N +D∇2
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in steady state and by dividing all term by N :
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Finally we obtain :

(
∂t + Λ∂xTe∂y + σ

√
T −D∇2

⊥
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−σ
√
T
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− ∂xE∂y

)
φ̃+ σ

(√
T

Te
Λ +

1

2
√
T

)
T̃e +

Ç
σ

2
√
T

å ‹Ti = 0

(B.6)

B.2.4 Vorticity equation

∂t
Ä
W + W̃

ä
+
î
φ+ φ̃,W + W̃

ó
= − g

N + ‹N ∂y
ÄÄ
N + ‹Nä ÄT + T̃e + ‹Tiää

+ σ
»
T + T̃e + ‹Ti(1− e

Λ− φ+φ̃

Te+‹Te)+ ν∇2
⊥
Ä
W + W̃

ä
∂tW̃ + ∂xφ∂yW̃ − ∂xW∂yφ̃ = − g

N + ��‹N︸︷︷︸
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Ä
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Ä
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N + ��‹N ∂y
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N‹Tiä
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��T̃e
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√
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‹Ti
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T︸ ︷︷ ︸

2nd order
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Λ
T̃e

Te
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Te

)
+ ν∇2

⊥
Ä
W + W̃

ä
In steady state we have ν∇2

⊥W = 0 :

∂tW̃ + ∂xφ∂yW̃ − ∂yφ̃∂xW = −gT
N
∂y ‹N − g∂yT̃e − g∂y‹Ti + σ

√
T
φ̃

Te
− σΛ

√
T
T̃e

Te
+ ν∇2

⊥W̃

Finally we obtain :Ç
gT

N
∂y

å ‹E +
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−∂xW∂y − σ

√
T

Te

)
φ̃+
Ä
∂t + Λ∂xTe∂y − ν∇2

⊥
ä
W̃ +

(
g∂y + σΛ

√
T

Te

)
T̃e + (g∂y) ‹Ti = 0

(B.7)
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B.2.5 Poisson equation

W =∇2
⊥φ+∇ ·

Å
1

N
∇⊥Pi

ã
=∇2

⊥φ+∇2
⊥Ti +∇ · (Ti∇⊥ lnN))

=∇2
⊥
Ä
φ+ φ̃

ä
+∇2

⊥
Ä
Ti + ‹Tiä+∇ ·

ÄÄ
Ti + ‹Tiä∇⊥ Äln ÄN + ‹Näää
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xφ+∇2

⊥φ̃+ ∂2
xTi +∇2

⊥
‹Ti +∇ ·

(
Ti∇⊥ ln

(
N

(
1 +

‹N
N
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︸ ︷︷ ︸
=A1

+∇ ·
(‹Ti∇⊥ ln
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1 +

‹N
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∇⊥ ln
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∂xE

�
��∂yE

ë
+

á
∂x‹E
∂y‹E

ë
=

á
∂xE + ∂x‹E

∂y‹E
ë

We can develop A1 : Let us note that ∂xE = ∂x lnN is independent of x as N ∝ exp(−X/λN ).

A1 =∇ ·

á
Ti
Ä
∂xE + ∂x‹Eä
Ti∂y‹E

ë
= ∂x

Ä
Ti∂xE

ä
+ ∂x

Ä
Ti∂x‹Eä+ ∂y

Ä
Ti∂y‹Eä

= ∂xE∂xTi + ∂xTi∂x‹E + Ti∂
2
x
‹E + Ti∂

2
y
‹E

= ∂xE∂xTi + ∂xTi∂x‹E + Ti∇2
⊥
‹E

A2 is calculated the same way (with ‹Ti instead of Ti) and leads to:

A2 = ∂xE∂x‹Ti
Finally, the vorticity can be written:

W = ∂2
xφ+ ∂2

xTi + ∂xTi∂xE︸ ︷︷ ︸
=W

+∇2
⊥φ̃+∇2

⊥
‹Ti + Ti∇2

⊥
‹E + ∂xTi∂x‹E + ∂xE∂x‹Ti

As W̃ = W −W , we have:

−
Ä
∂xTi∂x + Ti∇2

⊥
ä ‹N −∇2

⊥φ̃+ W̃ −
Ä
∇2
⊥ + ∂xE∂x

ä ‹Ti = 0 (B.8)
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B.2.6 Energy equation

B.2.7 preliminary calculation

Let us first develop advection terms and diffusive terms which are identical for electronic and ionic

energy conservation equations.

Advection:

3

2

î
φ+ φ̃,

Ä
N + ‹Nä ÄTα +›Tαäó =

3

2

((
N + ��‹N) îφ+ φ̃, Tα +›Tαó+

(
Tα +��

›Tα) îφ+ φ̃, ‹N +N
ó)

=
3

2

Ä
N∂xφ∂y›Tα −N∂xTα∂yφ̃+ Tα∂xφ∂y ‹N − Tα∂xN∂yφ̃ä

=
3

2

Ä
N∂xφ∂y›Tα − ÄN∂xTα∂y + Tα∂xN∂y

ä
φ̃+ Tα∂xφ∂y ‹Nä (B.9)

Diffusion:
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⊥
Ä
N + ‹Nä ÄTα +›Tαä =χα

Ä
∇2
⊥
Ä
NTα

ä
+∇2

⊥
Ä
N›Tαä+ Ti∇2

⊥
Ä ‹NTαää

=χα∇2
⊥
Ä
NTα

ä
+ χα

Ä
∂2
xTα + 2∂xTα∂x + Tα∇2

⊥
ä ‹N

+ χα
Ä
∂2
xN + 2∂xN∂x +N∇2

⊥
ä›Tα (B.10)

B.2.8 electronic energy conservation

3

2
∂t
Ä
N + ‹Nä ÄTe + T̃e

ä
+

3

2

î
φ+ φ̃,

Ä
N + ‹Nä ÄTe + T̃e

äó
=−σγe

Ä
N + ‹Nä ÄTe + T̃e

ä»
T + T̃e + ‹Ti e

Λ− φ+φ̃

Te+‹Te
︸ ︷︷ ︸

=A

+ χ∇2
⊥
Ä
N + ‹Nä ÄTe + T̃e

ä
Let us develop first A:

A =− σγe
Ä
N + ‹NäÇTe√T +

√
T T̃e +

Te

2
√
T

Ä
T̃e + ‹Tiäå(1 + Λ

T̃e

Te
− φ̃

Te

)

=− σγeNTe
√
T − σγeN

ÇÇ√
T (Λ + 1) +

Te

2
√
T

å
T̃e −

√
T φ̃+

Te

2
√
T
‹Tiå− σγeTe√T ‹N

Using (2.4), (2.5) and the development of A we obtain:

3

2

Ä
N∂tT̃e + Te∂t ‹N +N∂xφ∂yT̃e −

Ä
N∂xTe∂y + Te∂xN∂y

ä
φ̃+ Te∂xφ∂y ‹Nä

= −σγeNTe
√
T − σγeTe

√
T ‹N − σγeN Ç√T (Λ + 1) +

Te

2
√
T

å
T̃e + σγeN

√
T φ̃− σγeN

Te

2
√
T
‹Ti

+ χe∇2
⊥
Ä
NTα

ä
+ χe

Ä
∂2
xTα + 2∂xTα∂x + Tα∇2

⊥
ä ‹N + χe

Ä
∂2
xN + 2∂xN∂x +N∇2

⊥
ä›Tα
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in steady state and by dividing all term by N :

3

2

Ä
∂tT̃e + Te∂t‹E + ∂xφ∂yT̃e −

Ä
∂xTe∂y + Te∂xE∂y

ä
φ̃+ Te∂xφ∂y‹Eä

= −σγeTe
√
T ‹E − σγeÇ√T (Λ + 1) +

Te

2
√
T

å
T̃e + σγe

√
T φ̃− σγe

Te

2
√
T
‹Ti

+ χe

Ç
∂2
xTe + 2∂xTe∂x + Te

Ç
∇2
⊥ −

2

λN
+

1

λ2
N

åå ‹E + χe
Ä
∂2
xE + 2∂xE∂x +∇2

⊥
ä
T̃e

Ç
3

2
Te∂t +

3

2
ΛTe∂xTe∂y + σγeTe

√
T − χ

Ç
∂2
xTe + 2∂xTe∂x + Te

Ç
∇2
⊥ −

2

λN
+

1

λ2
N

ååå ‹E
+

Å
−σγe

√
T − 3

2

Ä
∂xTe + Te∂xE

ä
∂y

ã
φ̃

+

Ç
3

2
∂t +

3

2
Λ∂xTe∂y + σγe

Ç
(Λ + 1)

√
T +

Te

2
√
T

å
− χ(∂2

xE + 2∂xE∂x +∇2
⊥)

å
T̃e + σγe

Te

2
√
T
‹Ti = 0

(B.11)

B.2.9 Ionic energy equation

3

2
∂t
Ä
N + ‹Nä ÄTi + ‹Tiä+

3

2

î
φ+ φ̃,

Ä
N + ‹Nä ÄTi + ‹Tiäó =−σγi

Ä
N + ‹Nä ÄTi + ‹Tiä»T + T̃e + ‹Ti︸ ︷︷ ︸

=B

+ χ∇2
⊥
Ä
N + ‹Nä ÄTi + ‹Tiä

Let us first develop B:

B =− σγi
Ä
N + ‹NäÇTi√T +

√
T ‹Ti +

Ti

2
√
T

Ä
T̃e + ‹Tiäå

=− σγiNTi
√
T − σγiN

Ç√
T +

Ti

2
√
T

å ‹Ti + σγiN
Ti

2
√
T
T̃e + σγiTi

√
T ‹N

Using (2.4), (2.5) and the development of B we obtain:

3

2

Ä
N∂t‹Ti + Ti∂t ‹N +N∂xφ∂y‹Ti − ÄN∂xTi∂y + Ti∂xN∂y

ä
φ̃+ Ti∂xφ∂y ‹Nä

= −σγiNTi
√
T − σγiN

Ç√
T +

Ti

2
√
T

å ‹Ti + σγiN
Ti

2
√
T
T̃e + σγiTi

√
T ‹N

+ χe∇2
⊥
Ä
NTα

ä
+ χe

Ä
∂2
xTα + 2∂xTα∂x + Tα∇2

⊥
ä ‹N + χe

Ä
∂2
xN + 2∂xN∂x +N∇2

⊥
ä ‹Ti
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In steady state (B.5) and by dividing all terms by N :

3

2

Ä
∂t‹Ti + Ti∂t‹E + ∂xφ∂y‹Ti − Ä∂xTi∂y + Ti∂xE∂y

ä
φ̃+ Ti∂xφ∂y ‹Nä

= −σγi
Ç√

T +
Ti

2
√
T

å ‹Ti + σγi
Ti

2
√
T
T̃e + σγiTi

√
T ‹E

+ χi

Ç
∂2
xTi + 2∂xTi∂x + Ti

Ç
∇2
⊥ −

2

λN
+

1

λ2
N

åå ‹E + χi
Ä
∂2
xE + 2∂xE∂x +∇2

⊥
ä ‹Ti

Ç
3

2
Ti∂t +

3

2
ΛTi∂xTe∂y + σγiTi

√
T − χ

Ç
∂2
xTi + 2∂xTi∂x + Ti

Ç
∇2
⊥ −

2

λN
+

1

λ2
N

ååå ‹E+

Å
−3

2
∂x
Ä
NTi
ä
∂y

ã
φ̃

+

Ç
σγi

Ti

2
√
T

å
T̃e +

Ç
3

2
∂t +

3

2
Λ∂xTe∂y + σγi

Ç√
T +

Ti

2
√
T

å
− χ(∂2

xE + 2∂xE∂x +∇2
⊥)

å ‹Ti = 0

(B.12)

B.3 Spectral Analysis

We assume to find a solution of the form :





‹E =
∑
kx,ky

“Ekx,ky exp(ikxx+ ikyy) exp(ωkt)

φ̃ =
∑
kx,ky φ̂kx,ky exp(ikxx+ ikyy) exp(ωkt)

T̃e =
∑
kx,ky T̂ekx,ky exp(ikxx+ ikyy) exp(ωkt)‹Ti =

∑
kx,ky T̂ekx,ky exp(ikxx+ ikyy) exp(ωkt)

Where “E, φ̂, T̂e, “Ti are the Fourier transforms of ‹E, φ̃, T̃e, ‹Ti respectively

As all average profiles are decaying exponential, we have ∂αxX

X
= (∂xX

X
)α = − 1

λαX
.

The equation (B.6), (B.7), (B.11), and (B.12) can be written in Fourier space as :Ç
ωk − Λ

Te
λTe

iky + σ
√
T +D

Ç
k2
⊥ + 2

ikx
λN
− 1

λ2
N

åå “Ekx,ky +

(
−σ
√
T

Te
+
iky
λN

)
φ̂kx,ky

+ σ

(√
T

Te
Λ +

1

2
√
T

)
T̂ekx,ky +

σ

2
√
T
“Tikx,ky = 0 (B.13)

Ä
gT iky

ä “Ekx,ky +

(
−∂xWiky − σ

√
T

Te

)
φ̂kx,ky +

Ç
ωk − Λ

Te
λTe

iky + νk2
⊥

å
Ŵkx,ky

+

(
giky + σΛ

√
T

Te

)
T̂ekx,ky + (giky) “Tikx,ky = 0 (B.14)
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Ti
λTi

ikx + Tik
2
⊥

å “Ekx,ky + k2
⊥φ̂kx,ky + Ŵkx,ky +

Å
k2
⊥ +

ikx
λN

ã “Tikx,ky = 0 (B.15)

(
3

2
Teωk −

3

2
Λ
Te

2

λTe
iky + σγeTe

√
T − χe

Ç
Te
λ2
Te

− 2
Te
λTe

ikx − Te
Ç
k2
⊥ + 2

ikx
λN
− 1

λ2
N

åå) “Ekx,ky
+

Ç
−σγe

√
T +

3

2

Ç
Te
λN

+
Te
λTe

å
iky

å
φ̂kx,ky

+

Ç
3

2
ωk −

3

2
Λ
Te
λTe

iky + σγe

Ç
(Λ + 1)

√
T +

Te

2
√
T

å
− χe

Ç
1

λ2
N

− 2
ikx
λN
− k2
⊥

åå
T̂ekx,ky+σγe

Te

2
√
T
“Tikx,ky = 0

(B.16)Ç
3
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Tiωk −

3

2
Λ
TiTe
λTe

iky + σγiTi
√
T − χi

Ç
Ti
λ2
Ti

− 2
Ti
λTi

ikx − Ti
Ç
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⊥ + 2
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λN
− 1

λ2
N
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+

Ç
3

2

Ç
Ti
λN

+
1

λTi

å
iky
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φ̂kx,ky + σγi

Ti

2
√
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T̂ekx,ky

+

Ç
3

2
ωk −

3

2
Λ
Te
λTe

iky + σγi

Ç√
T +

Ti

2
√
T

å
− χi

Ç
1

λ2
N

− 2
ikx
λN
− k2
⊥

åå “Tikx,ky = 0 (B.17)

Where k2
⊥ = k2

x + k2
y

This system of 4 equations with 4 unknowns has a non-zero solution if and only if its determinant is

null, so we have a condition on ωk for given values of kx, ky,Λ, σ,D, ν, χe, χi, γe, γi, g, Te, Ti, λN , λTe , λTi:
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B Van Milligen, DE Newman & VE Lynch. Fluctuation-induced flux at the

plasma edge in toroidal devices. Physics of Plasmas, vol. 3, no. 7, pages 2664–

2672, 1996.

[Cartier-Michaud 16] T Cartier-Michaud, Philippe Ghendrih, Yanick Sarazin, J Abiteboul, Hugo

Bufferand, Guilhem Dif-Pradalier, Xavier Garbet, Virginie Grandgirard, Guil-

laume Latu, C Norsciniet al. Projection on Proper elements for code control:

Verification, numerical convergence, and reduced models. Application to plasma

turbulence simulations. Physics of Plasmas, vol. 23, no. 2, page 020702, 2016.

[Chankin 97] AV Chankin. Classical drifts in the tokamak SOL and divertor: models and

experiment. Journal of nuclear materials, vol. 241, pages 199–213, 1997.

[Chankin 06] AV Chankin, DP Coster, R Dux, Ch Fuchs, G Haas, A Herrmann, LD Horton,

A Kallenbach, M Kaufmann, Ch Konzet al. SOLPS modelling of ASDEX up-

grade H-mode plasma. Plasma physics and controlled fusion, vol. 48, no. 6, page

839, 2006.

[Chankin 13] AV Chankin & DP Coster. The role of drifts in the plasma transport at the

tokamak core–SOL interface. Journal of Nuclear Materials, vol. 438, pages S463–

S466, 2013.

[Chen 17] B Chen, XQ Xu, TY Xia, M Porkolab, E Edlund, B LaBombard, J Terry,

JW Hughes, SF Mao, MY Yeet al. Edge turbulence and divertor heat flux

width simulations of Alcator C-Mod discharges using an electromagnetic two-

fluid model. Nuclear Fusion, vol. 57, no. 11, page 116025, 2017.

[Chodura 86] Chodura. Physics of plasma–wall interaction in controlled fusion. 1986.

[Cohen 94] Ronald H Cohen, Nathan Mattor & Xueqiao Xu. Scrape-Off Layer Turbulence

Theory. Contributions to Plasma Physics, vol. 34, no. 2-3, pages 232–246, 1994.

[Colin 15a] C Colin. Turbulent transport modelling in the edge plasma of tokamaks: Verifi-

cation, Validation, Simulation and Synthetic Diagnostics. PhD thesis, 2015.

[Colin 15b] Clothilde Colin, Patrick Tamain, Frederic Schwander, Eric Serre, Hugo

Bufferand, Guido Ciraolo, Nicolas Fedorczak & Ph Ghendrih. Impact of the

plasma-wall contact position on edge turbulent transport and poloidal asymme-

tries in 3D global turbulence simulations. Journal of Nuclear Materials, vol. 463,

pages 654–658, 2015.

[Dejarnac 15] R. Dejarnac, P.C. Stangeby, R.J. Goldston, E. Gauthier, J. Horacek, M. Hron,

M. Kocan, M. Komm, R. Panek, R.A. Pitts & P. Vondracek. Understanding

narrow {SOL} power flux component in {COMPASS} limiter plasmas by use of

Langmuir probes. Journal of Nuclear Materials, no. 0, pages –, 2015.



124 Bibliography

[D’Ippolito 11] DA D’Ippolito, JR Myra & SJ Zweben. Convective transport by intermit-

tent blob-filaments: Comparison of theory and experiment. Physics of Plasmas,

vol. 18, no. 6, page 060501, 2011.

[Dudson 08] BD Dudson, N Ben Ayed, A Kirk, HR Wilson, G Counsell, X Xu, M Umansky,

PB Snyder, B Lloydet al. Experiments and simulation of edge turbulence and

filaments in MAST. Plasma Physics and Controlled Fusion, vol. 50, no. 12, page

124012, 2008.

[Eich 11] T Eich, B Sieglin, A Scarabosio, W Fundamenski, RJ Goldston, A Herrmann

& ASDEX Upgrade Team. Inter-ELM power decay length for JET and ASDEX

upgrade: Measurement and comparison with heuristic drift-based model. Physical

review letters, vol. 107, no. 21, page 215001, 2011.

[Eich 13a] T Eich, B Sieglin, A Scarabosio, A Herrmann, A Kallenbach, GF Matthews,

S Jachmich, S Brezinsek, M Rack, RJ Goldstonet al. Empiricial scaling of inter-

ELM power widths in ASDEX Upgrade and JET. Journal of Nuclear Materials,

vol. 438, pages S72–S77, 2013.

[Eich 13b] Thomas Eich, AW Leonard, RA Pitts, W Fundamenski, RJ Goldston, TK Gray,

A Herrmann, A Kirk, A Kallenbach, O Kardaunet al. Scaling of the tokamak

near the scrape-off layer H-mode power width and implications for ITER. Nu-

clear Fusion, vol. 53, no. 9, page 093031, 2013.

[Faitsch 15] M Faitsch, B Sieglin, T Eich, HJ Sun & A Herrmann. Change of the scrape-off

layer power width with the toroidal B-field direction in ASDEX upgrade. Plasma

Physics and Controlled Fusion, vol. 57, no. 7, page 075005, 2015.

[Fedorczak 11] Nicolas Fedorczak, James Paul Gunn, Ph Ghendrih, G Ciraolo, H Bufferand,

L Isoardi, P Tamain & P Monier-Garbet. Experimental investigation on the

poloidal extent of the turbulent radial flux in tokamak scrape-off layer. Journal

of Nuclear Materials, vol. 415, no. 1, pages S467–S470, 2011.

[Fedorczak 13] N Fedorczak, Ph Ghendrih, P Hennequin, GR Tynan, PH Diamond & P Manz.

Dynamics of tilted eddies in a transversal flow at the edge of tokamak plasmas

and the consequences for L–H transition. Plasma Physics and Controlled Fusion,

vol. 55, no. 12, page 124024, 2013.

[Fedorczak 17] Nicolas Fedorczak, JP Gunn, N Nace, A Gallo, C Baudoin, H Bufferand,

G Ciraolo, Th Eich, Ph Ghendrih & Patrick Tamain. Width of turbulent SOL

in circular plasmas: a theoretical model validated on experiments in Tore Supra

tokamak. Nuclear Materials and Energy, vol. 12, pages 838–843, 2017.

[Fundamenski 07] W Fundamenski, Odd Erik Garcia, Volker Naulin, RA Pitts, Anders Henry

Nielsen, J Juul Rasmussen, J Horacek, JP Graveset al. Dissipative processes

in interchange driven scrape-off layer turbulence. Nuclear fusion, vol. 47, no. 5,

page 417, 2007.



Bibliography 125

[Fundamenski 11] W Fundamenski, T Eich, S Devaux, S Jachmich, M Jakubowski, H Thomsen,

G Arnoux, F Militello, E Havlickova, D Moultonet al. Multi-parameter scaling

of divertor power load profiles in D, H and He plasmas on JET and implications

for ITER. Nuclear Fusion, vol. 51, no. 8, page 083028, 2011.

[Galassi 17] D. Galassi, P. Tamain, H. Bufferand, G. Ciraolo, Ph. Ghendrih, C. Baudoin,

C. Colin, N. Fedorczak, N. Nace & E. Serre. Drive of parallel flows by turbulence

and large-scale E × B transverse transport in divertor geometry. Nuclear Fusion,

vol. 57, no. 3, page 036029, 2017.

[Gallo 16] A Gallo, N Fedorczak, R Maurizio, C Theiler, S Elmore, B Labit, H Reimerdes,

F Nespoli, P Ghendrih, T Eichet al. Effect of plasma geometry on divertor heat

flux spreading: MONALISA simulations and experimental results from TCV.

Nuclear Materials and Energy, 2016.

[Ghendrih 11] Ph Ghendrih, K Bodi, H Bufferand, Guillaume Chiavassa, Guido Ciraolo, Nico-

las Fedorczak, Livia Isoardi, A Paredes, Yanick Sarazin, Eric Serreet al. Tran-

sition to supersonic flows in the edge plasma. Plasma Physics and Controlled

Fusion, vol. 53, no. 5, page 054019, 2011.

[Goldston 12] RJ Goldston. Heuristic drift-based model of the power scrape-off width in low-

gas-puff H-mode tokamaks. Nuclear Fusion, vol. 52, no. 1, page 013009, 2012.

[Goldston 15] RJ Goldston. Theoretical aspects and practical implications of the heuristic drift

SOL model. Journal of Nuclear Materials, 2015.

[Gulejová 07] B. Gulejová, R.A. Pitts, M. Wischmeier, R. Behn, D. Coster, J. Horacek &

J. Marki. SOLPS5 modelling of the type III ELMing H-mode on TCV. Jour-

nal of Nuclear Materials, vol. 363, pages 1037–1043, 2007. Plasma-Surface

Interactions-17.

[Gunn 07] JP Gunn, C Boucher, M Dionne, I Ďuran, V Fuchs, T Loarer, I Nanobashvili,
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[Günter 05] S Günter, Q Yu, J Krüger & K Lackner. Modelling of heat transport in magne-

tised plasmas using non-aligned coordinates. Journal of Computational Physics,

vol. 209, no. 1, pages 354–370, 2005.

[Halpern 17] F.D. Halpern & P. Ricci. Velocity shear, turbulent saturation, and steep plasma

gradients in the scrape-off layer of inner-wall limited tokamaks. Nuclear Fusion,

vol. 57, no. 3, page 034001, 2017.



126 Bibliography

[Hinton 71] FL Hinton & CW Horton Jr. Amplitude limitation of a collisional drift wave

instability. The Physics of Fluids, vol. 14, no. 1, pages 116–123, 1971.

[Hinton 74] FL Hinton & RD Hazeltine. Kinetic theory of plasma scrape-off in a divertor

tokamak. Physics of Fluids (1958-1988), vol. 17, no. 12, pages 2236–2240, 1974.

[Horacek 10] J Horacek, J Adamek, HW Müller, J Seidl, Anders Henry Nielsen, V Rohde,
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