Skip to Main content Skip to Navigation
Theses

Modélisation d’un empilement de matériaux dans le domaine fréquentiel par une condition d’impédance d’ordre élevé

Abstract : We consider the problem of the electromagnetic diffraction of an object modeledby a high order impedance boundary condition (HOIBC) in harmonic regime. Theoriginality of this thesis is the exhibition of new sufficient uniqueness conditions(SUC) to compute the coefficients of these boundary conditions. These SUC guaranteethe uniqueness of the harmonic Maxwell’s equations solutions. In order to express theCalderón operator that binds the tangential traces of the electromagnetic fields onthe outer surface of the object, we will perform local approximations of the latter byits tangent plane, by an infinite cylinder or by a sphere. The HOIBC’s coefficients arethen calculated by a constrained optimization problem, which minimizes the errorbetween the Calderón operator and its approximation by the HOIBC. This minimizationis performed on an arbitrary number of arbitrarily chosen incidences angleson which the Calderón operator is computed. Finally, these HOIBC are implementedin an integral equation EFIE-MFIE code where the discretization problems of thedifferential operators of the HOIBC will be solved by performing transformations onthe basis functions of the functional subspaces. This modeling is validated on someobjects of interest by comparison with reference codes
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/tel-03269504
Contributor : Abes Star :  Contact
Submitted on : Wednesday, November 3, 2021 - 11:36:27 AM
Last modification on : Friday, November 5, 2021 - 11:06:11 AM

File

edgalilee_th_2020_payen.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03269504, version 2

Citation

Pierre Payen. Modélisation d’un empilement de matériaux dans le domaine fréquentiel par une condition d’impédance d’ordre élevé. Equations aux dérivées partielles [math.AP]. Université Paris-Nord - Paris XIII, 2020. Français. ⟨NNT : 2020PA131050⟩. ⟨tel-03269504v2⟩

Share

Metrics

Record views

30

Files downloads

9