J. H. Brown, Energetic Limits to Economic Growth, BioScience, vol.61, issue.1, pp.19-26, 2011.

, BP Statistical Review of World Energy, 2019.

B. Kulkarni, D. Patil, and R. G. Suryavanshi, IOT Based PV assisted EV Charging Station for Confronting Duck Curve, 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS), pp.36-39, 2018.

K. T. Møller, T. R. Jensen, E. Akiba, and H. Li, Hydrogen -A sustainable energy carrier, Prog. Nat. Sci. Mater. Int, vol.27, issue.1, pp.34-40, 2017.

, HYDROGEN FROM RENEWABLE POWER TECHNOLOGY OUTLOOK FOR THE ENERGY TRANSITION, International Reneweble Energy Agency, 2018.

P. P. Edwards, V. L. Kuznetsov, W. I. David, and N. P. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, vol.36, issue.12, pp.4356-4362, 2008.

B. C. Ong, S. K. Kamarudin, and S. Basri, Direct liquid fuel cells: A review, Int. J. Hydrog. Energy, vol.42, issue.15, pp.10142-10157, 2017.

A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J. H. Kim et al., Ammonia-fed fuel cells: a comprehensive review, Renew. Sustain. Energy Rev, vol.60, pp.822-835, 2016.

F. Jiao and B. Xu, Electrochemical Ammonia Synthesis and Ammonia Fuel Cells, Adv. Mater, p.1805173, 2018.

B. Bensmann, R. Hanke-rauschenbach, I. K. Arias, and K. Sundmacher, Energetic evaluation of high pressure PEM electrolyzer systems for intermediate storage of renewable energies, Electrochimica Acta, vol.110, pp.570-580, 2013.

S. Metz, Linde pioneers hydrogen compression techniques for fuel cell electric vehicles, Fuel Cells Bull, vol.2014, issue.9, pp.12-15, 2014.

H. Barthélémy, Hydrogen storage -Industrial prospectives, Int. J. Hydrog. Energy, vol.37, issue.22, pp.17364-17372, 2012.

S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, vol.120, issue.3-4, pp.246-256, 2007.

M. Bracha, G. Lorenz, A. Patzelt, and M. Wanner, Large-scale hydrogen liquefaction in Germany, Int. J. Hydrog. Energy, vol.19, issue.1, pp.53-59, 1994.

D. Beysens, D. Chatain, V. Nikolayev, and Y. Garrabos, MAGNETIC FACILITY GIVES HEAT TRANSFER DATA IN H2 AT VARIOUS ACCELERATION LEVELS, Space Launcher Liquid Propulsion, 2002.

L. M. Das, On-board hydrogen storage systems for automotive application, Int. J. Hydrog. Energy, vol.21, issue.9, pp.789-800, 1996.

K. L. Cashdollar, I. A. Zlochower, G. M. Green, R. A. Thomas, and M. Hertzberg, Flammability of methane, propane, and hydrogen gases, J. Loss Prev. Process Ind, vol.13, issue.3-5, pp.327-340, 2000.

G. E. Schmauch and A. H. Singleton, Technical aspects of ortho-parahydrogen conversion, Ind. Eng. Chem, vol.56, issue.5, pp.20-31, 1964.

H. Frost, T. Düren, and R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B, vol.110, issue.19, pp.9565-9570, 2006.

H. Zhou, J. R. Long, and O. M. Yaghi, Introduction to Metal?Organic Frameworks, Chem. Rev, vol.112, issue.2, pp.673-674, 2012.

M. P. Suh, H. J. Park, T. K. Prasad, and D. Lim, Hydrogen Storage in Metal-Organic Frameworks, Chem. Rev, vol.112, issue.2, pp.782-835, 2012.

J. Ren, H. W. Langmi, B. C. North, and M. Mathe, Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage: Review on processing of MOF materials towards system integration, Int. J. Energy Res, vol.39, issue.5, pp.607-620, 2015.

G. J. Kubas, Metal-dihydrogen and ?-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin ? bonding, J. Organomet. Chem, vol.635, pp.37-68, 2001.

N. Muradov and T. Vezirolu, From hydrocarbon to hydrogen?carbon to hydrogen economy, Int. J. Hydrog. Energy, vol.30, issue.3, pp.225-237, 2005.

K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrog. Energy, vol.44, issue.7, pp.3580-3593, 2019.

M. Niermann, S. Drünert, M. Kaltschmitt, and K. Bonhoff, Liquid organic hydrogen carriers (LOHCs) -techno-economic analysis of LOHCs in a defined process chain, Energy Environ. Sci, vol.12, issue.1, pp.290-307, 2019.

P. T. Aakko-saksa, C. Cook, J. Kiviaho, and T. Repo, Liquid organic hydrogen carriers for transportation and storing of renewable energy -Review and discussion, J. Power Sources, vol.396, pp.803-823, 2018.

Q. Lai, Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art, ChemSusChem, vol.8, issue.17, pp.2789-2825, 2015.

B. Sakintuna, F. Lamaridarkrim, and M. Hirscher, Metal hydride materials for solid hydrogen storage: A review?, Int. J. Hydrog. Energy, vol.32, issue.9, pp.1121-1140, 2007.

G. Sandrock, J. Reilly, J. Graetz, W. Zhou, J. Johnson et al., Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles, Appl. Phys. A, vol.80, issue.4, pp.687-690, 2005.

S. K. Konovalov and B. M. Bulychev, The P, T-State diagram and solid phase synthesis of aluminum hydride, Inorg. Chem, vol.34, issue.1, pp.172-175, 1995.

B. Bogdanovi? and M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Compd, vol.253, pp.1-9, 1997.

H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe et al., Synthesis and decomposition reactions of metal amides in metal-N-H hydrogen storage system, J. Power Sources, vol.156, issue.2, pp.166-170, 2006.

P. Chen, Z. Xiong, J. Luo, J. Lin, and K. L. Tan, Interaction of hydrogen with metal nitrides and imides, Nature, vol.420, pp.302-304, 2002.

T. Ichikawa, S. Isobe, N. Hanada, and H. Fujii, Lithium nitride for reversible hydrogen storage, J. Alloys Compd, vol.365, issue.1-2, pp.637-643, 2004.

H. Miyaoka, Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System, vol.8, pp.3896-3909, 2015.

U. B. Demirci, Ammonia borane, a material with exceptional properties for chemical hydrogen storage, Int. J. Hydrog. Energy, vol.42, issue.15, pp.9978-10013, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01671789

, Low-Cost Precursors to Novel Hydrogen Storage Materials', The Dow Chemical Company, 2010.

A. D. Sutton, Regeneration of Ammonia Borane Spent Fuel by Direct Reaction with Hydrazine and Liquid Ammonia, Science, vol.331, issue.6023, pp.1423-1426, 2011.

O. T. Summerscales and J. C. Gordon, Regeneration of ammonia borane from spent fuel materials, Dalton Trans, vol.42, issue.28, p.10075, 2013.

C. Reller and F. O. Mertens, A Self-Contained Regeneration Scheme for Spent Ammonia Borane Based on the Catalytic Hydrodechlorination of BCl 3, Angew. Chem. Int. Ed, vol.51, issue.47, pp.11731-11735, 2012.

S. Hausdorf, A procedure for the regeneration of ammonia borane from BNH-waste products, Int. J. Hydrog. Energy, vol.33, issue.2, pp.608-614, 2008.

F. Maurice, T. Dewing, and J. Dewing, Production of Boron compounds, p.3103417

C. Reller and F. O. Mertens, Hydrodechlorination of Et 3 NBCl 3 Catalyzed by Amorphous Nickel Boride -A Mechanistic Approach, Eur. J. Inorg. Chem, vol.2014, issue.3, pp.450-459, 2014.

Y. Li, Enhanced dehydrogenation of ammonia borane by reaction with alkaline earth metal chlorides, Int. J. Hydrog. Energy, vol.37, issue.5, pp.4274-4279, 2012.

Y. Nakagawa, A Systematic Study of the Effects of Metal Chloride Additives on H 2 Desorption Properties of Ammonia Borane, J. Chem. Eng. Data, vol.61, issue.5, pp.1924-1929, 2016.

F. Toche, R. Chiriac, U. B. Demirci, and P. Miele, Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides', Int. J. Hydrog. Energy, vol.37, issue.8, pp.6749-6755, 2012.

K. Wang, Z. Pan, and X. Yu, Metal B-N-H hydrogen-storage compound: Development and perspectives, J. Alloys Compd, vol.794, pp.303-324, 2019.

Y. Nakamori, Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments, Phys. Rev. B, vol.74, issue.4, 2006.

L. H. Jepsen, Boron-nitrogen based hydrides and reactive composites for hydrogen storage, Mater. Today, vol.17, issue.3, pp.129-135, 2014.

T. Jaro?, P. A. Or?owski, W. Wegner, K. J. Fija?kowski, P. J. Leszczy?ski et al., Hydrogen Storage Materials: Room-Temperature Wet-Chemistry Approach toward Mixed-Metal Borohydrides, Angew. Chem, vol.127, issue.4, pp.1252-1255, 2015.

T. Jaro?, W. Wegner, K. J. Fija?kowski, P. J. Leszczy?ski, and W. Grochala, Facile Formation of Thermodynamically Unstable Novel Borohydride Materials by a Wet Chemistry Route, Chem. -Eur. J, vol.21, issue.15, pp.5689-5692, 2015.

P. Martelli, R. Caputo, A. Remhof, P. Mauron, A. Borgschulte et al., Stability and Decomposition of NaBH 4, J. Phys. Chem. C, vol.114, issue.15, pp.7173-7177, 2010.

J. Kim, S. Jin, J. Shim, and Y. W. Cho, Thermal decomposition behavior of calcium borohydride Ca(BH4)2', J. Alloys Compd, vol.461, 2008.

Y. Zhang, E. Majzoub, V. Ozoli??, and C. Wolverton, Theoretical Prediction of Metastable Intermediates in the Decomposition of Mg(BH 4 ) 2', J. Phys. Chem. C, vol.116, issue.19, pp.10522-10528, 2012.

G. Severa, E. Rönnebro, and C. M. Jensen, Direct hydrogenation of magnesium boride to magnesium borohydride: demonstration of >11 weight percent reversible hydrogenstorage, Chem Commun, vol.46, issue.3, pp.421-423, 2010.

M. Chong, M. Matsuo, S. Orimo, T. Autrey, and C. M. Jensen, Selective Reversible Hydrogenation of Mg(B 3 H 8 ) 2 /MgH 2 to Mg(BH 4 ) 2 : Pathway to Reversible Borane-Based Hydrogen Storage?, Inorg. Chem, vol.54, issue.8, pp.4120-4125, 2015.

M. Chong, T. Autrey, and C. Jensen, Lewis Base Complexes of Magnesium Borohydride: Enhanced Kinetics and Product Selectivity upon Hydrogen Release, Inorganics, vol.5, issue.4, p.89, 2017.

C. Sugai, Kinetic Enhancement of Direct Hydrogenation of MgB 2 to Mg(BH 4 ) 2 upon Mechanical Milling with THF, MgH 2 , and/or Mg, ChemPhysChem, vol.20, issue.10, pp.1301-1304, 2019.

E. A. Nickels, Tuning the Decomposition Temperature in Complex Hydrides: Synthesis of a Mixed Alkali Metal Borohydride, Angew. Chem. Int. Ed, vol.47, issue.15, pp.2817-2819, 2008.

D. Ravnsbaek, A Series of Mixed-Metal Borohydrides, Angew. Chem, vol.121, issue.36, pp.6787-6791, 2009.

R. ?erný, Trimetallic Borohydride Li3MZn5(BH4) 15 (M = Mg, Mn) Containing Two Weakly Interconnected Frameworks, Inorg. Chem, vol.52, issue.17, pp.9941-9947, 2013.

T. He, Alkali and alkaline-earth metal borohydride hydrazinates: synthesis, structures and dehydrogenation, Phys. Chem. Chem. Phys, vol.15, issue.25, p.10487, 2013.

J. Mao, Q. Gu, Z. Guo, and H. K. Liu, Sodium borohydride hydrazinates: synthesis, crystal structures, and thermal decomposition behavior, J. Mater. Chem. A, vol.3, issue.21, pp.11269-11276, 2015.

H. Wu, A new family of metal borohydride ammonia borane complexes: Synthesis, structures, and hydrogen storage properties, J. Mater. Chem, vol.20, issue.31, p.6550, 2010.

L. H. Jepsen, Synthesis, Crystal Structure, Thermal Decomposition, and 11 B MAS NMR Characterization of Mg(BH 4 ) 2 (NH 3 BH 3 ) 2', J. Phys. Chem. C, vol.118, issue.23, pp.12141-12153, 2014.

I. Dovgaliuk, C. S. Le-duff, K. Robeyns, M. Devillers, and Y. Filinchuk, Mild Dehydrogenation of Ammonia Borane Complexed with Aluminum Borohydride, Chem. Mater, vol.27, issue.3, pp.768-777, 2015.

S. R. Johnson, The Monoammoniate of Lithium Borohydride, Li(NH 3 )BH 4 : An Effective Ammonia Storage Compound, Chem. -Asian J, vol.4, issue.6, pp.849-854, 2009.

J. Huang, Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate, Chem Commun, vol.51, issue.14, pp.2794-2797, 2015.

R. Z. Sørensen, Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts, J. Am. Chem. Soc, vol.130, issue.27, pp.8660-8668, 2008.

E. Roedern and T. R. Jensen, Ammine-Stabilized Transition-Metal Borohydrides of Iron, Cobalt, and Chromium: Synthesis and Characterization, Inorg. Chem, vol.54, issue.21, pp.10477-10482, 2015.

Q. Gu, Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release, Energy Environ. Sci, vol.5, issue.6, p.7590, 2012.

Y. Guo, Y. Jiang, G. Xia, and X. Yu, Ammine aluminium borohydrides: an appealing system releasing over 12 wt% pure H2 under moderate temperature, Chem. Commun, vol.48, issue.37, p.4408, 2012.

Y. Guo, H. Wu, W. Zhou, and X. Yu, Dehydrogenation Tuning of Ammine Borohydrides Using Double-Metal Cations, J. Am. Chem. Soc, vol.133, issue.13, pp.4690-4693, 2011.

W. Sun, A New Ammine Dual-Cation (Li, Mg) Borohydride: Synthesis, Structure, and Dehydrogenation Enhancement, Chem. -Eur. J, vol.18, issue.22, pp.6825-6834, 2012.

F. Yuan, Q. Gu, X. Chen, Y. Tan, Y. Guo et al., Complex Ammine Titanium(III) Borohydrides as Advanced Solid Hydrogen-Storage Materials with Favorable Dehydrogenation Properties, Chem. Mater, vol.24, issue.17, pp.3370-3379, 2012.

J. Kollonitsch and O. Fuchs, Preparation of Aluminium Borohydride and its Applications in Organic Reductions, Nature, vol.4492, 1955.

L. H. Jepsen, M. B. Ley, Y. Filinchuk, F. Besenbacher, and T. R. Jensen, Tailoring the Properties of Ammine Metal Borohydrides for Solid-State Hydrogen Storage, ChemSusChem, vol.8, issue.8, pp.1452-1463, 2015.

G. Soloveichik, Ammine Magnesium Borohydride Complex as a New Material for Hydrogen Storage: Structure and Properties of Mg(BH 4 ) 2 ·2NH 3, Inorg. Chem, vol.47, issue.10, pp.4290-4298, 2008.

H. Chu, G. Wu, Z. Xiong, J. Guo, T. He et al., Structure and Hydrogen Storage Properties of Calcium Borohydride Diammoniate, Chem. Mater, vol.22, issue.21, pp.6021-6028, 2010.

U. B. Demirci, O. Akdim, J. Andrieux, J. Hannauer, R. Chamoun et al., Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell, Fuel Cells, vol.10, issue.3, pp.335-350, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552352

Y. Kojima and H. Tetsuya, Recycling process of sodium metaborate to sodium borohydride, Int. J. Hydrog. Energy, vol.28, pp.989-993, 2003.

H. Zhong, An one-step approach towards hydrogen production and storage through regeneration of NaBH 4, Energy Storage Mater, vol.7, pp.222-228, 2017.

H. I. Schlesinger, H. C. Brown, and A. E. Finholt, The Preparation of Sodium Borohydride by the High Temperature Reaction of Sodium Hydride with Borate Esters, J. Am. Chem. Soc, vol.75, issue.1, pp.205-209, 1953.

H. I. Schlesinger, H. C. Brown, D. L. Mayfield, and J. R. Gilbreath, Procedures for the Preparation of Methyl Borate1, J. Am. Chem. Soc, vol.75, issue.1, pp.213-215, 1953.

C. Liu, B. Chen, D. Lee, J. Ku, and F. Tsau, Trimethyl Borate Regenerated from Spent Sodium Borohydride after Hydrogen Production, Ind. Eng. Chem. Res, vol.49, issue.20, pp.9864-9869, 2010.

G. Moussa, R. Moury, U. B. Demirci, and P. Miele, Borates in hydrolysis of ammonia borane, Int. J. Hydrog. Energy, vol.38, issue.19, pp.7888-7895, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01688797

W. C. Conner and J. L. Falconer, Spillover in Heterogeneous Catalysis, Chemical Reviews, issue.95, pp.759-788, 1995.

L. Wang and R. T. Yang, New sorbents for hydrogen storage by hydrogen spillover -a review, Energy Environ. Sci, vol.1, issue.2, p.268, 2008.

A. J. Du, S. C. Smith, X. D. Yao, and G. Q. Lu, Hydrogen Spillover Mechanism on a Pd-Doped Mg Surface as Revealed by ab initio Density Functional Calculation, J. Am. Chem. Soc, vol.129, issue.33, pp.10201-10204, 2007.

C. W. Gregory, R. S. Ronan, D. M. Jason, and W. S. Douglas, Reversible, Metal-Free Hydrogen Activation, Science, vol.314, issue.5802, pp.1124-1126, 2006.

D. W. Stephan and G. Erker, Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More, Angew. Chem. Int. Ed, vol.49, issue.1, pp.46-76, 2010.

V. Sumerin, Experimental and theoretical treatment of hydrogen splitting and storage in boron-nitrogen systems, J. Organomet. Chem, vol.694, issue.17, pp.2654-2660, 2009.

D. W. Stephan and G. Erker, Frustrated Lewis Pair Chemistry: Development and Perspectives, Angew. Chem. Int. Ed, vol.54, issue.22, pp.6400-6441, 2015.

J. Lam, K. M. Szkop, E. Mosaferi, and D. W. Stephan, FLP catalysis: main group hydrogenations of organic unsaturated substrates, Chem. Soc. Rev, vol.48, issue.13, pp.3592-3612, 2019.

W. T. Klooster, T. F. Koetzle, P. E. Siegbahn, T. B. Richardson, and R. H. Crabtree, Study of the N?H···H?B Dihydrogen Bond Including the Crystal Structure of BH 3 NH 3 by Neutron Diffraction, J. Am. Chem. Soc, vol.121, issue.27, pp.6337-6343, 1999.

P. K. Pranzas, Characterization of Hydrogen Storage Materials and Systems with Photons and Neutrons, Adv. Eng. Mater, vol.13, issue.8, pp.730-736, 2011.

A. Yadav, N. Bulakh, A. Gupta, N. Sikder, and A. K. Sikder, Rapid determination of impurity of boron nitride in amorphous boron powder using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and ion chromatography (IC), Anal. Methods, vol.9, issue.21, pp.3141-3150, 2017.

A. C. Stowe, W. J. Shaw, J. C. Linehan, B. Schmid, and T. Autrey, In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material, Phys. Chem. Chem. Phys, vol.9, issue.15, p.1831, 2007.

C. Gervais and F. Babonneau, High resolution solid state NMR investigation of various boron nitride preceramic polymers, J. Organomet. Chem, vol.657, pp.75-82, 2002.

C. F. Burmeister and A. Kwade, Process engineering with planetary ball mills, Chem. Soc. Rev, vol.42, issue.18, p.7660, 2013.

Y. Kwon, K. B. Gerasimov, and S. Yoon, Ball temperatures during mechanical alloying in planetary mills, J. Alloys Compd, vol.346, issue.1-2, pp.276-281, 2002.

M. L. Huber and A. H. Harvey, CRC Handbook of Chemistry and Physics, 92 vols, 2011.

Z. Z. Fang, L. P. Ma, X. D. Kang, P. J. Wang, P. Wang et al., In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3, Appl. Phys. Lett, vol.94, issue.4, p.44104, 2009.

T. Jaro? and W. Grochala, Y(BH 4 ) 3 -an old-new ternary hydrogen store akalearning from a multitude of failures, Dalton Trans, vol.39, issue.1, pp.160-166, 2010.

H. Grove, Halide substitution in Ca(BH 4 ) 2, RSC Adv, vol.4, issue.9, pp.4736-4742, 2014.

R. H. Heyn, Structural and spectroscopic characterization of potassium fluoroborohydrides, Phys. Chem. Chem. Phys, vol.15, issue.27, p.11226, 2013.

M. Paskevicius, Metal borohydrides and derivatives -synthesis, structure and properties, Chem Soc Rev, vol.46, issue.5, pp.1565-1634, 2017.

H. Hagemann and R. ?erný, Synthetic approaches to inorganic borohydrides, Dalton Trans, vol.39, issue.26, p.6006, 2010.

G. L. Soloveichik, M. Andrus, Y. Gao, J. Zhao, and S. Kniajanski, Magnesium borohydride as a hydrogen storage material: Synthesis of unsolvated Mg(BH4)2', Int. J. Hydrog. Energy, vol.34, issue.5, pp.2144-2152, 2009.

B. Richter, J. B. Grinderslev, K. T. Møller, M. Paskevicius, and T. R. Jensen, From Metal Hydrides to Metal Borohydrides, Inorg. Chem, vol.57, issue.17, pp.10768-10780, 2018.

P. Zanella, L. Crociani, N. Masciocchi, and G. Giunchi, Facile High-Yield Synthesis of Pure, Crystalline Mg(BH 4 ) 2', Inorg. Chem, vol.46, issue.22, pp.9039-9041, 2007.

N. A. Tumanov, Challenges in the synthetic routes to Mn(BH 4 ) 2 : insight into intermediate compounds, Dalton Trans, vol.44, issue.14, pp.6571-6580, 2015.

M. B. Ley, Novel solvates M(BH 4 ) 3 S(CH 3 ) 2 and properties of halide-free M(BH 4 ) 3 (M = Y or Gd), Dalton Trans, vol.43, issue.35, pp.13333-13342, 2014.

L. V. Titov, L. A. Gavrilova, E. R. Eremin, S. S. Mishchenchuk, and V. Y. Rosolovski, Tetrabutylammonium borohydride with aluminum borohydride, Russ. Chem. Bull, vol.20, issue.6, pp.1266-1268, 1971.

Y. Yang, Y. Liu, Y. Li, M. Gao, and H. Pan, Synthesis and Thermal Decomposition Behaviors of Magnesium Borohydride Ammoniates with Controllable Composition as Hydrogen Storage Materials, Chem. -Asian J, vol.8, issue.2, pp.476-481, 2013.

W. R. Parry, P. R. Girardot, and D. R. Schultz, The Preparation and Properties of Hexamminecobalt (III) Borohydride, Hexamminechromium(III) Borohydride and Ammonium Borohydride, J. Am. Chem. Soc, vol.80, issue.1, 1958.

G. F. Huff, F. Chapel, A. D. Mcelroy, C. Evans, and A. M. Roy, Electrochemical method for the preperation of metal borohydrides, p.2855353, 1958.

W. C. Johnson and A. W. Meyer, The Properties of Solutions of Metals in Liquid Ammonia, Chem. Rev, vol.8, issue.2, pp.273-301, 1931.

N. Chakrabarti and J. Jacobus, The chemical reduction of poly (tetrafluoroethylene), Macromolecules, vol.21, issue.10, pp.3011-3014, 1988.

E. J. Kirschke and W. L. Jolly, The reversibility of the reaction of allkali metals with liquid ammonia, Inorg. Chem, vol.6, issue.5, pp.855-862, 1967.

R. Juza, Amides of the alkali and the alkaline earth metals, Angew. Chem. Int. Ed. Engl, vol.3, issue.7, pp.471-481, 1964.

J. J. Lagowski, Liquid Ammonia, Synth. React. Inorg. Met.-Org. Nano-Met. Chem, vol.37, issue.2, pp.115-153, 2007.

F. Kraus, Fluorine chemistry meets liquid ammonia, Bioinorg. React. Mech, vol.8, issue.1-2, 2012.

R. W. Parry, D. H. Campbell, D. R. Schultz, P. R. Girardot, and C. R. Taylor, Chemistry of boron hydrides and related hydrides, p.966, 1952.

T. Richter and R. Niewa, Chemistry of Ammonothermal Synthesis', Inorganics, vol.2, pp.29-78, 2014.

, Lange's handbook of chemistry, 15, 1999.

V. D. Makhaev, N. S. Kedrova, and N. N. , Mal'tseva, 'The reaction of zinc chloride with borohydrides of the alkali metals in organic solvents, Bull. Acad. Sci. USSR Div. Chem. Sci, vol.23, issue.12, pp.482-485, 1974.

H. Nöth, E. Wiberg, and L. P. Winter, Boranatozinkate der Alkalimetalle, Z. Für Anorg. Allg. Chem, vol.386, pp.73-86, 1971.

G. Xia, Q. Gu, Y. Guo, and X. Yu, Ammine bimetallic (Na, Zn) borohydride for advanced chemical hydrogen storage, J. Mater. Chem, vol.22, issue.15, p.7300, 2012.

G. D. Barbaras, C. Dillard, A. E. Finholt, T. Wartik, K. E. Wilzbach et al., The Preparation of the Hydrides of Zinc, Cadmium, Beryllium, Magnesium and Lithium by the Use of Lithium Aluminum Hydride, J. Am. Chem. Soc, vol.73, issue.10, pp.4585-4590, 1951.

H. Nöth, E. Wiberg, and L. P. Winter, Boranate und Boranato-metallate. I. Zur Kenntnis von Solvaten des Zinkboranats, Z. Für Anorg. Allg. Chem, vol.370, issue.5-6, pp.209-223, 1969.

R. ?erný, Potassium Zinc Borohydrides Containing Triangular [Zn(BH4)3] ? and Tetrahedral [Zn(BH)4xCl4-x]2-Anions, J. Phys. Chem. C, vol.116, issue.1, pp.1563-1571, 2012.

J. L. Limpo and A. Luis, Solubility of zinc chloride in ammoniacal ammonium chloride solutions, Hydrometallurgy, vol.32, issue.2, pp.247-260, 1993.

M. Mostajeran, D. J. Wolstenholme, C. Frazee, G. S. Mcgrady, and R. T. Baker, Solution-based routes to ammine metal borohydrides: formation of ammonia-borane, Chem Commun, vol.52, issue.12, pp.2581-2584, 2016.

R. ?erný, K. Kim, N. Penin, V. Anna, H. Hagemann et al., AZn2(BH4)5 (A = Li, Na) and NaZn(BH4)3: Structural Studies, J. Phys. Chem. C, vol.114, issue.44, pp.19127-19133, 2010.

D. B. Ravnsbaek, Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy, J. Alloys Compd, vol.509, pp.698-704, 2011.

N. J. Hess, Spectroscopic studies of the phase transition in ammonia borane: Raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88to330K, J. Chem. Phys, vol.128, issue.3, p.34508, 2008.

R. ?erný, NaSc(BH 4 ) 4 : A Novel Scandium-Based Borohydride, J. Phys. Chem. C, vol.114, issue.2, pp.1357-1364, 2010.

S. F. Parker, Spectroscopy and bonding in ternary metal hydride complexes-Potential hydrogen storage media, Coord. Chem. Rev, vol.254, issue.3-4, pp.215-234, 2010.

Y. Yang, Y. Liu, H. Wu, W. Zhou, M. Gao et al., An ammonia-stabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior, Phys Chem Chem Phys, vol.16, issue.1, pp.135-143, 2014.

W. G. Schneider, H. J. Bernstein, and J. A. Pople, Proton Magnetic Resonance Chemical Shift of Free (Gaseous) and Associated (Liquid) Hydride Molecules', J. Chem. Phys, vol.28, issue.4, pp.601-607, 1958.

L. H. Jepsen, Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal Borohydrides, M(BH 4 ) 3 · n NH 3, vol.54, pp.7402-7414, 2015.

Y. Song, F. Wu, X. Zheng, X. Ma, F. Fang et al., Stepwise combination of NH 3 with BH 4 ? in metal borohydride ammoniate, Chem Commun, vol.51, issue.6, pp.1104-1107, 2015.

E. Welchman and T. Thonhauser, Decomposition mechanisms in metal borohydrides and their ammoniates, J Mater Chem A, vol.5, issue.8, pp.4084-4092, 2017.

Z. Tang, Metal cation-promoted hydrogen generation in activated aluminium borohydride ammoniates, Acta Mater, vol.61, issue.13, pp.4787-4796, 2013.

M. H. Brooker and M. A. Bredig, Significance of both polarizability and polarizing power of cations in nitrate vibrational spectra, J. Chem. Phys, vol.58, issue.12, pp.5319-5321, 1973.

K. Li and D. Xue, Estimation of Electronegativity Values of Elements in Different Valence States, J. Phys. Chem. A, vol.110, issue.39, pp.11332-11337, 2006.

X. Chen, W. Zou, R. Li, G. Xia, and X. Yu, Decomposition Mechanism of Zinc Ammine Borohydride: A First-Principles Calculation, J. Phys. Chem. C, 2018.

X. Chen, First-principles study of decomposition mechanisms of Mg(BH 4 ) 2 ·2NH 3 and LiMg(BH 4 ) 3 ·2NH 3, RSC Adv, vol.7, issue.49, pp.31027-31032, 2017.

X. Chen, Improved dehydrogenation properties of the combined Mg(BH4)2·6NH3-nNH3BH3 system, Int. J. Hydrog. Energy, vol.38, issue.36, pp.16199-16207, 2013.

Q. Wang, Y. Guan, W. Gao, J. Guo, and P. Chen, Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides, ChemPhysChem, vol.20, issue.10, pp.1376-1381, 2019.

H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa et al., Recyclable hydrogen storage system composed of ammonia and alkali metal hydride, Int. J. Hydrog. Energy, vol.34, issue.24, pp.9760-9764, 2009.

P. Schouwink, Structure and properties of complex hydride perovskite materials, Nat. Commun, vol.5, p.5706, 2014.

P. Schouwink, F. Morelle, Y. Sadikin, Y. Filinchuk, and R. ?erný, Increasing Hydrogen Density with the Cation-Anion Pair BH4?-NH4+ in Perovskite-Type NH4Ca(BH4)3', Energies, vol.8, pp.8286-8299, 2015.

C. Ziparo, D. Colognesi, A. Giannasi, and M. Zoppi, Raman Spectra of Ammonia Borane: Low Frequency Lattice Modes, J. Phys. Chem. A, vol.116, issue.35, pp.8827-8832, 2012.

W. J. Shaw, Situ Multinuclear NMR Spectroscopic Studies of the Thermal Decomposition of Ammonia Borane in Solution, Angew. Chem. Int. Ed, vol.47, issue.39, pp.7493-7496, 2008.

T. P. Onak and I. Shapiro, B 11 Nuclear Magnetic Resonance Spectrum of the ``Diammoniate of Diborane, J. Chem. Phys, vol.32, issue.3, pp.952-952, 1960.

I. Dovgaliuk, Solid Aluminum Borohydrides for Prospective Hydrogen Storage, ChemSusChem, vol.10, issue.23, pp.4725-4734, 2017.

A. Starobrat, T. Jaro?, and W. Grochala, New hydrogen-rich ammonium metal borohydrides, Dalton Trans, 2018.

T. He, Nanosized Co-and Ni-catalyzed ammonia borane for hydrogen storage, Chem. Mater, vol.21, issue.11, pp.2315-2318, 2009.

R. Chiriac, F. Toche, U. B. Demirci, O. Krol, and P. Miele, Ammonia borane decomposition in the presence of cobalt halides, Int. J. Hydrog. Energy, vol.36, issue.20, pp.12955-12964, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01690571

W. H. Stockmayer, D. W. Rice, and C. C. Stephenson, Thermodynamic properties of sodium borohydride and aqueous borohydride ion, J. Am. Chem. Soc, vol.77, issue.7, pp.1980-1983, 1955.

Y. Tan, A liquid-based eutectic system: LiBH4·NH3-nNH3BH3 with high dehydrogenation capacity at moderate temperature, J. Mater. Chem, vol.21, issue.38, p.14509, 2011.

J. Huang, Y. Tan, Q. Gu, L. Ouyang, X. Yu et al., Ammonia borane modified zirconium borohydride octaammoniate with enhanced dehydrogenation properties, J. Mater. Chem. A, vol.3, issue.10, pp.5299-5304, 2015.

Y. Tan, A synergistic strategy established by the combination of two H-enriched B-N based hydrides towards superior dehydrogenation, J. Mater. Chem. A, vol.1, issue.35, pp.10155-10165, 2013.

X. Chen, F. Yuan, Q. Gu, and X. Yu, Synthesis, structures and hydrogen storage properties of two new H-enriched compounds: Mg (BH 4) 2 (NH 3 BH 3) 2 and Mg (BH 4) 2·(NH 3) 2 (NH 3 BH 3), Dalton Trans, vol.42, issue.40, pp.14365-14368, 2013.

R. Zhong, Improved Hydrogen Release from Ammonia-Borane with ZIF-8', Inorg. Chem, vol.51, issue.5, pp.2728-2730, 2012.

T. Kobayashi, S. Gupta, M. A. Caporini, V. K. Pecharsky, and M. Pruski, Mechanism of Solid-State Thermolysis of Ammonia Borane: A 15 N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization, J. Phys. Chem. C, vol.118, issue.34, pp.19548-19555, 2014.

K. Shimoda, Y. Zhang, T. Ichikawa, H. Miyaoka, and Y. Kojima, Solid state NMR study on the thermal decomposition pathway of sodium amidoborane NaNH 2 BH 3, J. Mater. Chem, vol.21, issue.8, pp.2609-2615, 2011.

D. Y. Kim, N. J. Singh, H. M. Lee, and K. S. Kim, Hydrogen-Release Mechanisms in Lithium Amidoboranes, Chem. -Eur. J, vol.15, issue.22, pp.5598-5604, 2009.

Y. S. Chua, Synthesis, structure and dehydrogenation of magnesium amidoborane monoammoniate, Chem. Commun, vol.46, issue.31, p.5752, 2010.

H. Wu, Sodium magnesium amidoborane: the first mixed-metal amidoborane, Chem. Commun, vol.47, issue.14, pp.4102-4104, 2011.

M. F. Hawthorne, S. S. Jalisatgi, A. V. Safronov, H. B. Lee, and J. Wu, Chemical hydrogen storage using polyhedral borane anions and aluminum-ammonia-borane complexes, 2010.

V. Pons, Coordination of aminoborane, NH2BH2, dictates selectivity and extent of H2 release in metal-catalysed ammonia borane dehydrogenation, Chem Commun, issue.48, pp.6597-6599, 2008.

G. Xia, Y. Tan, X. Chen, Z. Guo, H. Liu et al., Mixed-metal (Li, Al) amidoborane: synthesis and enhanced hydrogen storage properties, J. Mater. Chem. A, vol.1, issue.5, pp.1810-1820, 2013.

O. Friedrichs, A. Remhof, A. Borgschulte, F. Buchter, S. I. Orimo et al., Breaking the passivation-the road to a solvent free borohydride synthesis, Phys. Chem. Chem. Phys, vol.12, issue.36, p.10919, 2010.

X. Kang, H. Wu, J. Luo, W. Zhou, and P. Wang, A simple and efficient approach to synthesize amidoborane ammoniates: case study for Mg (NH 2 BH 3) 2 (NH 3) 3 with unusual coordination structure, J. Mater. Chem, vol.22, issue.26, pp.13174-13179, 2012.

Y. Yang, Y. Liu, Y. Li, M. Gao, and H. Pan, Heating Rate-Dependent Dehydrogenation in the Thermal Decomposition Process of Mg(BH 4 ) 2 ·6NH 3, J. Phys. Chem. C, vol.117, issue.32, pp.16326-16335, 2013.

Y. S. Chua, G. Wu, Z. Xiong, T. He, and P. Chen, Calcium Amidoborane Ammoniate-Synthesis, Structure, and Hydrogen Storage Properties, Chem. Mater, vol.21, issue.20, pp.4899-4904, 2009.

V. A. Yartys, Magnesium based materials for hydrogen based energy storage: Past, present and future, Int. J. Hydrog. Energy, vol.44, issue.15, pp.7809-7859, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02090051

C. L. Young, Hydrogen and deuterium, 1981.

M. Wang, Synthesis and hydrolysis of NaZn(BH 4 ) 3 and its ammoniates, J. Mater. Chem. A, vol.5, issue.32, pp.17012-17020, 2017.

H. Eom, H. Park, and H. Yoon, Preparation of anhydrous magnesium chloride from ammonium magnesium chloride hexahydrate, Adv. Powder Technol, vol.21, issue.2, pp.125-130, 2010.

J. J. Zuckerman, Inorganic Reactions and Methods, The Formation of Bonds to Halogens, vol.4, 2009.

A. Yadav, N. Bulakh, A. Gupta, N. Sikder, and A. K. Sikder, Rapid determination of impurity of boron nitride in amorphous boron powder using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and ion chromatography (IC), Anal. Methods, vol.9, issue.21, pp.3141-3150, 2017.

H. Matusiewicz, High-pressure microwave dissolution of ceramics prior to trace metal determinations by microwave induced plasma atomic emission spectrometry, Microchim. Acta, vol.111, issue.1-3, pp.71-82, 1993.

G. E. Spriggs, 13.5 Properties of diamond and cubic boron nitride, Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials, pp.118-139, 2002.

S. Mann, D. Geilenber, J. A. Broekaert, and M. Jansen, Digestion methods for advanced ceramic materials and subsequent determination of silicon and boron by inductively coupled plasma atomic emission spectrometry, J. Anal. At. Spectrom, vol.12, issue.9, pp.975-979, 1997.

, Certificate of analysis Boron nitride

F. Bougie, D. Pokras, and X. Fan, Novel non-aqueous MEA solutions for CO2 capture, Int. J. Greenh. Gas Control, vol.86, pp.34-42, 2019.

L. H. Dreger, V. V. Dadape, and J. L. Margrave, Sublimation and decomposition studies on boron nitride and aluminum nitride, J. Phys. Chem, vol.66, issue.8, pp.1556-1559, 1962.

G. K. Friestad and B. P. Branchaud, Ammonium Tetrafluoroborate', in Encyclopedia of Reagents for Organic Synthesis, 2001.

R. J. Gillespie, Covalent and ionic molecules: Why are BeF2 and AlF3 high melting point solids whereas BF3 and SiF4 are gases?, J. Chem. Educ, vol.75, issue.7, p.923, 1998.

V. I. Mikheeva and E. M. Fedneva, Reaction between the ether complex of boron trifluoride and lithium hydride Communication 1. Preparation of pure diborane, Russ. Chem. Bull, vol.5, issue.8, pp.925-934, 1956.

L. H. Rude, Hydrogen-fluorine exchange in NaBH4-NaBF4, Phys. Chem. Chem. Phys, vol.15, issue.41, p.18185, 2013.