P. Boisseau, B. Loubaton, and . Nanomedicine, Comptes Rendus Physique, vol.12, issue.7, pp.620-636, 2011.

R. Shandilya, A. Bhargava, N. Bunkar, R. Tiwari, I. Y. Goryacheva et al., Point-of-care approaches for cancer diagnostics, Biosensors and Bioelectronics, vol.130, pp.147-165, 2019.

S. Bhuckory, O. Lefebvre, X. Qiu, K. D. Wegner, and N. Hildebrandt, « Evaluating quantum dot performance in homogeneous FRET immunoassays for prostate specific antigen, Sensors (Switzerland), vol.16, issue.2, 2016.

X. Qiu, J. Guo, J. Xu, and N. Hildebrandt, « Three-Dimensional FRET Multiplexing for DNA Quanti fi cation with, Attomolar Detection Limits », 2018.

X. Qiu, K. D. Wegner, Y. Wu, P. M. Van-bergen-en-henegouwen, T. L. Jennings et al., Nanobodies and Antibodies for Duplexed EGFR/HER2 Immunoassays Using Terbium-to-Quantum Dot FRET, vol.28, pp.8256-8267, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02394387

J. Liu, « Biomarkers predicting resistance to epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer with wild-type KRAS, p.557, 2016.

F. Agustoni, « EGFR-directed monoclonal antibodies in combination with chemotherapy for treatment of non-small-cell lung cancer: an updated review of clinical trials and new perspectives in biomarkers analysis, Cancer Treatment Reviews, vol.72, pp.15-27

H. S. Afsari, « Time-gated FRET nanoassemblies for rapid and sensitive intra-and extracellular fluorescence imaging, Science Advances, vol.2, issue.6, p.1600265, 2016.

S. P. Kennedy, J. F. Hastings, J. Z. Han, and D. R. Croucher, « The Under-Appreciated Promiscuity of the Epidermal Growth Factor Receptor Family, Front Cell Dev Biol, vol.4, 2016.

G. Carpenter and S. Cohen, « 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts, The Journal of Cell Biology, vol.71, issue.1, pp.159-171, 1976.

A. Sorkin and L. K. Goh, Endocytosis and intracellular trafficking of ErbBs, vol.315, pp.683-696, 2009.

J. G. Bünzli, « On the design of highly luminescent lanthanide complexes, Coordination Chemistry Reviews, vol.293, pp.19-47, 2015.

J. Goetz, A. Nonat, A. Diallo, M. Sy, and E. I. Sera, Ultrabright Lanthanide Nanoparticles, pp.526-534, 2016.

M. Santos, J. Goetz, H. Bartenlian, K. Wong, L. J. Charbonnière et al., Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles », vol.29, pp.1327-1334, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02177002

A. S. Collot-mayeul,

P. Ashokkumar,

H. Anton,

O. ;. Faklaris, . Galli, ;. Thierry, Y. ;. Mély, L. ;. Danglot et al., MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02271511

, « Biomarkers and risk assessment: concepts and principles, vol.155, 1993.

K. Strimbu and J. A. Tavel, « What are biomarkers? », Current Opinion in HIV and AIDS, vol.5, issue.6, pp.463-466, 2010.

«. Biomarkers, Preferred definitions and conceptual framework, Clinical Pharmacology & Therapeutics, vol.69, issue.3, pp.89-95, 2001.

, « Personalized Medicine Coalition -Advocates for precision medicine : Examples, 2020.

R. Mayeux and . Biomarkers, Potential Uses and Limitations », vol.1, p.7, 2004.

J. Wang, X. Yu, S. V. Boriskina, and B. M. Reinhard, Quantification of Differential ErbB1 and ErbB2 Cell Surface Expression and Spatial Nanoclustering through Plasmon Coupling, vol.12, pp.3231-3237, 2012.

S. Sebastian, J. Settleman, S. J. Reshkin, A. Azzariti, A. Bellizzi et al., « The complexity of targeting EGFR signalling in cancer: From expression to turnover, Biochimica et Biophysica Acta (BBA) -Reviews on Cancer, vol.1766, issue.1, pp.120-139, 2006.

|. «-antibody-basics and . Sigma-aldrich,

A. Rajpal, P. Strop, Y. A. Yeung, J. Chaparro-riggers, and E. J. Pons, « Introduction: Antibody Structure and Function, pp.1-44, 2013.

, Therapeutic IgG-Like Bispecific Antibodies: Modular Versatility and Manufacturing Challenges, 2017.

C. Kollmannsberger, « A phase I study of the humanized monoclonal antiepidermal growth factor receptor (EGFR) antibody EMD 72000 (matuzumab) in combination with paclitaxel in patients with EGFR-positive advanced non-smallcell lung cancer (NSCLC), Annals of Oncology, vol.17, issue.6, pp.1007-1013, 2006.

K. Kuester, A. Kovar, C. Lüpfert, B. Brockhaus, and C. Kloft, « Population pharmacokinetic data analysis of three phase I studies of matuzumab, a humanised anti-EGFR monoclonal antibody in clinical cancer development, Br J Cancer, vol.98, issue.5, pp.900-906, 2008.

«. Dj-merck-kgaa-arrête-le-développement-du-matuzumab--börse, , 2020.

«. S. Sinha, Systematics and the Properties of the Lanthanides, pp.213-254

, « statistic_id277268_rare-earth-reserves-worldwide-by-country-2018

C. B. Jørgensen, « The inner mechanism of rare earths elucidated by photoelectron spectra, Rare Earths, vol.13, pp.199-253, 1973.

L. Armelao, « Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials, Coordination Chemistry Reviews, vol.254, pp.487-505, 2010.

J. G. Bünzli and S. V. Eliseeva, Basics of Lanthanide Photophysics, vol.7, pp.1-45, 2010.

J. G. Bünzli and C. Piguet, « Taking advantage of luminescent lanthanide ions, Chemical Society Reviews, vol.34, p.1048, 2005.

S. Han, R. Deng, X. Xie, and X. Liu, « Enhancing Luminescence in Lanthanide-Doped Upconversion Nanoparticles », Angew. Chem. Int. Ed, vol.53, pp.11702-11715, 2014.

P. Hänninen, H. Härmä, T. Ala-kleme, and É. , Lanthanide luminescence: photophysical, analytical and biological aspects, 2011.

E. G. Moore, A. P. Samuel, and K. N. Raymond, From Antenna to Assay: Lessons Learned in Lanthanide Luminescence », vol.42, pp.542-552, 2009.

R. Reisfeld, « Spectra and energy transfer of rare earths in inorganic glasses, Rare Earths, vol.13, pp.53-98, 1973.

M. Sy, A. Nonat, N. Hildebrandt, and L. J. Charbonnière, Lanthanide-based luminescence biolabelling, vol.52, pp.5080-5095, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02400088

J. G. Bünzli and . Review, Lanthanide coordination chemistry: from old concepts to coordination polymers, Journal of Coordination Chemistry, vol.67, pp.3706-3733

J. R. Lakowicz, Principles of Fluorescence Spectroscopy Principles of Fluorescence Spectroscopy, 2006.

M. C. Heffern, L. M. Matosziuk, and T. J. Meade, Lanthanide Probes for Bioresponsive Imaging, vol.114, pp.4496-4539, 2014.

C. «-thèse-finale-alles and . Charpentier,

M. Bredol, U. Kynast, and C. Ronda, « Designing Luminescent Materials, vol.3, pp.361-367, 1991.

S. Petoud, Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence, J. Am. Chem. Soc, vol.129, issue.1, pp.77-83, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02090687

M. Santos, « Lanthanide-Complex-Loaded Polymer Nanoparticles for Background-Free Single-Particle and Live-Cell Imaging, Chem. Mater, vol.31, issue.11, pp.4034-4041, 2019.

L. J. Charbonnière, N. Hildebrandt, R. F. Ziessel, and H. Löhmannsröben, Lanthanides to Quantum Dots Resonance Energy Transfer in Time-Resolved Fluoro-Immunoassays and Luminescence Microscopy, vol.128, pp.12800-12809, 2006.

J. G. Bünzli, S. Comby, A. Chauvin, and C. D. Vandevyver, « New Opportunities for Lanthanide Luminescence, Journal of Rare Earths, vol.25, issue.3, pp.257-274, 2007.

J. G. Bünzli and S. V. Eliseeva, « Intriguing aspects of lanthanide luminescence, Chem. Sci, vol.4, issue.5, p.1939, 2013.

J. M. Zwier, N. D. Hildebrandt-;-c, É. Geddes, and . Cham, « Time-Gated FRET Detection for Multiplexed Biosensing, pp.17-43, 2016.

S. Bhuckory, O. Lefebvre, X. Qiu, K. D. Wegner, and N. Hildebrandt, « Evaluating quantum dot performance in homogeneous FRET immunoassays for prostate specific antigen, Sensors (Switzerland), vol.16, issue.2, 2016.

Z. Jin, D. Geißler, X. Qiu, K. D. Wegner, N. Hildebrandt et al., Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA », Angew. Chem. Int. Ed, vol.54, pp.10024-10029, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02400075

B. Chen, « Magnetic-fluorescent nanohybrids of carbon nanotubes coated with Eu, Gd Co-doped LaF3 as a multimodal imaging probe, Journal of Colloid and Interface Science, vol.367, issue.1, pp.61-66

C. Yang, Theranostics, vol.8, pp.6210-6232, 2018.

Z. Cheng, Eu3+ functionalized porous silica submicrospheres as delivery carriers of doxorubicin, Dalton Trans, vol.41, issue.5, pp.1481-1489, 2012.

B. Valeur, Molecular Fluorescence Principles and Applications », Molecular Fluorescence, p.399, 2001.

E. J. Soini, L. J. Pelliniemi, I. A. Hemmilä, V. M. Mukkala, J. J. Kankare et al., Lanthanide chelates as new fluorochrome labels for cytochemistry, vol.36, pp.1449-1451, 1988.

S. Lindén, « Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes, Dalton Transactions, vol.44, issue.11, pp.4994-5003, 2015.

H. J. Tanke, « Imaging of Lanthanide Luminescence by Time-Resolved Microscopy, Hänninen et H. Härmä, Éd. Berlin, vol.7, pp.313-328, 2010.

L. Sevéus, M. Väisälä, I. Hemmilä, H. Kojola, G. M. Roomans et al., Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability: FLUORESCENT EUROPIUM CHELATES IN MICROSCOPY », Microsc. Res. Tech, vol.28, issue.2, pp.149-154, 1994.

Y. Hiraoka, J. W. Sedat, and D. A. Agard, « for Quantitative Optical Microscopy of Biological Structures », vol.238, p.7

D. H. Ortgies, Lifetime-Encoded Infrared-Emitting Nanoparticles for in Vivo Multiplexed Imaging, vol.12, pp.4362-4368, 2018.

S. Cohen, « The stimulation of epidermal proliferation by a specific protein (EGF), Developmental Biology, vol.12, pp.90005-90014, 1965.

R. L. -m.-and and S. Cohen, Effects of the Extract of the Mouse Submaxillary Salivary Glands on the Sympathetic System of Mammals* », vol.85, pp.324-341, 1960.

S. Cohen and G. Carpenter, « Human epidermal growth factor: isolation and chemical and biological properties, vol.72, pp.1317-1321, 1975.

S. Cohen, G. Carpenter, and L. King, « Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factorenhanced phosphorylation activity. », J. Biol. Chem, vol.255, issue.10, pp.4834-4842, 1980.

C. R. King, M. H. Kraus, and S. A. Aaronson, « Amplification of a novel v-erbBrelated gene in a human mammary carcinoma, Science, vol.229, pp.974-976, 1985.

M. H. Kraus, W. Issing, T. Miki, N. C. Popescu, and S. A. , Aaronson, « Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors, vol.86, pp.9193-9197

G. D. Plowman, « Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family, PNAS, vol.90, issue.5, pp.1746-1750, 1993.

M. M. Moasser, The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis, vol.26, pp.6469-6487, 2007.

U. Vanhoefer, « Phase I Study of the Humanized Antiepidermal Growth Factor Receptor Monoclonal Antibody EMD72000 in Patients With Advanced Solid Tumors That Express the Epidermal Growth Factor Receptor, vol.22, pp.175-184, 2004.

H. Ogiso, « Crystal Structure of the Complex of Human Epidermal Growth Factor and Receptor Extracellular Domains, Cell, vol.110, issue.6, pp.775-787, 2002.

B. Linggi and G. Carpenter, ErbB receptors: new insights on mechanisms and biology, vol.16, pp.649-656, 2006.

S. Bhattacharjee, « DLS and zeta potential -What they are and what they are not?, Journal of Controlled Release, vol.235, pp.337-351, 2016.

Z. «-zetasizer-nano and . Size, Zeta Potential, Protein Mobility, vol.27, 2020.

M. Kaszuba, J. Corbett, F. M. Watson, and E. A. Jones, « High-concentration zeta potential measurements using light-scattering techniques », Proc. R. Soc. A, vol.368, pp.4439-4451, 1927.

A. L. Poli, T. Batista, C. C. Schmitt, F. Gessner, and M. G. Neumann, « Effect of sonication on the particle size of montmorillonite clays, Journal of Colloid and Interface Science, vol.325, issue.2, pp.386-390, 2008.

C. Tan and Q. Wang, Reversible Terbium Luminescent Polyelectrolyte Hydrogels for Detection of H 2 PO 4 ? and HSO 4 ? in Water », Inorg. Chem, vol.50, issue.7, pp.2953-2956, 2011.

N. Zhang, S. Tang, and Y. Liu, « Luminescence behavior of a water soluble calix[4]arene derivative complex with terbium ion(III) in gelation solution, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.59, issue.5, pp.1107-1112, 2003.

B. Machalinski, M. Baskiewicz-masiuk, and E. B. Wiszniewska, « The influence of sodium fluoride and sodium hexafluorosilicate on human leukemic cell lines, p.10, 2003.

E. Stellwagen, J. D. Prantner, and N. C. Stellwagen, « Do zwitterions contribute to the ionic strength of a solution?, Anal Biochem, vol.373, issue.2, pp.407-409, 2008.

«. Dls--, Particle Sizing Systems, 2019.

L. Wu and X. Qu, « Cancer biomarker detection: recent achievements and challenges, Chem. Soc. Rev, vol.44, issue.10, pp.2963-2997, 2015.

P. D. Howes, R. Chandrawati, and M. M. Stevens, Colloidal nanoparticles as advanced biological sensors, vol.346, p.6205, 2014.

A. Escudero, Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications », Nanophotonics, vol.6, pp.881-921, 2017.

S. Li, X. Zhang, Z. Hou, Z. Cheng, P. Ma et al., « Enhanced emission of ultrasmall-sized LaF3:RE3+ (RE = Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization, Nanoscale, vol.4, pp.5619-5626, 2012.

I. Altintas, R. J. Kok, and R. M. Schiffelers, « Targeting epidermal growth factor receptor in tumors: From conventional monoclonal antibodies via heavy chainonly antibodies to nanobodies, European Journal of Pharmaceutical Sciences, vol.45, issue.4, pp.399-407, 2012.

J. Capdevila, E. Elez, T. Macarulla, F. J. Ramos, M. Ruiz-echarri et al., « Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment, Cancer Treatment Reviews, vol.35, issue.4, pp.354-363, 2009.

F. Zhang, « Quantification of Epidermal Growth Factor Receptor Expression Level and Binding Kinetics on Cell Surfaces by Surface Plasmon Resonance Imaging », Anal. Chem, vol.87, pp.9960-9965, 2015.

J. Vega, S. Ke, Z. Fan, S. Wallace, C. Charsangavej et al., « Targeting Doxorubicin to Epidermal Growth Factor Receptors by Site-Specific Conjugation of C225 to Poly(L-Glutamic Acid) Through a Polyethylene Glycol Spacer, p.7

J. D. Orth, E. W. Krueger, S. G. Weller, and M. A. Mcniven, « A Novel Endocytic Mechanism of Epidermal Growth Factor Receptor Sequestration and Internalization, Cancer Res, vol.66, issue.7, pp.3603-3610, 2006.

A. Sorkin, E. Kornilova, L. Teslenko, A. Sorokin, and N. Nikolsky, « Recycling of epidermal growth factor-receptor complexes in A431 cells, Biochimica et Biophysica Acta (BBA) -Molecular Cell Research, vol.1011, issue.1, pp.90083-90092, 1989.

M. Collot, A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience, Cell Chemical Biology, vol.26, issue.4, pp.600-614, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02271511

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale et al., Advanced methods of microscope control using ?Manager software, J Biol Methods, vol.1, issue.2, p.10, 2014.

N. Normanno, « Epidermal growth factor receptor (EGFR) signaling in cancer, Gene, vol.366, issue.1, pp.2-16, 2006.

O. M. Fischer, S. Hart, A. Gschwind, and A. Ullrich, « EGFR signal transactivation in cancer cells, Biochem Soc Trans, vol.31, issue.6, pp.1203-1208

M. Santos and N. Hildebrandt, « Recent developments in lanthanideto-quantum dot FRET using time-gated fluorescence detection and photon upconversion, TrAC -Trends in Analytical Chemistry, vol.84, pp.60-71, 2016.

L. Martínez-jothar, « Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface functionalization of nanoparticles for receptor targeting, Journal of Controlled Release, vol.282, pp.101-109, 2018.

A. Abulrob, « Nanoscale Imaging of Epidermal Growth Factor Receptor Clustering: EFFECTS OF INHIBITORS, J. Biol. Chem, vol.285, issue.5, pp.3145-3156

R. B. Lichtner and V. Schirrmacher, « Cellular distribution and biological activity of epidermal growth factor receptors in A431 cells are influenced by cell-cell contact, J. Cell. Physiol, vol.144, issue.2, pp.303-312, 1990.

A. D. Sorkin, L. V. Teslenko, and N. N. Nikolsky, « The endocytosis of epidermal growth factor in A431 cells: A pH of microenvironment and the dynamics of receptor complex dissociation, Experimental Cell Research, vol.175, issue.1, pp.90266-90268, 1988.

C. M. Lee and I. F. Tannock, « The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors, BMC Cancer, vol.10, issue.1, p.255

R. Xu and . Light, A review of particle characterization applications », Particuology, vol.18, pp.11-21

P. M. Carvalho, M. R. Felício, N. C. Santos, S. Gonçalves, and M. M. Domingues, « Application of Light Scattering Techniques to Nanoparticle Characterization and Development, Front Chem, vol.6, p.237, 2018.

S. Honary and F. Zahir, Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems -A Review, vol.12, pp.255-264, 2013.

S. Bhattacharjee, « DLS and zeta potential -What they are and what they are not?, Journal of Controlled Release, vol.235, pp.337-351, 2016.

, Le terbium appartient à la famille des lanthanides (Ln), et en raison des transitions f-f intraconfigurationnelles interdites des ions lanthanides centraux (forme commune de Ln 3+ ), les complexes de lanthanides présentent des propriétés photo-physiques distinctes, par rapport aux autres fluorophores, telles que les multiples bandes d'émission étroites caractéristiques, et des durées de vie à l'état excité extrêmement longues

, Le principal inconvénient des sondes à base de Ln est leur luminosité

, Pour surmonter cet obstacle, nos collaborateurs à Strasbourg (équipe SynPA) ont synthétisé et caractérisé deux nouveaux ligands d'acide : les (hydroxyisophtalates) et des nanoparticules ultra-lumineuses à base d'ions lanthanides. Les ligands hydroxyisophtalates doivent avoir une fonction qui photosensibilise efficacement les

E. Nps and . Posséder-un-espaceur-relié-À-une-fonction-active, La fonction active aura pour rôle de réagir avec un vecteur biologique (par exemple un anticorps), afin de rendre les NPs spécifiques. Le recouvrement des NPs par des ligands chromophores permet

, Au chapitre 3, je présente les résultats obtenus lors des tests de caractérisation et de stabilité qui ont été réalisés pour la solution de TbNPs nus par diffusion dynamique de la lumière (DLS) et potentiel zêta (ZP)

, Mon objectif principal est la bio-fonctionnalisation et la détection in-situ de la liaison ligand-récepteur sur les cellules réalisées par la préparation optimisée de conjugués TbNP-anticorps (Matuzumab) qui pourraient se lier spécifiquement à l'EGFR