, MHz (e) ? 4 = 1.1071 MHz (f) ? 5 = 1.1535 MHz

, MHz (h) ? 7 = 2.073 MHz (i) ? 8 = 2.3678 MHz

, MHz (k) ? 10 = 3.5938 MHz (l) ? 11 = 5.152 MHz

B. Figure, 1 -First mechanical modes of a Silicon suspended ring resonator, with R = 10µm, R Ped = 2µm

, MHz (e) ? 4 = 2.465 MHz (f) ? 5 = 2.466 MHz

, MHz (k) ? 10 = 8.113 MHz (l) ? 11 = 8

B. Figure, 4 -First mechanical modes of a Silicon suspended ring resonator, with R = 10µm, R Ped = 2µm, N arms = 3, W arms = 0.15µm, and N rings = 1, vol.215, p.216

, SWG interdigitated combs straight waveguides

, SWG interdigitated combs waveguides within all-pass racetrack resonators

, SWG interdigitated combs waveguides within Mach-Zehnder interferometers

, Classical ring resonators

, SWG interdigitated combs waveguides within add-drop racetrack resonators

, SWG interdigitated combs waveguides within all-pass racetrack resonators

, Spiral-shaped SWG interdigitated combs waveguides

, SWG "ladder-like" waveguides

, Test cell for the asymmetric taper between strip and SWG interdigitated combs waveguides

, SWG "ladder-like" waveguides integrated within directional couplers of multiple length and gap

, SWG "ladder-like" waveguides integrated within Fabry-Perot cavities of multiple length and number of DBR layers

, SWG "ladder-like" waveguides of variable pitch

, SWG "ladder-like" waveguides integrated within coupled Fabry-Perot cavities of multiple length, number of DBR layers and gap

C. Figure, 9 -Subcell for SWG "ladder-like" waveguides

, This subcell is exploited all along sections V.2 and V.3. 1. Bent waveguides of variable radii, for the measurement of bent losses. 2. Directional couplers of variable radii and gaps

, Spiral-shaped waveguides, for the measurement of propagation losses

P. Lebedew, Untersuchungen Ã?ber die druckkrÃ?fte des lichtes, Annalen der Physik, vol.311, issue.11, pp.433-458, 1901.

E. F. Nichols and G. F. Hull, A preliminary communication on the pressure of heat and light radiation, Phys. Rev. (Series I), vol.13, pp.307-320, 1901.

V. B. Braginsky and A. Borisovich-manukin, Ponderomotive effects of electromagnetic radiation, JETP, vol.25, issue.4, p.653, 1967.

V. B. Braginsky and A. Borisovich-manukin, Measurement of weak forces in physics experiments / V. B. Braginsky and A. B. Manukin, 1977.

V. B. Braginsky, K. S. Farid-ya-khalili, and . Thorne, Quantum Measurement, 1992.

S. Mancini and P. Tombesi, Quantum noise reduction by radiation pressure, Phys. Rev. A, vol.49, pp.4055-4065, 1994.

S. Bose, K. Jacobs, and P. L. Knight, Preparation of nonclassical states in cavities with a moving mirror, Phys. Rev. A, vol.56, pp.4175-4186, 1997.

A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett, vol.24, pp.156-159, 1970.

A. Ashkin, Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett, vol.40, pp.729-732, 1978.

J. Harold, P. Metcalf, and . Van-der-straten, Laser Cooling and Trapping, 1999.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett, vol.95, p.33901, 2005.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, Radiation-pressuredriven micro-mechanical oscillator, Opt. Express, vol.13, issue.14, pp.5293-5301, 2005.

H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, Theoretical and experimental study of radiation pressure-induced mechanical oscillations (parametric instability) in optical microcavities, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.1, pp.96-107, 2006.

O. Arcizet, P. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, vol.444, issue.7115, p.71, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00088048

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin et al., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, vol.452, issue.7183, pp.72-75, 2008.

J. Gomis-bresco, D. Navarro-urrios, M. Oudich, S. El-jallal, A. Griol et al., Bahram Djafari-Rouhani, Francesc Alzina, et al. A one-dimensional optomechanical crystal with a complete phononic band gap, Nature communications, vol.5, p.4452, 2014.

C. Kittel, Introduction to solid state physics, vol.8, 1976.

X. Sun, Y. King, C. Fong, . Xiong, H. P. Wolfram et al., Ghz optomechanical resonators with high mechanical q factor in air, Opt. Express, vol.19, issue.22, pp.22316-22321, 2011.

Y. Liu, M. Davanço, V. Aksyuk, and K. Srinivasan, Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators, Phys. Rev. Lett, vol.110, p.223603, 2013.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski-jayich et al., High quality mechanical and optical properties of commercial silicon nitride membranes, Applied Physics Letters, vol.92, issue.10, p.103125, 2008.

C. Dac-trung-nguyen, W. Baker, S. Hease, P. Sejil, A. Senellart et al., Ultrahigh q-frequency product for optomechanical disk resonators with a mechanical shield, Applied Physics Letters, vol.103, issue.24, p.241112, 2013.

, Cavity Optomechanics, pp.497-497, 2016.

G. D. Cole, S. Grã?blacher, K. Gugler, M. Sylvain-gigan, and . Aspelmeyer, Monocrystalline algaas heterostructures for high-reflectivity high-q micromechanical resonators in the mhz regime, Applied Physics Letters, vol.92, issue.26, p.261108, 2008.

A. G. Kuhn, . Bahriz, C. Ducloux, . Chartier, T. Le-traon et al., A micropillar for cavity optomechanics, Applied Physics Letters, vol.99, issue.12, p.121103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609698

J. Matthew, B. Weaver, F. Pepper, . Luna, M. Frank et al., Sven de Man, and Dirk Bouwmeester. Nested trampoline resonators for optomechanics, Applied Physics Letters, vol.108, issue.3, p.33501, 2016.

H. Constanze, K. Metzger, and . Karrai, Cavity cooling of a microlever, Nature, vol.432, issue.7020, p.1002, 2004.

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel et al., Fluctuating nanomechanical system in a high finesse optical microcavity, Opt. Express, vol.17, issue.15, pp.12813-12820, 2009.

L. Ding, High Frequency GaAs Nano-Optomechanical Disk Resonator, Physical Review Letters, vol.105, issue.26, 2010.

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. Long et al., Chip-based silica microspheres for cavity optomechanics, Opt. Express, vol.23, issue.21, pp.27260-27265, 2015.

S. Gustavo, L. Wiederhecker, A. Chen, M. Gondarenko, and . Lipson, Controlling photonic structures using optical forces, Nature, vol.462, issue.7273, p.633, 2009.

G. O. Luiz, R. S. Benevides, F. G. Santos, A. V. Yovanny, . Espinel et al., Efficient anchor loss suppression in coupled near-field optomechanical resonators, Opt. Express, vol.25, issue.25, pp.31347-31361, 2017.

G. Anetsberger, O. Arcizet, P. Quirin, R. Unterreithmeier, A. Rivière et al., Near-field cavity optomechanics with nanomechanical oscillators, Nature Physics, vol.5, issue.12, p.909, 2009.

J. Chan, H. Amir, J. T. Safavi-naeini, S. Hill, O. Meenehan et al., Optimized optomechanical crystal cavity with acoustic radiation shield, Applied Physics Letters, vol.101, issue.8, p.81115, 2012.

F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett, vol.99, p.93902, 2007.

I. Wilson-rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett, vol.99, p.93901, 2007.

A. Schliesser, P. Del'haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, Radiation pressure cooling of a micromechanical oscillator using dynamical backaction, Phys. Rev. Lett, vol.97, p.243905, 2006.

. Schwab-gigan, M. Böhm, F. Paternostro, G. Blaser, . Langer et al., Self-cooling of a micromirror by radiation pressure, Nature, vol.444, issue.7115, p.67, 2006.

S. Mancini, D. Vitali, and P. Tombesi, Optomechanical cooling of a macroscopic oscillator by homodyne feedback, Phys. Rev. Lett, vol.80, pp.688-691, 1998.

P. F. Cohadon, A. Heidmann, and M. Pinard, Cooling of a mirror by radiation pressure, Phys. Rev. Lett, vol.83, pp.3174-3177, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00001599

D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature, vol.444, issue.7115, p.75, 2006.

M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Feedback cooling of a cantilever's fundamental mode below 5 mk, Phys. Rev. Lett, vol.99, p.17201, 2007.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A, vol.77, p.33804, 2008.

V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, Parametric oscillatory instability in fabryâ??perot interferometer, Physics Letters A, vol.287, issue.5, pp.331-338, 2001.

K. E. Petersen, Silicon as a mechanical material, Proceedings of the IEEE, vol.70, issue.5, pp.420-457, 1982.

M. Li, H. X. Whp-pernice, and . Tang, Broadband all-photonic transduction of nanocantilevers, Nature nanotechnology, vol.4, issue.6, p.377, 2009.

, Nanocantilever beams: modeling, fabrication and applications, p.965509840, 2016.

C. Xiong, X. Sun, Y. King, H. X. Fong, and . Tang, Integrated high frequency aluminum nitride optomechanical resonators, Applied Physics Letters, vol.100, issue.17, p.171111, 2012.

D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Measurement of mechanical resonance and losses in nanometer scale silicon wires, Applied Physics Letters, vol.75, issue.7, pp.920-922, 1999.

O. Arcizet, P. Cohadon, T. Briant, M. Pinard, J. Heidmann et al., High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor, Physical review letters, vol.97, issue.13, p.133601, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00070906

K. Srinivasan, H. Miao, T. Matthew, M. Rakher, V. Davanco et al., Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator, Nano letters, vol.11, issue.2, pp.791-797, 2011.

F. Liu, S. Alaie, C. Zayd, M. Leseman, and . Hossein-zadeh, Subpg mass sensing and measurement with an optomechanical oscillator, Opt. Express, vol.21, issue.17, pp.19555-19567, 2013.

T. O. Rocheleau, A. J. Grine, K. E. Grutter, R. A. Schneider, N. Quack et al., Enhancement of mechanical Q for low phase noise optomechanical oscillators, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp.118-121, 2013.

A. Schliesser, . Anetsberger, . Rivière, T. Arcizet, and . Kippenberg, Highsensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators, New Journal of Physics, vol.10, issue.9, p.95015, 2008.

V. T. Sauer, Z. Diao, M. R. Freeman, and W. K. Hiebert, Nanophotonic detection of side-coupled nanomechanical cantilevers, Applied Physics Letters, vol.100, issue.26, p.261102, 2012.

M. Hossein, -. Zadeh, and K. J. Vahala, An optomechanical oscillator on a silicon chip, IEEE Journal of selected topics in Quantum Electronics, vol.16, issue.1, pp.276-287, 2009.

X. , S. Yao, and L. Maleki, Optoelectronic microwave oscillator, J. Opt. Soc. Am. B, vol.13, issue.8, pp.1725-1735, 1996.

T. Jeff, . Hill, H. Amir, J. Safavi-naeini, O. Chan et al., Coherent optical wavelength conversion via cavity optomechanics, Nature communications, vol.3, p.1196, 2012.

H. Amir, O. Safavi-naeini, and . Painter, Proposal for an optomechanical traveling wave phonon-photon translator, New Journal of Physics, vol.13, issue.1, p.13017, 2011.

M. Hossein-zadeh and K. J. Vahala, Photonic rf down-converter based on optomechanical oscillation, IEEE Photonics Technology Letters, vol.20, issue.4, pp.234-236, 2008.

A. Pikovsky, J. Kurths, M. Rosenblum, and J. Kurths, Synchronization: a universal concept in nonlinear sciences, vol.12, 2003.

C. A. Holmes, C. P. Meaney, and G. J. Milburn, Synchronization of many nanomechanical resonators coupled via a common cavity field, Phys. Rev. E, vol.85, p.66203, 2012.

G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Collective dynamics in optomechanical arrays, Phys. Rev. Lett, vol.107, p.43603, 2011.

M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. Mceuen et al., Synchronization of micromechanical oscillators using light, Phys. Rev. Lett, vol.109, p.233906, 2012.

M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X. Tang, Photonic cavity synchronization of nanomechanical oscillators, Phys. Rev. Lett, vol.111, p.213902, 2013.

M. Zhang, S. Shah, J. Cardenas, and M. Lipson, Synchronization and phase noise reduction in micromechanical oscillator arrays coupled through light, Phys. Rev. Lett, vol.115, p.163902, 2015.

H. Matthew, J. Matheny, W. Emenheiser, A. Fon, A. Chapman et al., Exotic states in a simple network of nanoelectromechanical oscillators, Science, vol.363, issue.6431, 2019.

P. Jonathan and . Marangos, Electromagnetically induced transparency, Journal of Modern Optics, vol.45, issue.3, pp.471-503, 1998.

G. S. Agarwal and S. Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A, vol.81, p.41803, 2010.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet et al., Optomechanically induced transparency. Science, vol.330, issue.6010, pp.1520-1523, 2010.

H. Xiong and Y. Wu, Fundamentals and applications of optomechanically induced transparency, Applied Physics Reviews, vol.5, issue.3, p.31305, 2018.

A. Hermann and . Haus, Waves and Fields in Optoelectronics, 1984.

H. D. Conway, Formulas for Natural Frequency and Mode Shape, 1980.

T. Peter, M. A. Rakich, Z. Popovi?, and . Wang, General treatment of optical forces and potentials in mechanically variable photonic systems, Opt. Express, vol.17, issue.20, pp.18116-18135, 2009.

M. Li, H. P. Wolfram, H. X. Pernice, and . Tang, Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides, Phys. Rev. Lett, vol.103, p.223901, 2009.

F. Elste, S. M. Girvin, and A. A. Clerk, Quantum noise interference and backaction cooling in cavity nanomechanics, Phys. Rev. Lett, vol.102, p.207209, 0242.

M. L. Gorodetksy, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Express, vol.18, issue.22, pp.23236-23246, 2010.

A. Dorsel, J. D. Mccullen, P. Meystre, E. Vignes, and H. Walther, Optical bistability and mirror confinement induced by radiation pressure, Phys. Rev. Lett, vol.51, pp.1550-1553, 1983.

F. Marquardt, J. G. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett, vol.96, p.103901, 2006.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode, Phys. Rev. Lett, vol.94, p.223902, 2005.

M. C. Tal-carmon, K. J. Cross, and . Vahala, Chaotic quivering of micronscaled on-chip resonators excited by centrifugal optical pressure, Phys. Rev. Lett, vol.98, p.167203, 2007.

E. Stewart and . Miller, Integrated optics: An introduction, The Bell System Technical Journal, vol.48, issue.7, pp.2059-2069, 1969.

C. Mool, J. Gupta, and . Ballato, The handbook of photonics, 2018.

A. W. Snyder and J. Love, Optical Waveguide Theory. Science paperbacks, 1983.

D. Rohan, A. C. Kekatpure, E. S. Hryciw, M. L. Barnard, and . Brongersma, Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator, Opt. Express, vol.17, issue.26, pp.24112-24129, 2009.

A. J. Enrique and . Marcatili, Dielectric rectangular waveguide and directional coupler for integrated optics, Bell System Technical Journal, vol.48, issue.7, pp.2071-2102, 1969.

J. Wouter, H. Westerveld, and . Paul-urbach, Silicon Photonics, pp.2053-2563, 2017.

R. Scarmozzino, A. Gopinath, S. Pregla, and . Helfert, Numerical techniques for modeling guided-wave photonic devices, IEEE Journal of Selected Topics in Quantum Electronics, vol.6, issue.1, pp.150-162, 2000.

T. Kamalakis and T. Sphicopoulos, Frequency dependence of the coupling coefficients and resonant frequency detuning in a nanophotonic waveguide-cavity system, IEEE Journal of Quantum Electronics, vol.42, issue.8, pp.827-837, 2006.

Q. Lin, O. J. Painter, and G. P. , Nonlinear optical phenomena in silicon waveguides: Modeling and applications, Opt. Express, vol.15, issue.25, pp.16604-16644, 2007.

D. Ivan, M. Rukhlenko, and G. P. Premaratne, Analytical study of optical bistability in silicon-waveguide resonators, Opt. Express, vol.17, issue.24, pp.22124-22137, 2009.

A. Yurii, S. J. Vlasov, and . Mcnab, Losses in single-mode silicon-on-insulator strip waveguides and bends, Opt. Express, vol.12, issue.8, pp.1622-1631, 2004.

F. Ladouceur and E. Labeye, A new general approach to optical waveguide path design, Journal of Lightwave Technology, vol.13, issue.3, pp.481-492, 1995.

B. Cyril, P. Erwine, S. Corrado, P. Camille, H. Vincent et al., Improvement of sidewall roughness of sub-micron silicon-on-insulator waveguides for low-loss on-chip links, 2017.

A. Yahata, S. Urano, T. Inoue, and T. Shinohe, Smoothing of si trench sidewall surface by chemical dry etching and sacrificial oxidation, Japanese journal of applied physics, vol.37, issue.7R, p.3954, 1998.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, Silicon waveguide sidewall smoothing by wet chemical oxidation, Journal of Lightwave Technology, vol.23, issue.8, pp.2455-2461, 2005.

K. K. Lee, D. R. Lim, H. Luan, A. Agarwal, J. Foresi et al., Effect of size and roughness on light transmission in a si/sio2 waveguide: Experiments and model, Applied Physics Letters, vol.77, issue.11, pp.1617-1619, 2000.

. Pk-v-tien, Light waves in thin films and integrated optics, Applied optics, vol.10, issue.11, pp.2395-2413, 1971.

, see commercial SMF28 fibers For example

I. Krasnokutska, J. Jean-luc, X. Tambasco, A. Li, and . Peruzzo, Ultralow loss photonic circuits in lithium niobate on insulator, Opt. Express, vol.26, issue.2, pp.897-904, 2018.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik et al., Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/iii-v photonics, Applied Sciences, vol.8, issue.7, p.1139, 2018.

N. Boynton, M. Gehl, C. Dallo, A. Pomerene, A. Starbuck et al., Characterization of low loss photonic waveguides using arrayed waveguide structure, IEEE Optical Interconnects Conference (OI), pp.31-32, 2018.

C. G. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens et al., Low-loss si3n4 triplex optical waveguides: Technology and applications overview, IEEE Journal of Selected Topics in Quantum Electronics, vol.24, issue.4, pp.1-21, 2018.

L. Chang, A. Boes, P. Pintus, W. Xie, J. D. Peters et al., Bowers. Low loss (al)gaas on an insulator waveguide platform, Opt. Lett, vol.44, issue.16, pp.4075-4078, 2019.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno et al., Low loss and high extinction ratio strictly nonblocking 16/spl times/16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology, Journal of Lightwave Technology, vol.19, issue.3, pp.371-379, 2001.

M. Li, H. X. Whp-pernice, and . Tang, Tunable bipolar optical interactions between guided lightwaves, Nature Photonics, vol.3, issue.8, p.464, 2009.

X. Sun, X. Zhang, and H. X. Tang, High-q silicon optomechanical microdisk resonators at gigahertz frequencies, Applied Physics Letters, vol.100, issue.17, p.173116, 2012.

R. Janderson, V. R. Rodrigues, and . Almeida, Optical forces through the effective refractive index, Opt. Lett, vol.42, issue.21, pp.4371-4374, 2017.

T. Peter, P. Rakich, Z. Davids, and . Wang, Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces, Opt. Express, vol.18, issue.14, pp.14439-14453, 2010.

E. Robert and . Newnham, Properties of materials: anisotropy, symmetry, structure, 2005.

D. K. Biegelsen, Photoelastic tensor of silicon and the volume dependence of the average gap, Phys. Rev. Lett, vol.32, pp.1196-1199, 1974.

C. Baker, W. Hease, D. Nguyen, A. Andronico, S. Ducci et al., Photoelastic coupling in gallium arsenide optomechanical disk resonators, Opt. Express, vol.22, issue.12, pp.14072-14086, 2014.

W. H. Pernice, M. Li, and H. X. Tang, Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate, Opt. Express, vol.17, issue.3, pp.1806-1816, 2009.

L. Michelle, M. Povinelli, M. Lon?ar, E. J. Ibanescu, . Smythe et al., Evanescent-wave bonding between optical waveguides, Optics letters, vol.30, issue.22, pp.3042-3044, 2005.

G. Steven, M. Johnson, M. A. Ibanescu, O. Skorobogatiy, J. D. Weisberg et al., Perturbation theory for maxwell's equations with shifting material boundaries, Phys. Rev. E, vol.65, p.66611, 2002.

J. Kerry and . Vahala, Optical microcavities, nature, vol.424, issue.6950, p.839, 2003.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-q toroid microcavity on a chip, Nature, vol.421, issue.6926, p.925, 2003.

M. Hermouet, L. Banniard, M. Sansa, A. Fafin, M. Gely et al., 1 million-q optomechanical microdisk resonators with very large scale integration, Proceedings, vol.1, issue.4, 2017.

G. Anetsberger, R. Riviã?re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Ultralow-dissipation optomechanical resonators on a chip, Nature Photonics, vol.2, pp.627-633, 2008.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon et al., Chemically etched ultrahigh-Q wedge-resonator on a silicon chip, Nature Photonics, vol.6, issue.6, pp.369-373, 2012.

S. Tallur, S. Sridaran, and S. A. Bhave, A monolithic radiationpressure driven, low phase noise silicon nitride opto-mechanical oscillator, Optics Express, vol.19, issue.24, pp.24522-24529, 2011.

. Sheng-shian, Y. Li, Y. Lin, Z. Xie, C. T. Ren et al., Micromechanical "hollow-disk" ring resonators, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, pp.821-824, 2004.

G. Piazza, P. J. Stephanou, J. M. Porter, M. B. Wijesundara, and A. P. Pisano, Low motional resistance ring-shaped contour-mode aluminum nitride piezoelectric micromechanical resonators for uhf applications, 18th IEEE International Conference on Micro Electro Mechanical Systems, pp.20-23, 2005.

S. Pourkamali and F. Ayazi, High frequency capacitive micromechanical resonators with reduced motional resistance using the harpss technology, Digest of Papers. 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.147-150, 2004.

G. Dominik and . Rabus, Integrated Ring Resonators: The Compendium, Springer Series in Optical Sciences, 2007.

A. Yariv, Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electronics Letters, vol.36, issue.4, pp.321-322, 2000.

Y. Liu and M. A. Popoviä?, High-Q contacted ring microcavities with scatterer-avoiding â??wigglerâ?? Bloch wave supermode fields, Applied Physics Letters, vol.104, issue.20, p.201102, 2014.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, Low loss intersection of si photonic wire waveguides, Japanese Journal of Applied Physics, vol.43, issue.2, pp.646-647, 2004.

L. Schwab, P. E. Allain, L. Banniard, A. Fafin, M. Gely et al., Comprehensive optical losses investigation of VLSI Silicon optomechanical ring resonator sensors, 2018 IEEE International Electron Devices Meeting (IEDM), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02365398

H. Watanabe, N. Yamada, and M. Okaji, Linear thermal expansion coefficient of silicon from 293 to 1000 k, International Journal of Thermophysics, vol.25, issue.1, pp.221-236, 2004.

K. Padmaraju and K. Bergman, Resolving the thermal challenges for silicon microring resonator devices, Nanophotonics, vol.3, issue.4-5, pp.269-281, 2013.

M. Dinu, F. Quochi, and H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths, Applied Physics Letters, vol.82, issue.18, pp.2954-2956, 2003.

C. Baker, Resonateurs nano-optomecaniques a mode de galerie sur puce, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00923404

D. Parrain, Optomecanique fibree des disques GaAs : dissipation, amplification et non-linearites, 2014.

P. Govind, Nonlinear fiber optics, Nonlinear Science at the Dawn of the 21st Century, pp.195-211, 2000.

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo et al., Optical instability and self-pulsing in silicon nitride whispering gallery resonators, Opt. Express, vol.20, issue.27, pp.29076-29089, 2012.

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia et al., Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range, Journal of Lightwave Technology, vol.36, issue.24, pp.5881-5886, 2018.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, Thermal and kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides, Opt. Express, vol.16, issue.17, pp.12987-12994, 2008.

D. Ivan, M. Rukhlenko, and G. P. Premaratne, Analytical study of optical bistability in silicon ring resonators, Opt. Lett, vol.35, issue.1, pp.55-57, 2010.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, Tunable silicon microring resonator with wide free spectral range, Applied Physics Letters, vol.89, issue.7, p.71110, 2006.

R. Vilson, M. Almeida, and . Lipson, Optical bistability on a silicon chip, Opt. Lett, vol.29, issue.20, pp.2387-2389, 2004.

A. S. Frank-p-incropera, T. L. Lavine, D. Bergman, and . Dewitt, Fundamentals of heat and mass transfer, 2007.

H. M. Gibbs, Optical bistability: controlling light with light, vol.1, 1985.

S. Timoshenko, Vibration Problems In Engineering. D.Van Nostrand Company INC, 1937.

A. E. and H. Love, A treatise on the mathematical theory of elasticity, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01307751

T. Charnley, R. Perrin, V. Mohanan, and H. Banu, Vibrations of thin rings of rectangular cross-section, Journal of Sound and Vibration, vol.134, issue.3, pp.455-488, 1989.

, COMSOL Multiphysics R v, 2019.

M. Zhang, G. Luiz, and S. Shah, Gustavo Wiederhecker, and Michal Lipson. Eliminating anchor loss in optomechanical resonators using elastic wave interference, Applied Physics Letters, vol.105, issue.5, p.51904, 2014.

K. J. Vahala, Back-action limit of linewidth in an optomechanical oscillator, Phys. Rev. A, vol.78, p.23832, 2008.

K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Review of Scientific Instruments, vol.76, issue.6, p.61101, 2005.

A. N. Cleland and M. L. Roukes, Noise processes in nanomechanical resonators, Journal of Applied Physics, vol.92, issue.5, pp.2758-2769, 2002.

Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nature nanotechnology, vol.12, issue.8, p.776, 2017.

M. Pandey, R. B. Reichenbach, A. T. Zehnder, A. Lal, and H. G. Craighead, Reducing anchor loss in mems resonators using mesa isolation, Journal of Microelectromechanical Systems, vol.18, issue.4, pp.836-844, 2009.

T. L. Naing, T. O. Rocheleau, Z. Ren, S. Li, and C. T. Nguyen, High-q uhf spokesupported ring resonators, Journal of Microelectromechanical Systems, vol.25, issue.1, pp.11-29, 2016.

M. Bao and H. Yang, Squeeze film air damping in mems, 25th Anniversary of Sensors and Actuators A: Physical, vol.136, pp.3-27, 2007.

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny et al., Quality factors in micron-and submicron-thick cantilevers, Journal of Microelectromechanical Systems, vol.9, issue.1, pp.117-125, 2000.

J. Rodriguez, A. Saurabh, . Chandorkar, A. Christopher, . Watson et al., Direct detection of akhiezer damping in a silicon mems resonator, Scientific reports, vol.9, issue.1, p.2244, 2019.

R. Lifshitz and M. L. Roukes, Thermoelastic damping in micro-and nanomechanical systems, Phys. Rev. B, vol.61, pp.5600-5609, 2000.

S. A. Chandorkar, M. Agarwal, R. Melamud, R. N. Candler, K. E. Goodson et al., Limits of quality factor in bulk-mode micromechanical resonators, IEEE 21st International Conference on Micro Electro Mechanical Systems, pp.74-77, 2008.

W. Marcel, D. Pruessner, . Park, H. Todd, . Stievater et al., An optomechanical transducer platform for evanescent field displacement sensing, IEEE Sensors Journal, vol.14, issue.10, pp.3473-3481, 2014.

. Grigorii-b-malykin, The sagnac effect: correct and incorrect explanations, Physics-Uspekhi, vol.43, issue.12, p.1229, 2000.

G. A. Sanders, M. G. Prentiss, and S. Ezekiel, Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity, Opt. Lett, vol.6, issue.11, pp.569-571, 1981.

E. J. Post, Sagnac effect, Rev. Mod. Phys, vol.39, pp.475-493, 1967.

G. He and K. Najafi, A single-crystal silicon vibrating ring gyroscope, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), pp.718-721, 2002.

H. Xie, K. Gary, and . Fedder, Integrated microelectromechanical gyroscopes, Journal of aerospace engineering, vol.16, issue.2, pp.65-75, 2003.

J. Scheuer and A. Yariv, Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett, vol.96, p.53901, 2006.

F. Dell, &. Olio, T. Tatoli, and C. Ciminelli, Recent advances in miniaturized optical gyroscopes, Journal of the European optical society-Rapid publications, vol.9, 2014.

, National Instruments R, 2019.

W. Bogaerts, P. De-heyn, T. Van-vaerenbergh, K. De, S. Vos et al., Silicon microring resonators, Laser & Photonics Reviews, vol.6, issue.1, pp.47-73, 2012.

B. E. Little, J. Laine, and S. T. Chu, Surface-roughness-induced contradirectional coupling in ring and disk resonators, Opt. Lett, vol.22, issue.1, pp.4-6, 1997.

J. ?tyroký, I. Richter, and M. ?i?or, Dual resonance in a waveguide-coupled ring microresonator, Optical and Quantum Electronics, vol.38, issue.9, pp.781-797, 2006.

M. Borselli, T. J. Johnson, and O. Painter, Beyond the rayleigh scattering limit in high-q silicon microdisks: theory and experiment, Opt. Express, vol.13, issue.5, pp.1515-1530, 2005.

Q. Li, A. A. Eftekhar, Z. Xia, and A. Adibi, Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-q microdisk resonators, Opt. Lett, vol.37, issue.9, pp.1586-1588, 2012.

R. Paschotta, Noise of mode-locked lasers (part i): numerical model, Applied Physics B, vol.79, issue.2, pp.153-162, 2004.

C. Wei, J. Jiang, Q. Zhang, and . Lin, Compact suspended silicon microring resonators with ultrahigh quality, Opt. Express, vol.22, issue.1, pp.1187-1192, 2014.

J. P. Van-der-ziel, Phaseâ??matched harmonic generation in a laminar structure with wave propagation in the plane of the layers, Applied Physics Letters, vol.26, issue.2, pp.60-61, 1975.

S. Tanev, V. Tuchin, P. Cheben, P. Bock, J. Schmid et al., Advances in photonics design and modeling for nano-and biophotonics applications, Proc SPIE, vol.7747, 2010.

J. Przemek, P. Bock, J. H. Cheben, J. Schmid, A. Lapointe et al., Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide, Optics Express, vol.18, issue.19, pp.20251-20262, 2010.

P. Cheben, J. Przemek, J. H. Bock, J. Schmid, S. Lapointe et al., Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers, Opt. Lett, vol.35, issue.15, pp.2526-2528, 2010.

J. Wang, I. Glesk, and L. R. Chen, Subwavelength grating filtering devices, Opt. Express, vol.22, issue.13, pp.15335-15345, 2014.

J. Przemek, P. Bock, J. H. Cheben, J. Schmid, A. Lapointe et al., Subwavelength grating crossings for silicon wire waveguides, Opt. Express, vol.18, issue.15, pp.16146-16155, 2010.

J. Wang, R. Ashrafi, R. Adams, I. Glesk, I. Gasulla et al., Subwavelength grating enabled on-chip ultra-compact optical true time delay line, Scientific Reports, vol.6, 2016.

R. Halir, J. H. Cheben, . Schmid, . Ma, S. Bedard et al., Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure, Optics letters, vol.35, issue.19, pp.3243-3245, 2010.

Z. Jafari and A. Zarifkar, Dispersion flattened single etch-step waveguide based on subwavelength grating, Optics Communications, vol.393, pp.219-223, 2017.

D. Benedikovic, M. Berciano, C. Alonso-ramos, X. L. Roux, E. Cassan et al., Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near-and mid-ir wavelengths, Opt. Express, vol.25, issue.16, pp.19468-19478, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01800600

J. Soler-penades, A. Ortega-mo-nux, M. Nedeljkovic, J. G. Wangüemert-pérez, R. Halir et al., Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding, Opt. Express, vol.24, issue.20, pp.22908-22916, 2016.

R. Soref, Mid-infrared pohotonics in silicon and germanium, Nature Photonics, vol.4, pp.495-497, 2010.

M. Nedeljkovic, A. Z. Khokhar, Y. Hu, X. Chen, J. Soler-penades et al., Silicon photonic devices and platforms for the mid-infrared, Opt. Mater. Express, vol.3, issue.9, pp.1205-1214, 2013.

J. Flueckiger, S. Schmidt, V. Donzella, A. Sherwali, D. M. Ratner et al., Sub-wavelength grating for enhanced ring resonator biosensor, Opt. Express, vol.24, issue.14, pp.15672-15686, 2016.

R. Serguei-mikhailovitch, Electromagnetic properties of a finely stratified medium, Soviet Physics JETP, vol.2, issue.3, pp.466-475, 1956.

A. Ortega-mo-nux, J. ?tyroký, P. Cheben, J. H. Schmid, S. Wang et al., Disorder effects in subwavelength grating metamaterial waveguides, Opt. Express, vol.25, issue.11, pp.12222-12236, 2017.

J. Sarmiento-merenguel, A. Ortega-mo-nux, J. Fédéli, J. G. Wangüemert-pérez, C. Alonso-ramos et al., Controlling leakage losses in subwavelength grating silicon metamaterial waveguides, Opt. Lett, vol.41, issue.15, pp.3443-3446, 2016.

D. Perez-galacho, R. Halir, L. Zavargo-peche, G. W. Perez, A. Ortega-moã?ux et al., Adiabatic transitions for sub-wavelength grating waveguides, 16th European Conference on Integrated Optics, 2012.

P. Robert, V. Nguyen, S. Hentz, L. Duraffourg, G. Jourdan et al., M nems: A new approach for ultra-low cost 3d inertial sensor, SENSORS, pp.963-966, 2009.

I. Favero and . Karrai, Cavity cooling of a nanomechanical resonator by light scattering, New Journal of Physics, vol.10, issue.9, p.95006, 2008.

L. Luschi and F. Pieri, An analytical model for the determination of resonance frequencies of perforated beams, Journal of Micromechanics and Microengineering, vol.24, issue.5, p.55004, 2014.

. Bd-hauer, . Doolin, J. P. Beach, and . Davis, A general procedure for thermomechanical calibration of nano/micro-mechanical resonators, Annals of Physics, vol.339, pp.181-207, 2013.

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe et al., High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators, Optics Express, vol.13, issue.20, p.8286, 2005.

D. Van-thourhout and J. Roels, Optomechanical device actuation through the optical gradient force, Nature Photonics, vol.4, issue.4, p.211, 2010.

. Peter-t-rakich, A. Milo?, M. Popovi?, E. P. Solja?i?, and . Ippen, Trapping, corralling and spectral bonding of optical resonances through optically induced potentials, Nature Photonics, vol.1, issue.11, p.658, 2007.

A. Castellanos-gomez, N. Agraït, and G. Rubio-bollinger, Dynamics of quartz tuning fork force sensors used in scanning probe microscopy, Nanotechnology, vol.20, issue.21, p.215502, 2009.

X. Sun, J. Zheng, M. Poot, W. Chee, H. Wong et al., Femtogram doubly clamped nanomechanical resonators embedded in a high-q twodimensional photonic crystal nanocavity, Nano letters, vol.12, issue.5, pp.2299-2305, 2012.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, Fabrication of ultralow-loss si/sio2 waveguides by roughness reduction, Opt. Lett, vol.26, issue.23, pp.1888-1890, 2001.

F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, Reduction of sidewall roughness in silicon-on-insulator rib waveguides, Applied Surface Science, vol.252, issue.14, pp.5071-5075, 2006.

P. Wang, A. Michael, and C. Kwok, Fabrication of sub-micro silicon waveguide with vertical sidewall and reduced roughness for low loss applications, Procedia Engineering, vol.87, pp.979-982, 2014.

K. S. Joyce, J. Poon, Y. Scheuer, A. Xu, and . Yariv, Designing coupledresonator optical waveguide delay lines, JOSA B, vol.21, issue.9, pp.1665-1673, 2004.

H. Temple, S. D. Fay, and . Graham, Coupled spring equations, International Journal of Mathematical Education in Science and Technology, vol.34, issue.1, pp.65-79, 2003.

. Rwp-drever, L. John, . Hall, . Kowalski, G. M. Hough et al., Laser phase and frequency stabilization using an optical resonator, Applied Physics B, vol.31, issue.2, pp.97-105, 1983.

R. Synopsys, , p.6, 2019.

J. Buus, The effective index method and its application to semiconductor lasers, IEEE Journal of Quantum Electronics, vol.18, issue.7, pp.1083-1089, 1982.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, vol.114, issue.2, pp.185-200, 1994.

R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM journal of Research and Development, vol.11, issue.2, pp.215-234, 1967.

M. Heiblum and J. Harris, Analysis of curved optical waveguides by conformal transformation, IEEE Journal of Quantum Electronics, vol.11, issue.2, pp.75-83, 1975.

A. Gondarenko, J. S. Levy, and M. Lipson, High confinement micron-scale silicon nitride high q ring resonator, Opt. Express, vol.17, issue.14, pp.11366-11370, 2009.

M. Tien, J. F. Bauters, J. R. Martijn, D. T. Heck, D. J. Spencer et al., Ultra-high quality factor planar si3n4 ring resonators on si substrates, Opt. Express, vol.19, issue.14, pp.13551-13556, 2011.

S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G. Craighead, High quality factor resonance at room temperature with nanostrings under high tensile stress, Journal of Applied Physics, vol.99, issue.12, p.124304, 2006.

P. Quirin, T. Unterreithmeier, J. P. Faust, and . Kotthaus, Damping of nanomechanical resonators, Phys. Rev. Lett, vol.105, p.27205, 2010.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, Silicon nitride in silicon photonics, Proceedings of the IEEE, vol.106, issue.12, pp.2209-2231, 2018.