G. Mrówka-nowotnik and J. Sieniawski, « Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys, J. Mater. Process. Technol, vol.15, issue.2005, pp.367-372

G. Sha, K. O'reilly, and B. Cantor, « Characterization of Fe-Rich Intermetallic Phases in a 6xxx Series Al Alloy, Mater. Sci. Forum, pp.1721-1726, 2006.

C. Lemaignan, « Nuclear Materials and Irradiation Effects ». Handb. Nucl. Eng. 2010, pp.543-642

G. H. Kinchin and R. S. Pease, The Displacement of Atoms in Solids by Radiation, Rep. Prog. Phys. 1955, vol.18, p.1

M. J. Norgett, M. T. Robinson, and I. M. Torrens, « A proposed method of calculating displacement dose rates », Nucl. Eng. Des. 1 août, vol.33, pp.50-54, 1975.

, PDF) Multiscale modelling of irradiation in nanostructures

K. Nordlund, « Primary Radiation Damage in Materials », Nucl. Sci, p.87, 2015.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, « SRIM -The stopping and range of ions in matter (2010) », Nucl. Instrum. Methods Phys. Res. B. juin, vol.268, pp.1818-1823, 2010.

M. Vijayalakshmi, Materials Response Under Irradiation, Mater. Extreme Cond, pp.615-650, 2017.

I. Curie and F. Joliot, Production artificielle d'éléments radioactifs -II. Preuve chimique de la transmutation des éléments, J. Phys. Radium. 1934, vol.5, pp.153-156

K. Farrell, Transmutation-produced silicon precipitates in irradiated aluminum, vol.1970, pp.275-284, 1970.

K. Farrell and R. T. King, Tensile Properties of Neutron-Irradiated 6061 Aluminum Alloy in Annealed and Precipitation-Hardened Conditions, Eff. Radiat. Struct. Mater. janvier, 1979.

D. J. Alexander, The effect of irradiation on the mechanical propreties of 6061-T651 Aluminum, 16th ASTM, 1993.

A. Jostsons, Annealing of voids in aluminum, Radiat. Induc. Voids Met. Congr. Proceeding, 1971.

A. Jostsons and R. T. King, Transmutation produced Mg2Si precipitation in an irradiated Al-2.5% Mg alloy, Scr. Metall. 1972, vol.6, pp.447-452

K. Farrell, Assessment of aluminum structural materials for service within the ANS reflector vessel. Rapport, ORNL/TM-13049, Oak Ridge National Lab, 1995.

K. Farrell, Effects of structural imperfections on voids in aluminium -Microstructure impurity effects on void formation characteristics in neutron irradiated aluminium. Rapport, ORNL-TM-3493, 1971.

K. Farrell, Response of aluminum and its alloys to exposure in the high flux isotope reactor. Rapport, CONF-830418--3, Oak Ridge National Lab, 1983.

K. Farrell, J. O. Stiegler, and R. E. Gehlbach, Transmuted produced silicon precipitates in Irradiated Aluminium, vol.3, pp.275-284, 1970.

. E04-committee, Practice for Microetching Metals and Alloys. Rapport

E. F. Rauch, Automatic crystal orientation and phase mapping in TEM by precession diffraction, vol.22, pp.5-8, 2008.

E. F. Rauch, Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction, Z. Krist, vol.225, pp.103-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528054

S. C. Bergsma and M. E. Kassner, The New Aluminum Alloy AA 6069, Mater. Sci. Forum, 1996.

R. F. Egerton and . Springer, Electron Energy-Loss Spectroscopy in the Electron Microscope |

«. Aluminum, EELS Spectrum ». In : EELS.info, 2015.

M. K. Miller, « The future of atom probe tomography, Mater. Today. 1 avril 2012, vol.15, pp.158-165

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, « SRIM -The stopping and range of ions in matter (2010) », Nucl. Instrum. Methods Phys. Res. B. juin, vol.268, pp.1818-1823, 2010.

V. Garric, A python alternative to SRIM, 2018.

Y. Serruys, JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling, J. Nucl. Mater, vol.30, pp.967-970, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00683364

. .. Résultats-expérimentaux, , vol.87

. .. Ii.-etude-de-la-microstructure,

M. .. Vickers,

, Conclusions et proposition d'un schéma de

. .. Bibliographie,

. Bibliographie,

B. Kapusta, Catalogue de propriétés thermiques et mécaniques des alliages d'aluminium (série 5000 et 6000) neufs et irradiés. Rapport, SEMI/LEMO/RT/98-021/A, 1998.

J. Holman, Heat Transfers

G. E. Totten, D. S. Mackenzie, and . Handbook-of-aluminum, Physical Metallurgy and Processes, vol.1, 2003.

H. S. Hasan, « Heat transfer coefficients during quenching of steels, Heat Mass Transf. mars 2011, vol.47, pp.315-321

C. Flament, « Electron irradiation-enhanced core/shell organization of Al(Cr, Fe, Mn)Si dispersoids in Al-Mg-Si alloys, Philos. Mag, vol.95, pp.906-917, 2015.

E. Clouet, « Complex precipitation pathways in multicomponent alloys, Nat. Mater. juin 2006, vol.5, p.482

C. Monachon, « Chemistry and structure of core/double-shell nanoscale precipitates in Al-6, Acta Mater. 1 mai, vol.59, pp.3398-3409, 2011.

V. Voort and G. F. Metallography, Principles and Practice, vol.752, 1999.

C. D. Marioara, « Improving Thermal Stability in Cu-Containing Al-Mg-Si Alloys by Precipitate Optimization, Metall. Mater. Trans. A. juin, vol.45, pp.2938-2949, 2014.

C. D. Marioara, « The effect of Cu on precipitation in Al-Mg-Si alloys, Philos. Mag. 2007, vol.87, pp.3385-3413

D. Maisonnette, « Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy, Mater. Sci. Eng. A, vol.528, pp.2718-2724, 2011.

. .. Trempe-eau,

). .. , , 2018.

. .. Conclusions,

. .. Bibliographie,

. Bibliographie,

Y. Dai, G. R. Odette, and T. Yamamoto, « 1.06 -The Effects of Helium in Irradiated Structural Alloys, Konings RJM (éd.). Compr. Nucl. Mater, pp.141-193, 2012.

C. Flament, Etude des évolutions microstructurales sous irradiation de l'alliage 6061-T6, 2015.

C. Flament, « Electron irradiation-enhanced core/shell organization of Al(Cr, Fe, Mn)Si dispersoids in Al-Mg-Si alloys, Philos. Mag, vol.95, pp.906-917, 2015.

A. Risbet and V. Levy, « Influence de l'ecrouissage sur la formation des cavites d'irradiation dans l'aluminium », J. Nucl. Mater. 1 avril, vol.46, pp.341-352, 1973.

S. R. Soria, A. J. Tolley, and E. A. Sanchez, Defects induced by helium ion irradiation in aluminum alloys, Procedia Mater. Sci. 2015, vol.8, pp.486-493

N. Phansalkar, Adaptive local thresholding for detection of nuclei in diversity stained cytology images, Int. Conf. Commun. Signal Process. 2011 International Conference on Communications and Signal Processing, pp.218-220, 2011.

M. H. Vala and A. Baxi, Review on Otsu Image Segmentation Algorithm », vol.2, p.3

K. Farrell, Effects of structural imperfections on voids in aluminium -Microstructure impurity effects on void formation characteristics in neutron irradiated aluminium. Rapport, ORNL-TM-3493, 1971.

C. Flament, « Stability of ?? nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiation, Acta Mater. 2017, vol.128, pp.64-76

J. R. Weeks, C. J. Czajkowski, and K. Farrell, Effects of high thermal neutron fluence on type 6061 aluminum

, CONF-9206282-1, 1993.

J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, « SRIM -The stopping and range of ions in matter (2010) », Nucl. Instrum. Methods Phys. Res. B. juin, vol.268, pp.1818-1823, 2010.

V. Garric, A python alternative to SRIM, 2018.

. .. Considérations-générales,

. Modèle-de-brailsford and . .. Bullough,

. .. Conclusion,

. .. Bibliographie,

. Bibliographie,

Y. Shimomura and S. Yoshida, « Heterogeneous Nucleation of Voids in Quenched Aluminum, J. Phys. Soc. Jpn, vol.5, issue.1967, pp.319-331

R. S. Nelson, J. A. Hudson, and D. J. Mazey, « The stability of precipitates in an irradiation environment, J. Nucl. Mater. 1 septembre, vol.44, pp.318-330, 1972.

A. D. Brailsford and R. Bullough, « The rate theory of swelling due to void growth in irradiated metals, J. Nucl. Mater. 1 août, vol.44, pp.121-135, 1972.

F. A. Garner and J. S. Perrin, Effects of Radiation on Materials, Twelfth International Symposium : a Symposium, vol.537, 1985.

T. E. Volin and R. W. Balluffi, Annealing kinetics of voids and the Self-diffusion coefficient in aluminum, Phys. Status Solidi B. 1968, vol.25, pp.163-173

D. J. Fisher, « Determination of the Activation Energy for Formation and Migration of Thermal Vacancies in 401.0 Casting Aluminum Alloy

W. Desorbo and D. Turnbull, « Quenching of imperfections in aluminum, Acta Metall. 1 février 1959, vol.7, pp.83-85

G. Ho, « Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory, Phys. Chem. Chem. Phys. 2007, vol.9, p.4951

B. Jahnke and K. Ehrlich, « Void formation in an Al-Mg-Si alloy under different precipitation conditions after irradiation with 100keV Al ions, J. Mater. Sci, vol.15, pp.831-838, 1980.

M. Victoria, « Nucleation and growth of precipitates and helium bubbles in a high-purity AlMgSi alloy irradiated with 600 MeV protons, J. Nucl. Mater. 1988, vol.155, issue.157, pp.1075-1078

Y. Dai, G. R. Odette, and T. Yamamoto, « 1.06 -The Effects of Helium in Irradiated Structural Alloys, Konings RJM (éd.). Compr. Nucl. Mater, pp.141-193, 2012.

G. R. Odette and R. E. Stoller, A theoretical assessment of the effect of microchemical, microstructural and environmental mechanisms on swelling incubation in austenitic stainless steels, J. Nucl. Mater, vol.2, issue.1984, pp.514-519

R. E. Stoller and G. R. Odette, Analytical solutions for helium bubble and critical radius parameters using a hard sphere equation of state, J. Nucl. Mater. 1 avril, vol.131, pp.118-125, 1985.

G. R. Odette, « Modeling of microstructural evolution under irradiation, J. Nucl. Mater, vol.2, issue.1979, pp.533-545

B. Kapusta and ;. Cea-saclay, Estimation du gonflement du 6061-T6, 2008.

K. Farrell, Effects of structural imperfections on voids in aluminium -Microstructure impurity effects on void formation characteristics in neutron irradiated aluminium. Rapport, ORNL-TM-3493, 1971.

K. Farrell, A. Wolfenden, and R. T. King, « The effects of irradiation temprature and preinjected gases on voids in aluminium, Irradiat. Eff, vol.8, pp.107-114, 1971.

B. Jahnke, Porenbildung in einer Al-Mg-Si-Legierung mit unterschiedlichen Ausscheidungszustaenden und in Reinstaluminium nach Bestrahlung mit 100 keV Al-Ionen, 1978.

K. Farrell, Assessment of aluminum structural materials for service within the ANS reflector vessel. Rapport, ORNL/TM-13049, Oak Ridge National Lab, 1995.

G. S. Was, Fundamentals of Radiation Materials Science -Metals and Alloys. ANNEXES Annexe A : Eprouvette de traction RAJAH

B. Annexe, Eprouvette de ténacité CTJ 12

C. Annexe, Plans d'usinage

D. Annexe, Plans d'extraction d'un quart de cube après traitement thermique

E. Annexe, Macro Python d'extraction des données et conversion en vitesse de trempe

E. .. Annexe-f-:-analyses,

, 208 1. import csv 2. import numpy as np 3. from scipy import stats 4. import matplotlib.pyplot as plt 5. from scipy.optimize import curve_fit 6

. ***, Nombre de ficiers fixés par l'utilisateur : %s

. ***-début-du-calcul-***-10,

, def recall_temp (temp_read) : 12. for item in range, p.13

, Pour le point situé à z=%s Nombre de points : %s\n Coefficient de R egression : %s \n Ordonnée à l'origine : %s \n Coefficient de Cohérence : %s, Mise en forme des données ***''') 75. for item in total_stat : 76. i+=1 77. if item==

, ro',label="Points Simulés") func(x, a, b, c): 86. return a*np

, = curve_fit(func, total_x, total_y, check_finite=True, method='lm

. X-=-np,