Search for sterile neutrinos in β-decays - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Thèse Année : 2019

Search for sterile neutrinos in β-decays

Recherche de neutrinos stériles dans les désintégrations β

Résumé

The work presented in this thesis is about the sterile neutrino search with the two experiments SOX and TRISTAN based on the β-decay. Sterile neutrinos are theoretically well motivated particles that do not participate in any fundamental interaction except for the gravitation. With the help of these particles one could elegantly explain the origin of the neutrino mass, dark matter and the matter-antimatter asymmetry in the universe. As sterile neutrinos can mix with the known active neutrinos, they could be discovered in laboratory searches. The SOX experiment was designed to search for a sterile neutrino with a mass in the eV-range. This particular mass range is motivated by several anomalous observations at short-baseline neutrino experiments that could be explained by an additional oscillation with a length in the order of meters that arises from an eV-scale sterile neutrino. For SOX it was planned to use the existing Borexino solar neutrino detector to search for an oscillation signal within the detector volume. The neutrinos are emitted from a 5.5 PBq electron-antineutrino source made of the β-decaying isotopes ¹⁴⁴Ce and ¹⁴⁴Pr, located at 8.5 m distance from the detector center. For the analysis of the signal it is crucial to know the source activity. This parameter is determined by measuring the decay heat of the source with a thermal calorimeter that was developed by TUM and INFN Genova. The decay heat is measured through the temperature increase of a well-defined water flow in a heat exchanger that surrounds the source. The calorimeter was assembled, optimized and characterized. Heat losses were determined through calibration measurements with an electrical heat source. Adjustable measurement conditions and an elaborate thermal insulation allowed an operation with negligible heat losses. It was proven that the power of a decaying source can be measured with <0.2% uncertainty in a single measurement that lasts ~5 days. Unfortunately the SOX experiment was canceled after a technological problem rendered the source production with the required activity and purity impossible. The TRISTAN project is an attempt to discover sterile neutrinos with masses in the order of keV. In contrast to eV-scale sterile neutrinos that are motivated by several anomalies observed in terrestrial experiments, the existence of sterile neutrinos with masses in the keV range could resolve cosmological and astrophysical issues, as they are dark matter candidates. The TRISTAN project is an extension of the KATRIN experiment to search for the signature of keV-scale sterile neutrinos in the tritium β-spectrum. KATRIN itself is attempting to determine the effective neutrino mass by measuring the end point of the tritium spectrum at low counting rates. The KATRIN setup will be modified after the neutrino mass measurements are finished to conduct a differential and integral measurement of the entire tritium spectrum. This project is called TRISTAN. The current detector will be replaced by a novel 3500-pixel silicon drift detector system that has an outstanding energy resolution of a few hundred eV and can handle rates up to 10⁸ counts per second as they occur when the entire spectrum is scanned. Prototype detectors were successfully tested and first tritium data was taken at the Troitsk ν-mass spectrometer to study systematic effects and develop analysis methods. A successful fit of the differential tritium spectrum proved the feasibility of this approach. TRISTAN itself is still at an early stage, but the detector development and systematic studies are well on track and delivered so far encouraging results. The sterile neutrino search is scheduled after the KATRIN neutrino mass program is finished in ~2024.
Le travail présenté dans cette thèse porte sur la recherche de neutrino stérile à l'aide de désintégrations β dans les expériences SOX et TRISTAN. Le neutrino stérile est une particule hypothétique, solidement établi théoriquement, qui ne prendrait part à aucune interaction fondamentale, gravité mise à part. Étant entendu que le neutrino stérile se mélange avec les neutrinos actifs connus, l'existence de ces premiers peut être étudiée directement en laboratoire. L'expérience SOX a été conçue pour explorer l'existence d'un neutrino stérile d'une masse autour de l'électronvolt (eV). Un neutrino stérile avec une telle masse permettrait d'expliquer plusieurs anomalies observées à courte distance de sources (quelques mètres) lors de mesures d'oscillations de neutrinos de basses énergies (quelques MeV). SOX avait pour projet d'utiliser le détecteur de neutrinos solaire déjà existant Borexino, et d'observer un signal d'oscillation vers le stérile à l'intérieur même du volume actif du détecteur. La source radioactive de 5.5 PBq et positionnée à 8.5 m du centre du détecteur, émettrait des antineutrinos électroniques via la désintégration β du ¹⁴⁴Ce et du ¹⁴⁴Pr. Une des clés de l'observation de cette oscillation, est la connaissance précise de l'activité de la source. Une telle activité peut être déterminée en mesurant la chaleur dégagée par la source. C'est la raison pour laquelle l'INFN Genova et la TUM ont développé conjointement un calorimètre dédié. La chaleur dégagée par la radioactivité est alors captée par un échangeur puis transmise à un circuit d'eau étroitement contrôlé. Le calorimètre a été assemblé, optimisé puis étalonné avec succès. La perte de chaleur du circuit fut déterminée lors des mesures d'étalonnage grâce à un chauffage électrique. Des variations des conditions expérimentales et une isolation thermique sophistiquée ont permis d'opérer avec des pertes de chaleur négligeables. Il a ainsi été démontré que la puissance thermique de la source pouvait être estimée, en 5 jours seulement, avec une précision supérieure à 0,2%. Malheureusement, le programme SOX a dû être annulé. Le projet TRISTAN, quant à lui, tend à démontrer l'existence d'un neutrino stérile avec une masse de l'ordre du kilo-électronvolt (keV). Si le neutrino stérile à l'eV tente d'apporter une réponse aux différentes anomalies observées lors de mesures d'oscillation, le neutrino stérile au keV, en tant que potentiel candidat matière noire. Le projet TRISTAN cherche à mesurer l'empreinte de ce nouvel état de masse sur le spectre du tritium dans le cadre de l'expérience KATRIN. Cette dernière vise à déterminer la masse effective du neutrino (actif) en mesurant l'extrémité du spectre de tritium avec une excellente résolution et un faible taux de comptage. Une fois la mesure achevée, le détecteur de KATRIN sera modifié afin d'effectuer une mesure différentielle et intégrale de l'ensemble du spectre en tritium: c'est le projet TRISTAN. Le détecteur actuel sera remplacé par un nouveau détecteur de silicium à dérive (SDD) de 3500 pixels permettant une résolution de 3% à 6 keV et pouvant supporter un taux de comptage montant jusqu'à 10⁸ coups par seconde, activité maximum attendue. Un prototype a été testé avec succès et une première mesure de tritium a été réalisé au spectromètre de masse neutrino Troitsk afin d'étudier les erreurs systématiques et de développer des méthodes d'analyses pertinentes. Un premier ajustement cohérent du spectre tritium différentiel acquis lors de cette installation, a démontré la faisabilité du projet. TRISTAN lui-même est toujours en cours de développement mais les caractérisations du détecteur et les études de systématiques sont plus qu'encourageantes pour la poursuite du projet. La première investigation de neutrino stérile avec le détecteur de TRISTAN sur le site de KATRIN est prévue après la mesure de masse, en cours à Karlsruhe, aux alentours de 2024.
Fichier principal
Vignette du fichier
99480_ALTENMULLER_2019_archivage.pdf (32.48 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02397726 , version 1 (06-12-2019)

Identifiants

  • HAL Id : tel-02397726 , version 1

Citer

Konrad Martin Altenmüller. Search for sterile neutrinos in β-decays. High Energy Physics - Experiment [hep-ex]. Université Paris Saclay (COmUE); Technische Universität (Munich, Allemagne), 2019. English. ⟨NNT : 2019SACLS338⟩. ⟨tel-02397726⟩
538 Consultations
15 Téléchargements

Partager

Gmail Facebook X LinkedIn More