, L'ensemble des résultats obtenus durant ces 3 années de thèse nous a permis d'établir la figure 81

, Ainsi, nous avons placé les informations obtenu via les expériences d'irradiations des cellules SW 1353 de CHS au sein de la « zone irradiée » tandis que les informations acquises via les expériences menées sur les cellules T/C-28a2 de chondrocytes au sein de la « zone non-irradiée ». Puis, par analogie avec les données de la littérature nous avons proposé des mécanismes qui pourraient expliquer en partie l'effet bystander radio, Ce schéma récapitulatif se positionne dans un contexte d'étude de l'effet bystander radio-induit lors du traitement d'un CHS

, Parmi ces facteurs bystander, nous avons pu identifier 3 cytokines candidates : l'IL-8, le TNF-? et MCP-1 qui pourraient être impliquées dans l'effet bystander. En effet, il est tout à fait envisageable que ces cytokines soient retrouvées au niveau de la zone non-irradiée et qu'elles se lient à la surface des cellules de chondrocytes qui possèdent les récepteurs à l'IL-8 (IL-8R), au TNF-? (TNFR) et à MCP-1 (CCR2). L'interaction de ces cytokines avec les cellules non-irradiées pourrait ainsi induire l'activation de voies métaboliques responsable des dommages à l'ADN, Ainsi ce schéma illustre la capacité des cellules de CHS après une irradiation à sécréter des facteurs bystander au sein de la zone irradiée

, La sécrétion d'IL-8 par les cellules de CHS irradiées pourrait s'expliquer par une augmentation de la CypA induite par l'irradiation. En effet, des études ont montré l'implication de la CypA dans la régulation de l'IL-8 (170). La CypA est également augmentée au sein des cellules de chondrocytes

. Ainsi, IL-8, nous pouvons suggérer qu'elle engendre la sécrétion par les cellules bystander d'IL-8, contribuant à la propagation de l'effet bystander radio-induit aux cellules voisines. Aussi, il est possible que des gap-jonctions soient formées entre les cellules T/C-28a2 adjacentes permettant ainsi un échange direct de facteurs comme l'IL-8 ou la CypA aux cellules voisines. Concernant les différentes voies métaboliques induite par l'interaction entre les cytokines et les cellules bystander, il semblerait que la voie de signalisation NF-?B qui, en sachant que cette protéine joue un rôle dans la régulation de l

. En, COX-2 a déjà été décrit pour son implication dans l'effet bystander radio-induit (97), notamment il semblerait que ce dernier soit impliqué dans la formation de ROS pouvant être responsable des dommages à l'ADN que nous avons observés (100). De plus, nous avons mis en évidence une diminution de l

, Enfin nos expériences nous ont également permis de mettre en évidence un retard de prolifération et

T. Aigner and J. Stöve, Collagens--major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair, Adv Drug Deliv Rev, vol.55, issue.12, pp.1569-93, 2003.

S. Dvp-app,

D. Sur,

M. Demoor, D. Ollitrault, T. Gomez-leduc, M. Bouyoucef, M. Hervieu et al., Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction, Biochim Biophys Acta BBA -Gen Subj. août, vol.1840, issue.8, pp.2414-2454, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132064

Y. Henrotin, B. Kurz, and T. Aigner, Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage, août, vol.13, issue.8, pp.643-54, 2005.

C. T. Brighton and R. B. Heppenstall, Oxygen tension in zones of the epiphyseal plate, the metaphysis and diaphysis. An in vitro and in vivo study in rats and rabbits, J Bone Joint Surg Am. juin, vol.53, issue.4, pp.719-747, 1971.

Y. Saintigny, S. Cruet-hennequart, D. H. Hamdi, C. F. Lefaix, and J. , Impact of therapeutic irradiation on healthy articular cartilage, Radiat Res. févr, vol.183, issue.2, pp.135-181, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01938044

J. Bijlsma, F. Berenbaum, and F. Lafeber, Osteoarthritis: an update with relevance for clinical practice, Lancet Lond Engl. 18 juin, vol.377, issue.9783, pp.2115-2141, 2011.

J. Martel-pelletier, C. Boileau, J. Pelletier, and P. J. Roughley, Cartilage in normal and osteoarthritis conditions, Best Pract Res Clin Rheumatol. avr, vol.22, issue.2, pp.351-84, 2008.

S. E. Sweeney and G. S. Firestein, Rheumatoid arthritis: regulation of synovial inflammation, Int J Biochem Cell Biol. mars, vol.36, issue.3, pp.372-380, 2004.

P. G. Casali and J. Blay, Soft tissue sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol. 1 mai, vol.21, pp.198-203, 2010.

C. Gerrand, N. Athanasou, B. Brennan, R. Grimer, J. I. Morland et al., UK guidelines for the management of bone sarcomas, Clin Sarcoma Res, vol.6, p.7, 2016.

H. Gelderblom, P. Hogendoorn, S. D. Dijkstra, C. S. Van-rijswijk, A. D. Krol et al., The clinical approach towards chondrosarcoma, The Oncologist. mars, vol.13, issue.3, pp.320-329, 2008.

A. Angelini, G. Guerra, A. F. Mavrogenis, E. Pala, P. Picci et al., Clinical outcome of central conventional chondrosarcoma, J Surg Oncol. déc, vol.106, issue.8, pp.929-966, 2012.

L. Ollivier, D. Vanel, and J. Leclère, Imaging of chondrosarcomas. Cancer Imaging Off Publ Int Cancer Imaging Soc, vol.4, pp.36-44, 2003.

J. Bovée, P. Hogendoorn, J. S. Wunder, and B. A. Alman, Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nat Rev Cancer. juill, vol.10, issue.7, pp.481-489, 2010.

E. David, F. Blanchard, M. F. Heymann, D. Pinieux, G. Gouin et al., The Bone Niche of Chondrosarcoma: A Sanctuary for Drug Resistance, Tumour Growth and also a Source of New Therapeutic Targets, Sarcoma, vol.2011, pp.1-8, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00667904

Q. T. Le, K. K. Fu, S. Kroll, L. Fitts, V. Massullo et al., Prognostic factors in adult softtissue sarcomas of the head and neck, Int J Radiat Oncol Biol Phys. 15 mars, vol.37, issue.5, pp.975-84, 1997.

D. Schulz-ertner, A. Nikoghosyan, H. Hof, B. Didinger, S. E. Combs et al., Carbon ion radiotherapy of skull base chondrosarcomas, Int J Radiat Oncol. janv, vol.67, issue.1, pp.171-178, 2007.

P. M. Dunn and . Wilhelm-conrad-röentgen, 1845-1923), the discovery of x rays and perinatal diagnosis, Arch Dis Child Fetal Neonatal Ed. mars, vol.84, issue.2, pp.138-139, 2001.

. Cea_livret_hommesetrayonnements, , 2018.

D. Sur,

D. Sur,

, Les effets des rayonnements ionisants sur le vivant

. Cea/découvrir-&-comprendre, , 2015.

E. I. Azzam, J. Jay-gerin, and D. Pain, Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury, Cancer Lett. 31 déc, vol.327, issue.0, pp.48-60, 2012.

A. Sznarkowska, A. Kostecka, K. Meller, and K. P. Bielawski, Inhibition of cancer antioxidant defense by natural compounds, Oncotarget, vol.8, issue.9, pp.15996-6016, 2016.

J. M. Gutteridge and B. Halliwell, The measurement and mechanism of lipid peroxidation in biological systems, Trends Biochem Sci. avr, vol.15, issue.4, pp.129-164, 1990.

E. A. Meagher and G. A. Fitzgerald, Indices of lipid peroxidation in vivo: strengths and limitations, Free Radic Biol Med. 15 juin, vol.28, issue.12, pp.1745-50, 2000.

D. Pietraforte, E. Paulicelli, C. Patrono, L. Gambardella, G. Scorza et al., Protein oxidative damage and redox imbalance induced by ionising radiation in CHO cells, Free Radic Res. avr, vol.52, issue.4, pp.465-79, 2018.

D. T. Goodhead, Initial events in the cellular effects of ionizing radiations: clustered damage in DNA, Int J Radiat Biol. janv, vol.65, issue.1, pp.7-17, 1994.

J. Cadet, T. Delatour, T. Douki, D. Gasparutto, J. P. Pouget et al., Hydroxyl radicals and DNA base damage, Mutat Res. 8 mars, vol.424, issue.1-2, pp.9-21, 1999.

S. Silerme, L. Bobyk, M. Taverna-porro, C. Cuier, C. Saint-pierre et al., DNA-polyamine cross-links generated upon one electron oxidation of DNA, Chem Res Toxicol. 16 juin, vol.27, issue.6, pp.1011-1019, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01120756

. Chap04_art2 and . Pdf,

D. Sur,

P. W. Rosário, K. Batista, and M. R. Calsolari, Radioiodine-induced oxidative stress in patients with differentiated thyroid carcinoma and effect of supplementation with vitamins C and E and selenium (antioxidants), Arch Endocrinol Metab. août, vol.60, issue.4, pp.328-360, 2016.

I. M. Ahmad, J. B. Temme, M. Y. Abdalla, and M. C. Zimmerman, Redox Status in Workers Occupationally Exposed to Long Term Low Levels of Ionizing Radiation -A pilot study, Redox Rep Commun Free Radic Res. mai, vol.21, issue.3, pp.139-184, 2016.

M. A. Tabocchini, M. Belli, A. Campa, M. Löbrich, O. Sapora et al., Induction and repair of DNA damage in human cells at different stages of differentiation, Radiat Prot Dosimetry, vol.99, issue.1-4, pp.123-131, 2002.

A. Campa, F. Ballarini, M. Belli, R. Cherubini, V. Dini et al., DNA DSB induced in human cells by charged particles and gamma rays: experimental results and theoretical approaches, Int J Radiat Biol, vol.81, issue.11, pp.841-54, 2005.

P. E. Bryant, Enzymatic restriction of mammalian cell DNA: evidence for double-strand breaks as potentially lethal lesions, Int J Radiat Biol Relat Stud Phys Chem Med. juill, vol.48, issue.1, pp.55-60, 1985.

M. Belli, O. Sapora, and M. A. Tabocchini, Molecular targets in cellular response to ionizing radiation and implications in space radiation protection, J Radiat Res (Tokyo). déc, vol.43, pp.13-19, 2002.

A. Syed and J. A. Tainer, The MRE11-RAD50-NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair, Annu Rev Biochem. 25 avr, 2018.

S. E. Critchlow, R. P. Bowater, and S. P. Jackson, Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV, Curr Biol CB. 1 août, vol.7, issue.8, pp.588-98, 1997.

J. Bartek and J. Lukas, Mammalian G1-and S-phase checkpoints in response to DNA damage, Curr Opin Cell Biol. déc, vol.13, issue.6, pp.738-785, 2001.

R. T. Abraham, Cell cycle checkpoint signaling through the ATM and ATR kinases, Genes Dev. 1 sept, vol.15, issue.17, pp.2177-96, 2001.

V. Leung-pineda and C. E. Ryan, Piwnica-Worms H. Phosphorylation of Chk1 by ATR Is Antagonized by a Chk1-Regulated Protein Phosphatase 2A Circuit, Mol Cell Biol, vol.26, issue.20, pp.7529-7567, 2006.

J. Y. Ahn, J. K. Schwarz, H. Piwnica-worms, and C. E. Canman, Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation, Cancer Res, vol.60, issue.21, pp.5934-5940, 2000.

C. Y. Peng, P. R. Graves, R. S. Thoma, Z. Wu, and A. S. Shaw, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216, Science. 5 sept, vol.277, issue.5331, pp.1501-1506, 1997.

K. Müller and V. Meineke, Radiation-induced alterations in cytokine production by skin cells, Exp Hematol. avr, vol.35, issue.4, pp.96-104, 2007.

P. Rubin, C. J. Johnston, J. P. Williams, S. Mcdonald, and J. N. Finkelstein, A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis, Int J Radiat Oncol Biol Phys. 30 août, vol.33, issue.1, pp.99-109, 1995.

E. Mezzaroma, R. B. Mikkelsen, S. Toldo, A. G. Mauro, K. Sharma et al., Role of Interleukin-1 in Radiation-Induced Cardiomyopathy, Mol Med Camb Mass. 26 mars, vol.21, pp.210-218, 2015.

E. Hong, J. Song, S. Lee, I. Park, H. Um et al., Low-dose ?-radiation inhibits IL-1?-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling, IUBMB Life. févr, vol.66, issue.2, pp.128-165, 2014.

Y. Chen, F. Zhang, Y. Tsai, X. Yang, L. Yang et al., IL-6 signaling promotes DNA repair and prevents apoptosis in CD133+ stem-like cells of lung cancer after radiation, Radiat Oncol Lond Engl, vol.10, issue.14, 2015.

C. Zang, X. Liu, B. Li, Y. He, S. Jing et al., IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma, Oncotarget. 4 janv, vol.8, issue.7, pp.11228-11266, 2017.

M. A. Taylor, K. Sossey-alaoui, C. L. Thompson, D. Danielpour, and W. P. Schiemann, TGF-? upregulates miR-181a expression to promote breast cancer metastasis, J Clin Invest. janv, vol.123, issue.1, pp.150-63, 2013.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, MicroRNA Regulates Vascular Endothelial Growth Factor Expression in Chondrosarcoma Cells, Clin Orthop. mars, vol.473, issue.3, pp.907-920, 2015.

H. D. Moore, R. G. Ivey, U. J. Voytovich, C. Lin, D. L. Stirewalt et al., The Human Salivary Proteome is Radiation Responsive, Radiat Res. mai, vol.181, issue.5, pp.521-551, 2014.

D. E. Hallahan, M. A. Beckett, D. Kufe, and R. R. Weichselbaum, The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines, Int J Radiat Oncol Biol Phys. juill, vol.19, issue.1, pp.69-74, 1990.

C. E. Hellweg, L. F. Spitta, B. Henschenmacher, S. Diegeler, and C. Baumstark-khan, Transcription Factors in the Cellular Response to Charged Particle Exposure, Front Oncol, vol.6, p.61, 2016.

D. P. Lane, Cancer. p53, guardian of the genome, Nature. 2 juill, vol.358, issue.6381, pp.15-21, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00868358

A. Takahashi, H. Matsumoto, Y. K. Yasumoto, J. Kajiwara, A. Aoki et al., High-LET radiation enhanced apoptosis but not necrosis regardless of p53 status, Int J Radiat Oncol Biol Phys, vol.60, issue.2, pp.591-598, 2004.

C. E. Hellweg, The Nuclear Factor ?B pathway: A link to the immune system in the radiation response, Cancer Lett, vol.368, issue.2, pp.275-89, 2015.

A. S. Baldwin, Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB, J Clin Invest. févr, vol.107, issue.3, pp.241-247, 2001.

S. Jayakumar, A. Kunwar, S. K. Sandur, B. N. Pandey, and R. C. Chaubey, Differential response of DU145 and PC3 prostate cancer cells to ionizing radiation: role of reactive oxygen species, GSH and Nrf2 in radiosensitivity, Biochim Biophys Acta. janv, vol.1840, issue.1, pp.485-94, 2014.

A. Cataldi, V. Di-giacomo, M. Rapino, D. Genovesi, and R. A. Rana, Cyclic nucleotide Response Element Binding protein (CREB) activation promotes survival signal in human K562 erythroleukemia cells exposed to ionising radiation/etoposide combined treatment, J Radiat Res (Tokyo). juin, vol.47, issue.2, pp.113-133, 2006.

W. Jochum, E. Passegué, and E. F. Wagner, AP-1 in mouse development and tumorigenesis. Oncogene. 30 avr, vol.20, pp.2401-2413, 2001.

K. Beishline, C. M. Kelly, B. A. Olofsson, S. Koduri, J. Emrich et al., Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism, Mol Cell Biol. sept, vol.32, issue.18, pp.3790-3799, 2012.

M. M. Ahmed, S. F. Sells, K. Venkatasubbarao, S. M. Fruitwala, S. Muthukkumar et al., Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR

, J Biol Chem. 26 déc, vol.272, issue.52, pp.33056-61, 1997.

M. Tubiana and B. Pierquin,

, Rev Prat, vol.22, issue.28, pp.3793-801, 1972.

R. R. Wilson, Radiological use of fast protons. Radiology, vol.47, pp.487-91, 1946.

J. R. Castro, D. E. Linstadt, J. P. Bahary, P. L. Petti, I. Daftari et al., Experience in charged particle irradiation of tumors of the skull base: 1977-1992, Int J Radiat Oncol Biol Phys. 1 juill, vol.29, issue.4, pp.647-55, 1994.

N. Franken, H. M. Rodermond, J. Stap, J. Haveman, and C. Van-bree, Clonogenic assay of cells in vitro, Nat Protoc, vol.1, issue.5, pp.2315-2324, 2006.

D. Schulz-ertner, O. Jäkel, and W. Schlegel, Radiation therapy with charged particles, Semin Radiat Oncol, vol.16, issue.4, pp.249-59, 2006.

H. Suit, Proton: the particle, Int J Radiat Oncol Biol Phys, vol.87, issue.3, pp.555-61, 2013.

P. Pommier, M. Sunyach, Y. Hu, E. Amsalem, C. L. Moncort-boulch et al., Radiotherapy for sarcoma: hadrontherapy

, Bull Cancer (Paris). juin, vol.97, issue.6, pp.657-72, 2010.

R. Miralbell, A. Lomax, L. Cella, and U. Schneider, Potential reduction of the incidence of radiationinduced second cancers by using proton beams in the treatment of pediatric tumors, Int J Radiat Oncol Biol Phys, vol.54, issue.3, pp.824-833, 2002.

E. B. Hug, M. M. Fitzek, N. J. Liebsch, and J. E. Munzenrider, Locally challenging osteo-and chondrogenic tumors of the axial skeleton: results of combined proton and photon radiation therapy using three-dimensional treatment planning, Int J Radiat Oncol Biol Phys. 1 févr, vol.31, issue.3, pp.467-76, 1995.

O. Mohamad, S. Yamada, and D. M. , Clinical Indications for Carbon Ion Radiotherapy, Clin Oncol R Coll Radiol G B. mai, vol.30, issue.5, pp.317-346, 2018.

A. Uzawa, K. Ando, S. Koike, Y. Furusawa, Y. Matsumoto et al., Comparison of biological effectiveness of carbon-ion beams in Japan and Germany, Int J Radiat Oncol Biol Phys. 1 avr, vol.73, issue.5, pp.1545-51, 2009.

C. Glowa, P. Peschke, S. Brons, O. C. Neels, K. Kopka et al., Carbon ion radiotherapy: impact of tumor differentiation on local control in experimental prostate carcinomas, Radiat Oncol Lond Engl, vol.12, issue.9, 2017.

W. Tinganelli, N. Ma, V. Neubeck, C. Maier, A. Schicker et al., Influence of acute hypoxia and radiation quality on cell survival, J Radiat Res (Tokyo). juill, vol.54, issue.1, pp.23-30, 2013.

D. Sur,

R. Imai, T. Kamada, N. Araki, W. Group-for, S. Bone et al., Clinical Efficacy of Carbon Ion Radiotherapy for Unresectable Chondrosarcomas, Anticancer Res, vol.37, issue.12, pp.6959-64, 2017.

A. M. Van-maldegem, H. Gelderblom, E. Palmerini, S. D. Dijkstra, M. Gambarotti et al., Outcome of advanced, unresectable conventional central chondrosarcoma, Cancer, vol.120, issue.20, pp.3159-64, 2014.

J. B. Murphy, J. H. Liu, E. Sturm, O. Studies, and . Vitro, J Exp Med. 28 févr, vol.35, issue.3, pp.373-84, 1922.

H. Nagasawa and J. B. Little, Induction of sister chromatid exchanges by extremely low doses of alpha-particles, Cancer Res, vol.15, issue.22, pp.6394-6400, 1992.

A. Deshpande, E. H. Goodwin, S. M. Bailey, B. L. Marrone, and B. E. Lehnert, Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: evidence for an extranuclear target, Radiat Res. mars, vol.145, issue.3, pp.260-267, 1996.

K. M. Prise, O. V. Belyakov, M. Folkard, and B. D. Michael, Studies of bystander effects in human fibroblasts using a charged particle microbeam, Int J Radiat Biol. déc, vol.74, issue.6, pp.793-801, 1998.

E. I. Azzam, D. Toledo, S. M. Spitz, D. R. Little, and J. B. , Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures, Cancer Res, vol.62, pp.5436-5478, 2002.

B. J. Blyth and P. J. Sykes, Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures?, Radiat Res. août, vol.176, issue.2, pp.139-57, 2011.

F. Chevalier, D. H. Hamdi, Y. Saintigny, and J. Lefaix, Proteomic overview and perspectives of the radiation-induced bystander effects, Mutat Res Rev Mutat Res. mars, vol.763, pp.280-93, 2015.

N. Autsavapromporn, M. Suzuki, T. Funayama, N. Usami, I. Plante et al., Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality, Radiat Res, vol.180, issue.4, pp.367-75, 2013.

J. Albanese and N. Dainiak, Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane-derived vesicles by ionizing radiation, Exp Hematol. juin, vol.31, issue.6, pp.455-64, 2003.

H. Matsumoto, S. Hayashi, M. Hatashita, H. Shioura, T. Ohtsubo et al., Induction of radioresistance to accelerated carbon-ion beams in recipient cells by nitric oxide excreted from irradiated donor cells of human glioblastoma, Int J Radiat Biol. déc, vol.76, issue.12, pp.1649-57, 2000.

H. Nagasawa, A. Cremesti, R. Kolesnick, Z. Fuks, and J. B. Little, Involvement of Membrane Signaling in the Bystander Effect in Irradiated Cells, p.5

A. V. Ermakov, S. V. Kostiuk, N. A. Egolina, E. M. Malinovskaia, N. N. Ve?ko et al., The DNA fragments obtained from the culture media exposed to adaptive doses of the ionizing radiation as factors of stress signaling between lymphocytes and bystander cells

, Radiats Biol Radioecol. avr, vol.47, issue.2, pp.133-173, 2007.

W. Hu, S. Xu, B. Yao, M. Hong, X. Wu et al., MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode, RNA Biol, vol.11, issue.9, pp.1189-98, 2014.

R. I. Fernando, M. D. Castillo, M. Litzinger, D. H. Hamilton, and C. Palena, IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells, Cancer Res. 1 août, vol.71, issue.15, pp.5296-306, 2011.

H. Zhou, V. N. Ivanov, J. Gillespie, C. R. Geard, S. A. Amundson et al., Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway, Proc Natl Acad Sci, vol.102, issue.41, pp.14641-14647, 2005.

K. K. Jella, R. Moriarty, B. Mcclean, H. J. Byrne, and F. M. Lyng, Reactive oxygen species and nitric oxide signaling in bystander cells, PLoS ONE, vol.5, issue.2018

S. Xu, J. Wang, N. Ding, W. Hu, X. Zhang et al., Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect, RNA Biol, vol.12, issue.12, pp.1355-63, 2015.

K. M. Prise and J. M. O'sullivan, Radiation-induced bystander signalling in cancer therapy, Nat Rev Cancer. mai, vol.9, issue.5, pp.351-60, 2009.

J. Pouget, A. G. Georgakilas, and J. Ravanat, Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis, Antioxid Redox Signal. 22 mars, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01785294

P. J. Coates, J. K. Rundle, S. A. Lorimore, and E. G. Wright, Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling, Cancer Res. 15 janv, vol.68, issue.2, pp.450-456, 2008.

, Scientific Committee on the Effects of Atomic Radiation. Effects of ionizing radiation, UNSCEAR 2006: Scientific annexes C, D and E, vol.2, 2008.

N. Jalal, S. Haq, N. Anwar, S. Nazeer, and U. Saeed, Radiation induced bystander effect and DNA damage, J Cancer Res Ther. déc, vol.10, issue.4, pp.819-852, 2014.

K. T. Butterworth, C. K. Mcgarry, C. Trainor, J. M. O'sullivan, A. R. Hounsell et al., Out-offield cell survival following exposure to intensity-modulated radiation fields, Int J Radiat Oncol Biol Phys. 1 avr, vol.79, issue.5, pp.1516-1538, 2011.

K. T. Butterworth, C. K. Mcgarry, C. Trainor, S. J. Mcmahon, J. M. O'sullivan et al., Dose, dose-rate and field size effects on cell survival following exposure to non-uniform radiation fields, Phys Med Biol. 21 mai, vol.57, issue.10, pp.3197-206, 2012.

V. I. Hatzi, D. A. Laskaratou, I. V. Mavragani, Z. Nikitaki, A. Mangelis et al., Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology, Cancer Lett. 1 janv, vol.356, issue.1, pp.34-42, 2015.

T. Chaze, M. Slomianny, F. Milliat, G. Tarlet, T. Lefebvre-darroman et al., Alteration of the serum N-glycome of mice locally exposed to high doses of ionizing radiation, Mol Cell Proteomics MCP. févr, vol.12, issue.2, pp.283-301, 2013.

C. Mothersill, R. W. Smith, N. Agnihotri, and C. B. Seymour, Characterization of a radiation-induced stress response communicated in vivo between zebrafish, Environ Sci Technol. 1 mai, vol.41, issue.9, pp.3382-3389, 2007.

M. Wakatsuki, N. Magpayo, H. Kawamura, and K. D. Held, Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after x-ray, proton, iron ion and carbon ion exposures, Int J Radiat Oncol Biol Phys. 1 sept, vol.84, issue.1, pp.103-108, 2012.

D. Frankenberg, K. Greif, and U. Giesen, Radiation response of primary human skin fibroblasts and their bystander cells after exposure to counted particles at low and high LET, Int J Radiat Biol. janv, vol.82, issue.1, pp.59-67, 2006.

H. Yang, V. Anzenberg, and K. D. Held, The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts, Radiat Res. sept, vol.168, issue.3, pp.292-300, 2007.

V. Anzenberg, S. Chandiramani, and J. A. Coderre, LET-dependent bystander effects caused by irradiation of human prostate carcinoma cells with X rays or alpha particles, Radiat Res, vol.170, issue.4, pp.467-76, 2008.

C. Fernandez-palomo, C. Seymour, and C. Mothersill, Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line, Radiat Res. févr, vol.185, issue.2, pp.124-157, 2016.

O. Nuta and F. Darroudi, The impact of the bystander effect on the low-dose hypersensitivity phenomenon, Radiat Environ Biophys. avr, vol.47, issue.2, pp.265-74, 2008.

C. Mothersill and C. Seymour, Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells, Int J Radiat Biol. avr, vol.71, issue.4, pp.421-428, 1997.

C. B. Seymour and C. Mothersill, Relative contribution of bystander and targeted cell killing to the low-dose region of the radiation dose-response curve, Radiat Res. mai, vol.153, issue.5, pp.508-519, 2000.

B. E. Lehnert, E. H. Goodwin, and A. Deshpande, Extracellular factor(s) following exposure to alpha particles can cause sister chromatid exchanges in normal human cells, Cancer Res. 1 juin, vol.57, issue.11, pp.2164-71, 1997.

S. M. De-toledo, M. Buonanno, A. L. Harris, and E. I. Azzam, Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells, Int J Radiat Biol, vol.93, issue.10, pp.1182-94, 2017.

F. Faqihi, A. Neshastehriz, S. Soleymanifard, R. Shabani, and N. Eivazzadeh, Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells, J Radiat Res (Tokyo). sept, vol.56, issue.5, pp.777-83, 2015.

E. I. Azzam, S. M. De-toledo, T. Gooding, and J. B. Little, Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles, Radiat Res. nov, vol.150, issue.5, pp.497-504, 1998.

R. W. Smith, J. Wang, C. P. Bucking, C. E. Mothersill, and C. B. Seymour, Evidence for a protective response by the gill proteome of rainbow trout exposed to X-ray induced bystander signals, Proteomics. nov, vol.7, issue.22, pp.4171-80, 2007.

R. W. Smith, R. D. Moccia, C. B. Seymour, and C. E. Mothersill, Irradiation of rainbow trout at early life stages results in a proteomic legacy in adult gills. Part A; proteomic responses in the irradiated fish and in non-irradiated bystander fish, Environ Res. mai, vol.163, pp.297-306, 2018.

T. Chaze, L. Hornez, C. Chambon, I. Haddad, J. Vinh et al., Serum Proteome Analysis for Profiling Predictive Protein Markers Associated with the Severity of Skin Lesions Induced by Ionizing Radiation, Proteomes. 10 juill, vol.1, issue.2, pp.40-69, 2013.

Q. Zhang, M. Matzke, A. A. Schepmoes, R. J. Moore, B. Webb-robertson et al., High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model, PLoS ONE, vol.9, issue.3

C. Shao, M. Folkard, B. D. Michael, and K. M. Prise, Bystander signaling between glioma cells and fibroblasts targeted with counted particles, Int J Cancer, vol.10, issue.1, pp.45-51, 2005.

F. M. Lyng, P. Maguire, B. Mcclean, C. Seymour, and C. Mothersill, The involvement of calcium and MAP kinase signaling pathways in the production of radiation-induced bystander effects, Radiat Res. avr, vol.165, issue.4, pp.400-409, 2006.

H. Furlong, C. Mothersill, F. M. Lyng, and O. Howe, Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect, Mutat Res. févr, pp.35-43, 2013.

F. Legendre, D. Ollitrault, M. Hervieu, C. Baugé, L. Maneix et al., Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia, Tissue Eng Part C Methods. juill, vol.19, issue.7, pp.550-67, 2013.

D. H. Hamdi, S. Barbieri, C. F. Groetz, J. Legendre, F. Demoor et al., In vitro engineering of human 3D chondrosarcoma: a preclinical model relevant for investigations of radiation quality impact, BMC Cancer
URL : https://hal.archives-ouvertes.fr/cea-01938052

C. Merceron, S. Portron, M. Masson, J. Lesoeur, B. H. Fellah et al., The effect of two-and three-dimensional cell culture on the chondrogenic potential of human adiposederived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel, Cell Transplant, vol.20, issue.10, pp.1575-88, 2011.

L. Zhang, P. Su, C. Xu, J. Yang, W. Yu et al., Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems, Biotechnol Lett. sept, vol.32, issue.9, pp.1339-1385, 2010.

N. Luciani, V. Du, F. Gazeau, A. Richert, D. Letourneur et al., Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation, Acta Biomater, vol.37, pp.101-111, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01519129

S. J. Mcmahon, C. K. Mcgarry, K. T. Butterworth, J. M. O'sullivan, A. R. Hounsell et al., Implications of intercellular signaling for radiation therapy: a theoretical dose-planning study, Int J Radiat Oncol Biol Phys. 1 déc, vol.87, issue.5, pp.1148-54, 2013.

A. Leibovitz, W. M. Mccombs, D. Johnston, C. E. Mccoy, and J. C. Stinson, New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex, J Natl Cancer Inst. août, vol.51, issue.2, pp.691-698, 1973.

L. Ottaviano, K. Schaefer, M. Gajewski, W. Huckenbeck, S. Baldus et al., Molecular characterization of commonly used cell lines for bone tumor research: a transEuropean EuroBoNet effort, Genes Chromosomes Cancer. janv, vol.49, issue.1, pp.40-51, 2010.

M. B. Goldring, J. R. Birkhead, L. F. Suen, R. Yamin, S. Mizuno et al., Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes, J Clin Invest. déc, vol.94, issue.6, pp.2307-2323, 1994.

F. Finger, C. Schörle, A. Zien, P. Gebhard, M. B. Goldring et al., Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2, Arthritis Rheum. déc, vol.48, issue.12, pp.3395-403, 2003.

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab Investig J Tech Methods Pathol. juin, vol.83, issue.6, pp.877-87, 2003.

T. Kunisada, M. Miyazaki, K. Mihara, C. Gao, A. Kawai et al., A new human chondrosarcoma cell line (OUMS-27) that maintains chondrocytic differentiation, Int J Cancer. 11 sept, vol.77, issue.6, pp.854-863, 1998.

J. S. Lehmann, A. Zhao, B. Sun, W. Jiang, and J. S. , Multiplex Cytokine Profiling of Stimulated Mouse Splenocytes Using a Cytometric Bead-based Immunoassay Platform, J Vis Exp JoVE, vol.09, issue.129, 2017.

K. Sekihara, K. Saitoh, H. Yang, H. Kawashima, S. Kazuno et al., Low-dose ionizing radiation exposure represses the cell cycle and protein synthesis pathways in in vitro human primary keratinocytes and U937 cell lines, PloS One, vol.13, issue.6, p.199117, 2018.

C. Trainor, K. T. Butterworth, C. K. Mcgarry, F. Liberante, J. M. O'sullivan et al., Cell survival responses after exposure to modulated radiation fields, Radiat Res. janv, vol.177, issue.1, pp.44-51, 2012.

M. Durante, S. Yamada, K. Ando, Y. Furusawa, T. Kawata et al., X-rays vs. carbonion tumor therapy: cytogenetic damage in lymphocytes, Int J Radiat Oncol Biol Phys. 1 juin, vol.47, issue.3, pp.793-801, 2000.

H. Kiyohara, Y. Ishizaki, Y. Suzuki, H. Katoh, N. Hamada et al., Radiation-induced ICAM-1 expression via TGF-?1 pathway on human umbilical vein endothelial cells; comparison between X-ray and carbon-ion beam irradiation, J Radiat Res (Tokyo), vol.52, issue.3, pp.287-92, 2011.

C. Laurent, A. Leduc, I. Pottier, V. Prévost, F. Sichel et al., Dramatic increase in oxidative stress in carbon-irradiated normal human skin fibroblasts, PloS One, vol.8, issue.12, p.85158, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02024618

L. A. Ryan, R. W. Smith, C. B. Seymour, and C. E. Mothersill, Dilution of irradiated cell conditioned medium and the bystander effect, Radiat Res. févr, vol.169, issue.2, pp.188-96, 2008.

A. V. Ermakov, S. V. Kostiuk, N. A. Egolina, E. M. Malinovskaia, N. N. Ve?ko et al., The DNA fragments obtained from the culture media exposed to adaptive doses of the ionizing radiation as factors of stress signaling between lymphocytes and bystander cells

, Radiats Biol Radioecol. avr, vol.47, issue.2, pp.133-173, 2007.

B. Dieriks, D. Vos, W. H. Derradji, H. Baatout, S. Van-oostveldt et al., Medium-mediated DNA repair response after ionizing radiation is correlated with the increase of specific cytokines in human fibroblasts, Mutat Res. 1 mai, vol.687, issue.1-2, pp.40-48, 2010.

M. M. Shareef, N. Cui, R. Burikhanov, S. Gupta, S. Satishkumar et al., Role of tumor necrosis factor-alpha and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma, Cancer Res. 15 déc, vol.67, issue.24, pp.11811-11831, 2007.

P. Nigro, G. Pompilio, and M. C. Capogrossi, Cyclophilin A: a key player for human disease, Cell Death Dis, vol.4, p.888, 2013.

S. Feo, D. Arcuri, E. Piddini, R. Passantino, and A. Giallongo, ENO1 gene product binds to the cmyc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1), FEBS Lett. 4 mai, vol.473, issue.1, pp.47-52, 2000.

, RPLP0 ribosomal protein lateral stalk subunit P0

M. A. Kerr, The structure and function of human IgA, Biochem J, vol.271, issue.2, pp.285-96, 1990.

J. N. Rauch, E. Zuiderweg, and J. E. Gestwicki, Non-canonical Interactions between Heat Shock Cognate Protein 70 (Hsc70) and Bcl2-associated Anthanogene (BAG) Co-Chaperones Are Important for Client Release, J Biol Chem, vol.16, issue.38, pp.19848-57, 2016.

X. Su, J. B. Sykes, L. Ao, C. D. Raeburn, D. A. Fullerton et al., Extracellular heat shock cognate protein 70 induces cardiac functional tolerance to endotoxin: differential effect on TNFalpha and ICAM-1 levels in heart tissue, Cytokine. juill, vol.51, issue.1, pp.60-66, 2010.

, Gene -NCBI

Y. Shan and G. Cortopassi, Mitochondrial Hspa9/Mortalin regulates erythroid differentiation via iron-sulfur cluster assembly, Mitochondrion. janv, vol.26, pp.94-103, 2016.

, CAPG capping actin protein, gelsolin like

W. Zhu, Y. Hunag, X. Liu, J. He, D. Chen et al., Prognostic evaluation of CapG, gelsolin, P-gp, GSTP1, and Topo-II proteins in non-small cell lung cancer, Anat Rec Hoboken NJ, vol.295, issue.2, pp.208-222, 2007.

J. Zhuo, E. H. Tan, B. Yan, L. Tochhawng, M. Jayapal et al., Gelsolin induces colorectal tumor cell invasion via modulation of the urokinase-type plasminogen activator cascade, PloS One, vol.7, issue.8, p.43594, 2012.

K. Hirota, M. Matsui, S. Iwata, A. Nishiyama, K. Mori et al., AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1, Proc Natl Acad Sci U S A. 15 avr, vol.94, issue.8, pp.3633-3641, 1997.

Z. C. Gu and C. Enenkel, Proteasome assembly, Cell Mol Life Sci CMLS. déc, vol.71, issue.24, pp.4729-4774, 2014.

, CCT3 chaperonin containing TCP1 subunit 3

X. Shi, S. Cheng, and W. Wang, Suppression of CCT3 inhibits malignant proliferation of human papillary thyroid carcinoma cell, Oncol Lett. juin, vol.15, issue.6, pp.9202-9210, 2018.

C. L. Neal and D. Yu, 14-3-3? as a prognostic marker and therapeutic target for cancer, Expert Opin Ther Targets. déc, vol.14, issue.12, pp.1343-54, 2010.

M. Masutani, N. Sonenberg, S. Yokoyama, and H. Imataka, Reconstitution reveals the functional core of mammalian eIF3, EMBO J. 25 juill, vol.26, issue.14, pp.3373-83, 2007.

S. Sun, M. Guo, J. B. Zhang, A. Ha, K. K. Yokoyama et al., Cyclophilin A (CypA) interacts with NF-?B subunit, p65/RelA, and contributes to NF-?B activation signaling, PloS One, vol.9, issue.8, p.96211, 2014.

Y. Wei, Y. Jinchuan, L. Yi, W. Jun, W. Zhongqun et al., Antiapoptotic and proapoptotic signaling of cyclophilin A in endothelial cells, Inflammation. juin, vol.36, issue.3, pp.567-72, 2013.

S. Sun, Q. Wang, A. Giang, C. Cheng, C. Soo et al., Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-?B, J Neurooncol. janv, vol.101, issue.1, pp.1-14, 2011.

L. Zhang, Y. Luo, Z. Lu, J. He, L. Wang et al., Astragalus Polysaccharide Inhibits Ionizing Radiation-Induced Bystander Effects by Regulating MAPK/NF-kB Signaling Pathway in Bone Mesenchymal Stem Cells (BMSCs), Med Sci Monit Int Med J Exp Clin Res. 6 juill, vol.24, pp.4649-58, 2018.

G. Nelson, O. Kucheryavenko, J. Wordsworth, and T. Von-zglinicki, The senescent bystander effect is caused by ROS-activated NF-?B signalling, Mech Ageing Dev, vol.170, pp.30-36, 2018.

B. I. Gerashchenko, A. Yamagata, K. Oofusa, K. Yoshizato, S. M. De-toledo et al., Proteome analysis of proliferative response of bystander cells adjacent to cells exposed to ionizing radiation, Proteomics. juin, vol.7, issue.12, pp.2000-2008, 2007.

K. Hsu, R. Hsieh, C. Wu, C. Lee, Y. Kuo et al., MBP-1 suppresses growth and metastasis of gastric cancer cells through COX-2, Mol Biol Cell. déc, vol.20, issue.24, pp.5127-5164, 2009.

Y. Zhao, S. M. De-toledo, G. Hu, T. K. Hei, and E. I. Azzam, Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects, Br J Cancer. 1 juill, vol.111, issue.1, pp.125-156, 2014.

H. Zhou, V. N. Ivanov, Y. Lien, M. Davidson, and T. K. Hei, Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects, Cancer Res. 1 avr, vol.68, issue.7, pp.2233-2273, 2008.

K. Hirota, M. Matsui, S. Iwata, A. Nishiyama, K. Mori et al., AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1, Proc Natl Acad Sci U S A. 15 avr, vol.94, issue.8, pp.3633-3641, 1997.