, Calcul du déphasage entre les deux bras de l'interféromètre MPh, à partir des données délivrées par les détecteurs 1, vol.2

, Calcul du déphasage entre les bras de l'interféromètre DUT pour les deux Etats de Polarisation (2.51), vol.52

, Génération des signaux mixés (2.54)

, Filtre des signaux mixés pour obtenir les parties réelles et imaginaires de l'amplitude complexe du champ détecté, vol.55

, a Linéarisation si nécessaire

, Transformée de Fourier pour passer dans le domaine des fréquences de battement, vol.57

, Calcul de la fluctuation de l'indice de réfraction (2.60)

, Calcul de la distance corrigée, en prenant en compte la fluctuation d'indice de réfraction (2.61), plus ré-échantillonnage

, Pour la méthode tensorielle : 12. Passage dans le domaine des vecteurs d'onde

, Calcul de la fluctuation de permittivité diélectrique (2.15) tant pour la mesure que pour la référence

, Calcul de la fluctuation de permittivité diélectrique due aux déformations (2.32)

, Détermination des allongements relatifs comme la solution du système d'équations (2.36)

, car agissant comme modérateur elle tend à thermaliser les neutrons, qui sont ralentis quand ils peuvent transférer de l'énergie cinétique par choc élastique aux atomes du caloporteur. Le sodium ayant une masse atomique plus élevée que celle de l'hydrogène et l'oxygène de l'eau, les neutrons y sont moins ralentis. Par ailleurs, contrairement à l'eau, le sodium n'a pas besoin d'être sous pression (la pression est de 155 bar dans le cas des REP), du simple fait que sa température d'ébullition est très supérieure à celle de fonctionnement du réacteur. En outre, le sodium n'entraîne pas de corrosion sur l'acier du réacteur. Au niveau mondial, une vingtaine de réacteurs expérimentaux de ce type ont été construits dans le passé (la moitié d'entre eux est désormais arrêtée), d'autres sont en phase de réalisation, En effet, l'eau (utilisée dans les REP) n'est pas un bon caloporteur dans le cas d'un réacteur à neutrons rapides, 1967.

, Le sodium présente l'inconvénient d'être un produit chimique fortement réactif, ce qui demande des précautions extrêmes pour maîtriser le risque de feu de sodium : il peut brûler dans l'air et, s'il est mis en contact avec de l'eau, il peut même exploser. La centrale nucléaire japonaise de Monju a été victime d'un tel accident en décembre, 1995.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics, 1998.

M. Wasfi, Optical Fiber Amplifiers -Review, International Journal of Communication Networks and Information Security, vol.1, issue.1, 2009.

Y. Koike, Fundamentals of Plastic Optical Fibers, 2014.

Y. Koike, The future of plastic optical fiber, NPG Asia Materials, vol.1, pp.22-28, 2009.

L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, Optical Sensors Based on Plastic Fibers, Sensors, vol.12, pp.12184-12207, 2012.

M. C. Large, L. Poladian, and G. W. Barton, Microstructured Polymer Optical Fibre, 2008.

J. C. Knight, Photonic crystal fibres, Nature, vol.424, pp.847-851, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00717395

S. Radic, IR-to-visible wavelength-band translation in photonic crystal fiber

M. D. Nielsen, C. Jacobsen, N. A. Mortensen, J. R. Folkenberg, and H. R. Simonsen, Low-loss photonic crystal fibers for transmission systems and their dispersion properties, Optics Express, vol.12, pp.1372-1376, 2004.

L. Vivien and L. Pavesi, , 2013.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1983.

K. T. Grattan, B. T. Meggitt-;-g, R. E. Jones, R. Jones, and . Jones, Optical fiber sensor technology, pp.105-159, 1995.

J. E. Townsend, Fabrication of special optical fibres, pp.4-08, 1990.

S. Ungar, Fibres optiques, théorie et applications, 1989.

L. Cognolato, Chemical Vapour Deposition for Optical Fibre Technology, Journal de Physique IV Colloque, issue.C5, pp.5-975, 1995.
URL : https://hal.archives-ouvertes.fr/jpa-00253785

S. R. Nagel, J. B. Mc-chesney, and K. L. Walker, An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance, IEEE transaction on microwave theory and techniques, vol.30, 1982.

P. B. O'connor, J. W. Fleming, R. M. Atkins, and V. R. Raju, Plasma-enhanced modified chemical vapor deposition: a versatile high rate process Optical Fiber, Communication 1985 OSA Technical Digest Series, p.4, 1985.

M. G. Blankenship and C. W. Deneka, The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fiblers, IEEE transaction on microwave theory and techniques, vol.30, 1982.

E. Potkay, H. R. Clark, I. P. Smyth, T. Y. Kometani, and D. L. Wood, Characterization of Soot from Multimode Vapor Phase Axial Deposition (VAD) Optical Fiber Preforms, Journal of Ligthwave Technology, vol.6, issue.8, 1988.

F. Idachaba, D. U. Ike, and O. Hope, Future Trends in Fiber Optics Communication, Proceedings of the World Congress on Engineering, vol.I, 2014.

H. Bülow and B. Franz,

H. Al-hashimi,

B. Schmauss, High bit-rate MIMO transport over multimode fiber, OECC2011, 16 th OptoElectronics and Communications Conf, pp.413-414, 2011.

V. Ter-mikirtychev, Fundamentals of Fiber Lasers and Fiber Amplifiers, 2014.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication, Appl. Phys. Lett, vol.32, p.647, 1978.

A. Gaston, I. Lozano, F. Perez, and F. Auza, Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors, IEEE Sensors Journal, p.6

E. Udd and W. B. Spillman, Fiber Optic Sensors: An Introduction for Engineers and Scientists Jr

G. Laffont, N. Roussel, S. Rougeault, J. Boussoir, L. Maurin et al., Innovative FBG sensing techniques for the railway industry: Application to Overhead Contact Line Monitoring, Proceedings of SPIE, vol.10, p.7503, 2009.

P. Ferdinand, The Evolution of Optical Fiber Sensors Technologies During the 35 Last Years and Their Applications in Structure Health Monitoring, 7 th European Workshop on Structural Health Monitoring, 2014.

D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, Distributed fiber-optic temperature sensing using Rayleigh backscatter, p.31, 2005.

, st European Conference on Optical Communication, pp.25-29

A. Listvin and V. Listvin, Reflectomerty in optical fibers, 2005.

M. Gold, Design of a long-rang single mode OTDR, Journal of Ligthwave Technology, vol.3, 1985.

K. Aoyama, K. Nakagawa, and T. Itoh, Optical time domain reflectometry in a single-mode fiber, IEEE Journal of Quantum Electronics, vol.17, pp.862-868, 1981.

M. Belkin and I. Gladyshev, Methods of registration of micromechanical action effects on optical fiber, INTERMATIC, 2014.

W. Lin, C. Zhang, L. Li, and S. Liang, Review on Development and Applications of Fiber-Optic Sensors, Photonics and Optoelectronics (SOPO), 2012 Symposium, pp.1-4

A. D. Kersey, A Review of Recent Developments in Fiber Optic Sensor Technology, Optical Fiber Technology, vol.2, issue.3, pp.291-317, 1996.

Z. Qingyuan, X. Lan, W. Chao, H. Junhui, and J. Tao, Long-haul and high-resolution optical time domain reflectometry using superconducting nanowire single-photon detectors, Sci Rep, vol.5, 2015.

X. Dong, A. Wang, J. Zhang, H. Han, T. Zhao et al., Combined Attenuation and High-Resolution Fault Measurements Using Chaos-OTDR, IEEE Photonics, 2015.

Y. Wang, A. Wang, B. Wang, and M. Zhang, Applications of chaotic laser correlation ranging technology, Proceedings, 4 th Chaotic Modeling and Simulation International Conference, 2011.

Z. Wang, Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source, Opt. Exp, vol.23, issue.12, pp.15514-15520, 2015.

M. K. Barnoski and S. M. Jensen, Fiber waveguides: A novel technique for investigating attenuation characteristics, Appl. Opt, vol.15, p.2112, 1976.

A. Masoudi, M. Belal, and T. Newson, A distributed optical fibre dynamic strain sensor based on phase-OTDR, Measurement Science and Technology, vol.24, issue.8

J. Nakayama, Optical fiber locator by the step frequency method, Appl. Opt, vol.26, issue.3, pp.440-443, 1987.

D. Dolfi, 5-mm-resolution OFDR using a coded phase-reversal modulator, Opt. Lett, vol.13, issue.8, pp.678-680, 1988.

R. Macdonald, Frequency domain optical reflectometer, Appl. Opt, vol.20, pp.1840-1844, 1981.

K. Yuksel, M. Wuilpart, V. Moeyaert, and P. Mégret, Optical Frequency Domain Reflectometry: A Review, Transparent Optical Networks, 2009.

M. Wegmuller, Overview of coherent reflectometry techniques: characterization of components and small systems, Proc. Symposium on Optical Fiber Measurements, SOFM, pp.155-160, 2000.

J. V. Weid, Return loss measurements of WDM filters with tunable of coherent optical frequency domain reflectometry, Photonics Technol. Lett, vol.9, issue.11, pp.1508-1510, 1997.

M. Wegmuller, Distributed gain measurements in Er-doped fibers with high resolution and accuracy using OFR, Journal of Lightwave Technol, vol.18, pp.2127-2132, 2000.

J. Martins-filho, Dual-wavelength (1050 nm + 1550 nm) pumped thulium doped fiber amplifier characterization by optical frequency-domain reflectometer, J. Lightwave Technol, vol.18, pp.2127-2132, 2000.

J. Huttner, Local birefringence measurements with optical frequency-domain reflectometry, Photonics Technol. Lett, vol.10, pp.1458-1460, 1998.

M. Froggatt, Characterization of polarization-maintaining fiber using high-sensitivity optical frequency-domain reflectometer, Journal of Lightwave Technol, vol.24, issue.11, pp.4149-4154, 2006.

K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, Coherent optical frequency domain reflectometry using phase-decorrelated reflected and reference lightwaves, Journal of Lightwave. Technol, vol.15, issue.7, pp.1102-1109, 1997.

J. Geng, Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry, Photonics Technol. Lett, vol.17, issue.9, pp.1827-1829, 2005.

X. Fan, F. Ito, and Y. Koshikiya, Long-Range Coherent OFDR With Light Source Phase Noise Compensation, Journal of Lightwave Technology

M. Froggatt, S. Kreger, D. Gifford, and M. Wolfe, High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherent length, vol.7, pp.515-276, 2009.

Z. Ding, X. S. Yao, T. Liu, and Y. Du, Long Measurement Range OFDR Beyond Laser Coherence Length, IEEE Photonics Technology Letters, vol.25, issue.2, 2012.

R. Kashyap, Fiber Bragg Gratings, 2010.

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, Photosensivity in optical fiber waveguides: application to reflection filter fabrication, Appl. Phys. Lett, 1978.

G. Meltz, W. Morey, and W. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett, 1989.

B. Zhang and M. Kahrizi, High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication, IEEE Sensors Journal, vol.7, issue.4, 2007.

G. Laffont, R. Cotillard, and P. Ferdinand, Multiplexed regenerated fiber Bragg gratings for hightemperature measurement, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01802609

L. Kang, D. Kim, and J. Han, Estimation of dynamic structural displacements using fiber Bragg grating strain sensors, Journal of Sound and Vibration, vol.305, pp.534-542, 2007.

S. Magne, S. Rougeault, M. Vilela, and P. Ferdinand, State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors, Applied Optics, vol.36, pp.9437-9447, 1997.
URL : https://hal.archives-ouvertes.fr/cea-01840677

H. Zhang, S. M. Eaton, and P. R. Herman, Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser, Optics Letters, vol.32, pp.2559-2561, 2007.

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu et al., Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask, Journal of Lightwave Technology, vol.22, p.94, 2004.

C. Crunelle, C. Caucheteur, M. Wuilpart, and P. Mégret, Quasidistributed temperature sensor combining Fibre Bragg Gratings and temporal reflectometry technique interrogation, Optics and Lasers in Engineering, vol.47, pp.415-418, 2009.

K. Yüksel, V. Moeyaert, and M. Wuilpart, Complete analysis of multi-reflection and spectralshadowing crosstalks in a quasi-distributed fibre sensor interrogated by OFDR, IEEE Sensors Journal, 2012.

B. Zhang and M. Kahrizi, High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication, IEEE Sensors Journal, vol.7, 2007.

G. Laffont, R. Cotillard, and P. Ferdinand, Multiplexed regenerated fiber Bragg gratings for hightemperature measurement, 2013.
URL : https://hal.archives-ouvertes.fr/cea-01802609

V. Dewynter-marty, P. Ferdinand, E. Bocherens, R. Carbone, H. Beranger et al., Embedded Fiber Bragg Grating Sensors for Industrial Composite Cure Monitoring, Journal of Intelligent Material Systems and Structures, 1998.

L. Kang, D. Kim, and J. Han, Estimation of dynamic structural displacements using fiber Bragg grating strain sensors, Journal of Sound and Vibration, vol.305, pp.534-542, 2007.

S. Magne, S. Rougeault, M. Vilela, and P. Ferdinand, State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors, Applied Optics, vol.36, pp.9437-9447, 1997.
URL : https://hal.archives-ouvertes.fr/cea-01840677

V. Spirin, M. G. Shlyagin, S. V. Miridonov, F. J. Jiménez, and R. M. López-gutiérrez, Fiber Bragg grating sensor for petroleum hydrocarbon leak detection, Optics and Lasers in Engineering, vol.32, issue.5, pp.497-503, 1999.

D. A. Krohn, T. W. Macdougall, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, Fourth Edition, 2015.

M. Ramakrishnan, G. Rajan, Y. Semenova, and G. Farrell, Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials, Sensors, 2016.

G. Bolognini and A. Hartog, Raman-based fibre sensors: Trends and applications, Optical Fiber Technology, vol.19, pp.678-688, 2013.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Pasquale, Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification, Measurement Science and Technology, vol.18, issue.10, pp.3211-3218, 2007.

M. G. Tanner, S. D. Dyer, B. Baek, R. H. Hadfield, and S. Nam, High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature measurement using superconducting nanowire single-photon detectors, Appl. Phys. Lett, vol.99, p.201110, 2011.

T. Horiguchi, T. Kurashima, and M. Tateda, Tensile strain dependence of Brillouin frequency shift in silica optical fibers, IEEE Photon. Technol. Lett, vol.1, 1989.

V. Dewynter, S. Rougeault, S. Magne, P. Ferdinand, F. Vallon et al., Tunnel Structural Health Monitoring with Brillouin Optical Fiber Distributed Sensing, paper B-44 5 th European Workshop on Structural-Health-Monitoring, vol.29, 2010.

H. Ohno, H. Naruse, M. Kihara, and A. Shimada, Industrial Applications of the BOTDR Optical Fiber Strain Sensor, Optical Fiber Technology, vol.7, issue.1, pp.45-64, 2001.

S. C. Mukhopadhyay, New Developments in Sensing Technology for Structural Health Monitoring, 2011.

M. A. Soto, G. Bolognini, and F. Pasquale, Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification, Opt. Lett, vol.36, issue.2, 2011.

M. Froggatt and J. Moore, High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter, Applied Optics, vol.37, pp.1735-1740, 1998.

M. Froggatt, B. Soller, D. Gifford, and M. Wolfe, Correlation and keying of Rayleigh scatter for loss and temperature sensing in parallel optical networks, Optical Fiber Communication Conference, p.17, 2004.

D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, Distributed Fiber-Optic Temperature Sensing using Rayleigh Backscatter, Optical Communication, vol.3, pp.511-512, 2005.

D. K. Gifford, M. E. Froggatt, M. S. Wolfe, and S. T. Kreger, Millimeter Resolution Optical Reflectometry Over Up to Two Kilometers of Fiber Length, Optics and Photonics Technology Conference, pp.52-53, 2007.

J. P. Dakin, Distributed Optical Fiber Sensors, Proc. SPIE 1797, Distributed and Multiplexed Fiber Optic Sensors, vol.II, 1993.

D. K. Gifford, M. E. Froggatt, M. S. Wolfe, and S. T. Kreger, Millimeter Resolution Reflectometry Over Two Kilometers, pp.1-3, 2007.

, Optical Backscatter Reflectometer Luna OBR 4200 Data Sheet

, Optical Backscatter Reflectometer Luna OBR 4400 Data Sheet, LTOBR4400 REV.004

, Optical Backscatter Reflectometer Luna OBR 4600 Data Sheet

. Froggatt, Apparatus and Method for Measuring Strain in Optical Fibers Using Rayleigh Scatter, US Patent, vol.545, pp.760-761, 2003.

. Froggatt, Identifying Optical Fiber Segments and Determining Caracteristics of an Optical Device under Test Based on Fiber Scatter Segment Pattern Data, US Patent, vol.440, p.87, 2008.

S. Magne, Etat de l'art des lasers a fibre, étude d'un laser a fibre dopée ytterbium et spectroscopie laser de fibres dopées, 1993.

E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium-doped fiber amplifiers: Device and System Developments, 2002.

P. Ferdinand, Capteurs à fibres optiques à réseaux de Bragg, Techniques de l'Ingénieur, vol.6735, pp.1-24

L. Maurin, P. Ferdinand, G. Laffont, N. Roussel, J. Boussoir et al., High speed realtime contact measurements between a smart train pantograph with embedded fibre Bragg grating sensors and its overhead contact line, Structural Health Monitoring, vol.2, pp.1808-1815, 2007.

L. Maurin, P. Ferdinand, G. Laffont, N. Roussel, J. Boussoir et al., Pantographe instrumenté de capteurs à réseaux de Bragg fibrés pour la surveillance de l'interface avec le fil de contact -Du concept de l'instrumentation aux essais TGV, Colloque 2007 du club Contrôles et Mesures Optiques pour l'Industrie (CMOI, pp.20-23, 2007.

N. Roussel and P. Ferdinand, De la stabilité long terme des systèmes de mesure spectrale pour capteurs à réseaux de Bragg, JNOG'33, 33 èmes Journées d'Optique Guidée, 2013.

N. Roussel, P. Ferdinand, and L. Maurin, Long term stability of spectral measurement systems for Fiber Bragg Grating sensors, APOS2013, the 4th Asia-Pacific Optical Sensors Conference, pp.15-18, 2013.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector, Electronics Letters, pp.569-570, 1985.

P. Ferdinand, Réseaux de capteurs à fibres optiques, Mesures et multiplexage, Techniques de l'Ingénieur, R 460v2, 2008.

P. Ferdinand, Réseaux de capteurs à fibres optiques, Applications, Techniques de l'Ingénieur, R 461, sept, 2008.

, Optical Backscatter Reflectometer Luna OBR 4400 User Guide

A. Bertholds and D. Dandliker, Determination of the individual strain-optic coefficient in single-mode optical fibers, J. Lightwave Technol, vol.6, issue.1, pp.17-20, 1988.

Y. Mohanna, J. Sograin, J. Rousseau, and P. Ledoux, Relaxation of Internal Stresses in Optical Fibers, J. Lightw. Technol, vol.8, 1990.

S. Magne, Capteurs à Fibres Optiques pour l'industrie, la médecine et les applications scientifiques & technologiques, Mémoire de HDR, vol.12, 2011.

E. Ternier, S. Magne, S. Rougeault, and P. Ferdinand, Caractérisation de réseaux de Bragg photoinscrits dans les fibres optiques dopées azote pour la mesure des hautes températures, p.18

M. Èmes-journées-nationales-d'optique-guidée, , pp.26-28, 1998.

E. Boldyreva, R. Cotillard, G. Laffont, P. Ferdinand, D. Cambet et al., Distributed temperature monitoring for liquid sodium leakage detection using OFDR-based Rayleigh backscattering, Proc. SPIE 9157, 23 rd International Conference on Optical Fibre Sensors, 91576N, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01828512

L. Maurin, P. Ferdinand, F. Non, and S. Villanoga, OFDR distributed strain measurements for SHM of hydrostatic stressed structures: an application to high pressure H2 storage type IV composite vessels, EWSHM -7th European Workshop on Structural Health Monitoring, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01021252

V. Lanticq, E. Bourgeois, P. Magnien, G. Dieleman, A. Vinceslas et al., Soilembedded optical fiber sensing cable interrogated by Brillouin optical time-domain reflectometry (B-OTDR) and optical frequency-domain reflectometry (OFDR) for embedded cavity detection and sinkhole warning system, Measurement Science and Technology, vol.20, issue.3, p.34018, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00451163

L. Maurin, S. Rougeault, V. Dewynter-marty, J. Périsse, D. Villani et al., OFDR distributed temperature and strain measurements with Optical Fibre Sensing cables: application to drain pipeline monitoring in a Nuclear Power Plant, EWSHM -7 th European Workshop on Structural Health Monitoring, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01020368

S. Magne and P. Ferdinand, Système de mesure distribuée des courbures d'une structure, Patent of invention FR 2867 561 B1 & US, p.204706, 2004.

D. Sporea, A. Sporea, S. O'keeffe, D. Mccarthy, and E. Lewis, Optical Fibers and Optical Fiber Sensors Used in Radiation Monitoring, Electrical and Electronic Engineering, Selected Topics on Optical Fiber Technology, 2012.

A. Faustov, A. Gusarov, M. Wuilpart, A. A. Fotiadi, L. B. Liokumovich et al., Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering, Proc. SPIE, vol.8439, 2012.

D. Kiesewetter, K. Korotkov, and V. I. Malyugin, The Automated System for Collection, Processing and Transmission of Data for Training and Competitive Process in Ski Jumping, vol.2, 2015.

C. Marlagrange, C. Riccolleau, and F. Lefaucheux, Symmétrie et proprieties physiques des christaux, 2011.

R. Lévy and J. M. Jonathan, Optique non-linéaire et ses matériaux, EDP Science, 2000.

K. Yuksel, M. Wuilpart, and P. Mégret, Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer, Optics Express, vol.17, pp.5845-5851, 2009.

T. Ahn and D. Kim, Analysis of nonlinear frequency sweep in high-speed tunable laser sources using selfhomodyne measurement and Hilbert transformation, Appl. Opt, vol.46, 2007.

A. Tikhonov and . Samarsky, Equations de physique mathématique, 1999.

S. Revina, L. Sazonov, and O. Tsyvenkova, Problèmes et équations de physique mathématique, 1998.

A. Svechnikov, A. Bogoliubov, and V. Kravtsov, Séminaires de la physique mathématique, édition de l, 1993.

B. Figure, 4 -Traitement des signaux pour le passage dans les domaines d'intérêt : vecteur d'onde ? Distance ? Fréquence de battement ? Temps d'acquisition (signaux d'entrée du système) ? Fréquence de battement ? Distance ? Vecteur