, nous avons constaté que les voies de mesures sont identiques en termes de nombre d'impulsions maximum traitées. C'est pourquoi, nous présentons les résultats de la distribution d'impulsions uniquement pour la voie de mesure A. Le simulateur de l'architecture est configuré avec les paramètres suivants

, ? Nombre de FUs à l'étage 1 : 1 à M

, Algorithme des FUs de l'étage 0 : extracteur d'impulsion

, Algorithme des FUs de l'étage 1 : recherche d'amplitude maximum

, Période de l'horloge des contrôles de données : 1 ns

, Période de l'horloge de l'ordonnanceur et du crossbar : 1 ns

, ? Période de l'horloge des processeurs de l'étage, vol.1, pp.5-15

F. ?-profondeur-de and . Out, , p.8500

. ?-profondeur-de,

, Profondeur de FIFO OUT 1-M : 1 (le résultat est l'amplitude maximum)

, Ces paramètres montrent comment nous avons influencé la durée d'exécution des traitements par la modification de l'horloge des processeurs. Par exemple, une horloge d'une période de 15 ns, vis-à-vis d'un CAN et des contrôles cadencés à 1 ns, signifie que le processeur traitera un échantillon en 15 cycles pour un débit d'échantillons d'un cycle par échantillon

, Trois périodes d'horloge du processeur ont été testées. Cela peut donc correspondre soit à des traitements différents, soit à des différences de performance du processeur. Ces résultats montrent que la distribution des impulsions sur les FUs permet d'atteindre le zéro-temps mort, confirmant ainsi la théorie. Pour une période d'horloge de 15 ns du processeur de l'étage un, six FUs sont nécessaires pour atteindre le zéro-temps mort, Le nombre d'impulsions perdues par manque de ressources est présenté en Figure 4-13

E. Dans-notre, De plus, la figure montre que le gain obtenu par l'ajout de FUs décroit exponentiellement. Par exemple, pour une durée d'exécution de 15 ns, seules 17 impulsions sont « gagnées » par l'ajout d'une sixième FU vis-à-vis de l'instance utilisant cinq FU. Cela équivaut à un gain de 0.07% par rapport au nombre maximum d'impulsions détectées. Cela signifie que dans certain cas, l'architecture est surdimensionnée pour un gain très faible si l, aucune impulsion n'est perdue avec six FUs, quelle que soit la configuration du simulateur

. Heureusement, utilisateur de trouver un compromis puisqu'il est possible d'ajouter où d'enlever des FUs. Ces résultats montrent qu'il est donc possible de dimensionner une architecture qui se « rapproche » du zéro-temps mort si nombre de FU utilisés est sous contraintes

?. Y. Moline, M. Thevenin, G. Corre, and T. Peyret, Procédé et système d'extraction dynamique d'impulsions dans un signal temporel bruité, 2014.

?. Y. Moline, M. Thevenin, and G. Corre, Système, procédé et programme d'ordinateur pour la numérisation d'impulsions rapides sans temps mort

?. Y. Moline, M. Thevenin, G. Corre, and M. Paindavoine, Auto-Adaptive Trigger and Pulse Extraction for Digital Processing in Nuclear Instrumentation, IEEE Transactions on Nuclear Science, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01864821

?. J. Dumazert, R. Coulon, V. Kondrasovs, K. Boudergui, Y. Moline et al., A robust hypothesis test for the sensitive detection of constant speed radiation moving sources, Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194701

C. ,

?. Y. Moline, M. Thevenin, G. Corre, and M. Paindavoine, A programmable and zero dead-time architecture for Nuclear Instrumentation, Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA 2015), 2015.

, Conférences internationales francophones avec actes et colloques

?. Y. Moline, M. Thevenin, G. Corre, and M. Paindavoine, Vers une architecture électronique unifiée et zéro-temps mort pour l'instrumentation nucléaire, Conférence en Parallélisme, Architecture et Système (ComPAS'2014), 2014.

?. Y. Moline, M. Thevenin, G. Corre, and M. Paindavoine, Vers une architecture électronique unifiée et zéro-temps mort pour l'instrumentation nucléaire, Groupement de Recherche en « System-On-Chip » et « System-In-Package » (GDR SOC-SIP 2014), 2014.

?. Y. Moline, M. Thevenin, G. Corre, and M. Paindavoine, Une architecture programmable de traitement des impulsions pour l'instrumentation nucléaire, 2015.

L. Barbot, On Line Neutron Flux Mapping in Fuel Coolant Channels of a Research Reactor, IEEE Transactions on Nuclear Science, vol.62, issue.2, pp.415-419, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01822353

J. Basilio-simoes and J. M. Cardoso, A PC104 Multiprocessor DSP System For Radiation Spectroscopy Applications, 1994.

D. Bazzacco, The Advanced Gamma Ray Tracking Array AGATA. Nuclear Instruments and Methods in, Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.746, pp.248-254, 2004.

F. Belli, A study on the pulse height resolution of organic scintillator digitized pulses, Fusion Engineering and Design, vol.88, issue.6-8, pp.1271-1275, 2013.

G. H. Bertrand, Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.776, pp.114-128, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01863883

P. Blanc, Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.750, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082176

. Caen, Application Note AN2503 Charge Integration: Analog Vs. Digital, pp.1-8, 2010.

, CAEN, 2011. WP2081 Digital Pulse Processing in Nuclear Physics

. Canberra, High-purity Germanium (HPGe) Detectors. Germanium-Det-SS-C39606. Available at, 2012.

C. Carasco, Material characterization in cemented radioactive waste with the associated particle technique, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.619, issue.1-3, pp.432-435, 2010.

J. M. Cardoso, J. Basilio-simoes, and C. M. Correia, A High Performance Reconfigurable Hardware Platform for Digital Pulse Processing, IEEE transactions on, vol.51, issue.3, pp.921-925, 2004.

J. M. Cardoso, J. Basilio-simoes, and C. M. Correia, A mixed Analog-digital, Pulse Spectrometer. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.422, issue.1-3, pp.400-404, 1999.

J. M. Cardoso, J. Basilio-simoes, and C. M. Correia, Dead-time Analysis of Digital Spectrometers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.522, issue.3, pp.487-494, 2004.

J. M. Cardoso, J. Basilio-simoes, and C. M. Correia, A mixed Analog-digital Pulse Spectrometer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip, vol.422, issue.1-3, pp.400-404, 1999.

Y. J. Chao, Procede et systeme d'arbre binaire de programmation par multiplexage, 2002.

L. Chen, Digital Beta Counting and Pulse-shape Analysis for High-precision Nuclear Beta Decay Half-life Measurements: Tested on, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.728, pp.81-91, 2013.

G. Corre, V. Kondrasovs, and S. Normand, Method Capable Of Discriminating Between A Gamma Component And A Neutron Component In An Electronic Signal, 2009.

E. C. Craig, Electronics via Waveform Analysis, Cambridge City, 1993.

I. Elhanany, A Novel Architecture for Digital Pulse Height Analysis with Application to Radiation Spectroscopy, 7th Mediterranean Conference on Control and Automation, pp.2143-2151, 1999.

V. Esmaeili-sani, Triangle bipolar pulse shaping and pileup correction based on DSP, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.665, pp.11-14, 2011.

M. Faisal, A Data Processing System for Real-Time Pulse Processing and Timing Enhancement for Nuclear Particle Detection Systems. Nuclear Science, IEEE Transactions on, vol.60, issue.2, pp.619-623, 2013.

A. Fallu-labruyere, Time Resolution Studies Using Digital Constant Fraction Discrimination. Nuclear Instruments and Methods in, Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.579, issue.1, pp.247-251, 2007.

H. Fanet, Electronique Associee aux Detecteurs de Rayonnements Génie Nucl, Techniques de l'ingénieur, 2002.

M. Flaska, Influence of sampling properties of fast-waveform digitizers on neutrongamma-ray, pulse-shape discrimination for organic scintillation detectors, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.729, pp.456-462, 2013.

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on Computers, issue.9, p.21, 1972.

G. , Distributed Systems: Concepts and Design 5th Editio, 2011.

X. Jiang, T. Kirubarajan, and W. Zeng, Robust Sparse Channel Estimation and Equalization in Impulsive Noise using Linear Programming, Signal Processing, vol.93, issue.5, pp.1095-1105, 2013.

V. T. Jordanov, Digital techniques for real-time pulse shaping in radiation measurements, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.353, issue.1-3, pp.261-264, 1994.

J. Julin, Development of a High Energy Resolution Gas Ionization Detector for a Recoil Spectrometer, 2011.

H. J. Kim, Development of Multifunctional Pulse Processing Device for Sensor Signal Acquisition, IEEE Transactions on Nuclear Science, vol.56, issue.3, pp.1184-1187, 2009.

G. F. Knoll, Radiation Detection and Measurement, 2010.

P. Lee, C. Lee, and J. Lee, Development of FPGA-based Digital Signal Processing System for Radiation Spectroscopy, Radiation Measurements, vol.48, pp.12-17, 2012.

G. Liu, A Comparison of Different Discrimination Parameters for the DFT-Based PSD Method in Fast Scintillators, Radiation Measurements, vol.58, pp.12-17, 2013.

G. Liu, A digital method for the discrimination of neutrons and gamma rays with organic scintillation detectors using frequency gradient analysis, IEEE Transactions on Nuclear Science, vol.57, issue.3, pp.1682-1691, 2010.

F. J. Lynch, New Liquid Scintillators with Higher Speed and Efficiency, IEEE Transactions on Nuclear Science, vol.15, issue.3, pp.102-106, 1968.

A. Lyoussi, Détection de rayonnements et instrumentation nucléaire, 2010.

L. C. Mihailescu, C. Borcea, and A. J. Plompen, Data Acquisition With a Fast Digitizer for Large Volume HPGe Detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.578, issue.1, pp.298-305, 2007.

Y. Moline, Auto-Adaptive Trigger and Pulse Extraction for Digital Processing in Nuclear Instrumentation, IEEE Transactions on Nuclear Science, vol.62, issue.2, pp.480-486, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01864821

Y. Moline, Procédé et système d'extraction dynamique d'impulsions dans un signal temporel bruité, 2014.

A. A. Morsy and O. T. Von-ramm, FLASH Correlation: a New Method for 3-D Ultrasound Tissue Motion Tracking and Blood Velocity Estimation, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.46, issue.3, pp.728-764, 1999.

M. Moszynski, Energy Resolution of Scintillation Detectors-New Observations. Nuclear Science, IEEE Transactions on, vol.55, issue.3, pp.1062-1068, 2008.

M. Moszynski, G. Bizard, and G. Costa, Study of n-? Discrimination by Digital Charge Comparison Method for a Large Volume Liquid Scintillator, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.317, issue.1-2, pp.262-272, 1992.
URL : https://hal.archives-ouvertes.fr/in2p3-00016021

W. Müller, W. Rosenstiel, and J. Ruf, SystemC: Methodologies and Applications, 2003.

S. Normand, PING : A New Approach For Nuclear Fuel Cycle Instrumentation, 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications, pp.1-4, 2009.

S. Normand, PING for Nuclear Measurements: First Results. Nuclear Science, IEEE Transactions on, vol.59, issue.4, pp.1232-1236, 2012.

. Opsero, Ethernet FMC. Available, 2014.

G. Pasquali, A DSP Equipped Digitizer for Online Analysis of Nuclear Detector Signals, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.570, issue.1, pp.126-132, 2007.

D. Pastor and F. Socheleau, Robust Estimation of Noise Standard Deviation in Presence of Signals With Unknown Distributions and Occurrences, IEEE Transactions on Signal Processing, vol.60, issue.4, pp.1545-1555, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00684402

M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 2008.

V. Radeka, Signal, Noise and Resolution in Position-Sensitive Detectors. Nuclear Science, IEEE Transactions on, vol.21, issue.1, 1974.

V. Radeka, Trapezoidal Filtering of Signals From Large Germanium Detectors at High Rates, Nuclear Instruments and Methods, vol.99, pp.525-539, 1972.

A. Roca, Enabling high-performance crossbars through a floorplan-aware design, Proceedings of the International Conference on Parallel Processing, pp.269-278, 2012.

R. T. Schiffer, A Scalable FPGA-based Digitizing Platform for Radiation Data Acquisition, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.652, issue.1, pp.491-493, 2011.

A. P. Siddavatam, Vivekanand Education Sociey's Institute of Technology (VESIT): International Journal of Application or Innovation in Engineering and Management (IJAIEM), pp.281-285, 2014.

P. Simoes, J. C. Martins, and C. M. Correia, A new digital signal processing technique for applications in nuclear spectroscopy, IEEE Transactions on Nuclear Science, vol.43, issue.3, pp.1804-1809, 1996.

, ADS54J60 Dual-Channel, 16-Bit, 1.0-GSPS Analog-to-Digital Converter, vol.706, 2015.

, Op Amp Noise Theory and Applications SLOA082, 2008.

M. Thevenin, Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device, Fourteenth International Symposium on Reactor Dosimetry, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01823483

T. Trigano and T. Dautremer, Pile-up Correction Algorithms for Nuclear Spectrometry, Acoustics, Speech, and Signal Processing, pp.441-444, 2005.

N. Ventroux, SESAM: An MPSoC simulation environment for dynamic application processing, Proceedings -10th IEEE International Conference on Computer and Information Technology, CIT-2010, pp.1880-1886, 2010.

R. Voltz, Influence of the Nature of Ionizing Particles on the Specific Luminescence of Organic Scintillators, The Journal of Chemical Physics, vol.45, issue.9, pp.3306-3311, 1966.

R. Voltz and G. Laustriat, Radioluminescence des milieux organiques. Actions chimiques et Biologiques des radiations, vol.29, pp.159-166, 1969.
URL : https://hal.archives-ouvertes.fr/jpa-00206633

X. W. Wang, T. Ahonen, and J. Nurmi, A synthesizable RTL design of asynchronous FIFO, Proceedings, 2004.

W. Warburton, Digital Pulse Processing: New Possibilities in Nuclear Spectroscopy, Appl. Radiat. Isot, vol.53, pp.913-920, 2000.

W. Warburton, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, vol.53, pp.913-933, 2000.

C. H. Whitford, Implementation of Optimal Filters for Pulse Height Measurement from Nonlinear Detectors with Non-stationary Noise, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.555, issue.1-2, pp.255-259, 2005.

C. Xiaohui, Analysis of Three Digital n/? Discrimination Algorithms for Liquid Scintillation Neutron Spectrometry, Radiat. Meas, vol.49, pp.13-18, 2013.

S. Yousefi, L. Lucchese, and M. D. Aspinall, A novel wavelet-based method for neutron/gamma discrimination in liquid scintillators, IEEE Nuclear Science Symposium Conference Record, pp.2387-2391, 2008.

N. Zaitseva, Pulse shape discrimination in impure and mixed single-crystal organic scintillators, IEEE Transactions on Nuclear Science, vol.58, issue.6, pp.3411-3420, 2011.

Y. Zhang, Asynchronous FIFO implementation using FPGA, ICEOE 2011 -2011 International Conference on Electronics and Optoelectronics, Proceedings, 2011.

J. Zhou, Trapezoidal pulse shaping for pile-up pulse identification in X-ray spectrometry, Chinese Physics C, vol.39, issue.6, p.68201, 2015.