A. Masseboeuf, O. Fruchart, F. Cheynis, N. Rougemaille, J. Toussaint et al., Micromagnetic study of flux-closure states in Fe dots using quantitative Lorentz microscopy, Ultramicroscopy, vol.115, issue.0, pp.26-34, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00594382

A. Masseboeuf, A. Marty, P. Bayle-guillemaud, C. Gatel, and E. Snoeck, Quantitative Observation of Magnetic Flux Distribution in New Magnetic Films for Future High Density Recording Media, Nano Letters, vol.9, issue.8, pp.2803-2806, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409791

C. Phatak, L. De-knoop, F. Houdellier, C. Gatel, M. J. Hÿtch et al., Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection, Ultramicroscopy, vol.164, pp.24-30, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430579

E. Snoeck, F. Houdellier, Y. Taniguch, A. Masseboeuf, C. Gatel et al., Off-Axial Aberration Correction using a B-COR for Lorentz and HREM Modes, Microscopy and Microanalysis, vol.20, pp.932-933, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430589

M. Sta?o, S. Jamet, J. C. Toussaint, S. Bochmann, J. Bachmann et al., Probing domain walls in cylindrical magnetic nanowires with electron holography, Journal of Physics : Conference Series, vol.903, issue.1, p.12055, 2017.

R. Wang, A. Masseboeuf, D. Neumeyer, M. Monthioux, A. Lopez-bezanilla et al., Doped carbon nanostructure for cold-field emission guns : Structural and EELS studies, 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC), pp.1-2, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430581

R. Wang, R. Arenal, A. Masseboeuf, D. Neumeyer, M. Monthioux et al., Structural and EELS studies on Doped Carbon Nanostructures for Cold Field Emission, Microscopy and Microanalysis, vol.22, pp.60-61, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01430580

M. R. Bionta, B. Chalopin, A. Masseboeuf, and B. Chatel, First results on laser-induced field emission from a CNT-based nanotip, Ultramicroscopy, issue.2, pp.152-155, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01252952

F. Cheynis, A. Masseboeuf, O. Fruchart, N. Rougemaille, J. Toussaint et al., How many bits may fit in a single magnetic dot ? XMCD-PEEM evidences the switching of Néel caps inside Bloch domain walls, 2009.

D. Cooper, A. Béché, M. Hertog, A. Masseboeuf, J. L. Rouviere et al., Off-Axis Electron Holography for Field Mapping in the Semiconductor Industry. Microscopy and Microanalysis, vol.24, pp.5-8, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508681

O. Fruchart, A. Masseboeuf, J. C. Toussaint, and P. Bayle-guillemaud, Growth and micromagnetism of self-assembled epitaxial fcc(111) cobalt dots, Journal of Physics : Condensed Matter, vol.25, issue.49, p.496002, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00857346

O. Fruchart, N. Rougemaille, A. Bendounan, J. Toussaint, R. Belkhou et al., Asymmetric Hysteresis of Néel Caps in Flux-Closure Magnetic Dots, IEEE Transactions on Magnetics, vol.46, issue.6, pp.1552-1555, 2010.

F. Cayssol, D. Ravelosona, C. Chappert, J. Ferré, and J. P. Jamet, Domain Wall Creep in Magnetic Wires, Physical Review Letters, vol.92, issue.10, p.107202, 2004.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Threedimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, vol.10, issue.6, pp.424-428, 2011.

E. Choi, S. J. Chae, and A. Kim, Keun Won Kang, Min Seok Oh, Soon Hyeong Kwon, Sung Pil Yoon, and Sung Gyu Pyo. Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications, Journal of Nanoscience and Nanotechnology, vol.15, issue.11, pp.9104-9109, 2015.

J. Cleuziou, W. Wernsdorfer, T. Ondarçuhu, and M. Monthioux, Electrical Detection of Individual Magnetic Nanoparticles Encapsulated in Carbon Nanotubes, ACS Nano, vol.5, issue.3, pp.2348-2355, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00978450

D. Cooper, S. Cheng-ta-pan, and . Haigh, Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography, Journal of Applied Physics, vol.115, issue.23, p.233709, 2014.

S. Da-col, S. Jamet, N. Rougemaille, A. Locatelli, T. O. Mentes et al., Observation of Bloch-point domain walls in cylindrical magnetic nanowires, Physical Review B, vol.89, issue.18, p.180405, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00911025

N. De-jonge, M. Allioux, M. Doytcheva, M. Kaiser, B. K. Kenneth et al., Characterization of the field emission properties of individual thin carbon nanotubes, Applied Physics Letters, vol.85, issue.9, pp.1607-1609, 2004.

B. Dieny, R. Sousa, S. Bandiera, M. Souza, S. Auffret et al., Extended scalability and functionalities of MRAM based on thermally assisted writing, 2011 International Electron Devices Meeting, 2011.

F. Maher, R. B. El-kady, and . Kaner, Scalable fabrication of high-power graphene microsupercapacitors for flexible and on-chip energy storage, Nature Communications, vol.4, p.1475, 2013.

C. P. Ewels and M. Glerup, Nitrogen Doping in Carbon Nanotubes, Journal of Nanoscience and Nanotechnology, vol.5, issue.9, pp.1345-1363, 2005.

F. Feldtkeller, Bloch lines in nickel-iron films, Electric and Magnetic Properties of Thin Metallic Layers, pp.98-110, 1961.

A. Fernández-pacheco, J. M. De-teresa, R. Córdoba, and M. R. Ibarra, Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition, Physical Review B, vol.79, issue.17, p.174204, 2009.

A. Fernández-pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer et al., Three-dimensional nanomagnetism, Nature Communications, vol.8, p.15756, 2017.

D. Gabor, A new microscopic principle, NATURE, vol.161, pp.777-778, 1948.

C. Gatel, F. Houdellier, and E. Snoeck, Dynamical holographic Moirés in a TEM, Journal of Physics D : Applied Physics, vol.49, issue.32, p.324001, 2016.

C. Gatel, A. Lubk, G. Pozzi, E. Snoeck, and M. Hÿtch, Counting Elementary Charges on Nanoparticles by Electron Holography, Physical Review Letters, vol.111, issue.2, p.25501, 2013.

A. Geim and K. Novoselov, The Nobel Prize in Physics, p.1, 2010.

J. Grollier, P. Boulenc, V. Cros, A. Hamzi?, A. Vaurès et al., Switching a spin valve back and forth by current-induced domain wall motion, Applied Physics Letters, vol.83, issue.3, pp.509-511, 2003.

L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, Holographic Interferometry, Journal of Applied Physics, vol.37, issue.2, pp.642-649, 1966.

R. Hertel, Ultrafast domain wall dynamics in magnetic nanotubes and nanowires, Journal of Physics : Condensed Matter, vol.28, issue.48, p.483002, 2016.

A. Hrabec, J. Sampaio, M. Belmeguenai, I. Gross, R. Weil et al., Current-induced skyrmion generation and dynamics in symmetric bilayers, Nature Communications, vol.8, p.15765, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562694

Y. Huai, F. Albert, P. Nguyen, M. Pakala, and T. Valet, Observation of spintransfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions, Applied Physics Letters, vol.84, issue.16, pp.3118-3120, 2004.

A. Hubert and R. Shafer, Magnetic Domains, 1998.
URL : https://hal.archives-ouvertes.fr/jpa-00214508

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.

P. Yurii, A. Ivanov, S. Chuvilin, H. Lopatin, J. Mohammed et al., Direct Observation of Current-Induced Motion of a 3D Vortex Domain Wall in Cylindrical Nanowires, ACS Applied Materials & Interfaces, vol.9, issue.20, pp.16741-16744, 2017.

S. Jamet, N. Rougemaille, J. C. Toussaint, and O. Fruchart, 25 -Head-to-head domain walls in onedimensional nanostructures : An extended phase diagram ranging from strips to cylindrical wires, Series in Electronic and Optical Materials, pp.783-811, 2015.

W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang et al., Direct observation of the skyrmion Hall effect, Nature Physics, vol.13, issue.2, pp.162-169, 2017.

F. Junginger, M. Klaui, D. Backes, U. Rudiger, T. Kasama et al., Spin torque and heating effects in current-induced domain wall motion probed by transmission electron microscopy, Applied Physics Letters, vol.90, issue.13, p.132506, 2007.

A. Kovács, J. Caron, A. S. Savchenko, N. S. Kiselev, K. Shibata et al., Mapping the magnetization fine structure of a lattice of Bloch-type skyrmions in an FeGe thin film, Applied Physics Letters, vol.111, issue.19, p.192410, 2017.

M. Kreissig, R. Lebrun, F. Protze, K. J. Merazzo, J. Hem et al., Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits, AIP Advances, vol.7, issue.5, p.56653, 2017.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, pp.385-388, 2008.

A. Ltd, Arm and Samsung Foundry push the possibilities of semiconductor manufacturing

G. Matteucci, M. Muccini, and U. Hartmann, Flux measurements on ferromagnetic microprobes by electron holography, Physical Review B, vol.50, issue.10, pp.6823-6828, 1994.

G. Matteucci, M. Muccini, and U. Hartmann, Stray-field investigations on sharp ferromagnetic tips by electron holography, Journal of Magnetism and Magnetic Materials, vol.133, issue.1-3, pp.422-424, 1994.

X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler et al., High Efficiency Graphene Solar Cells by Chemical Doping, Nano Lett, vol.12, issue.6, pp.2745-2750, 2012.

, Carbon Meta-Nanotubes : Synthesis, Properties and Applications, 2011.

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes ? Carbon, vol.44, pp.1621-1623, 2006.

C. Moreau-luchaire, C. Moutafis, N. Reyren, J. Sampaio, C. A. Vaz et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nature Nanotechnology, vol.11, issue.5, pp.444-448, 2016.

J. Moritz, C. Arm, G. Vinai, E. Gautier, S. Auffret et al., Two-Bit-Per-Dot Patterned Media for Magnetic Storage, IEEE Magnetics Letters, vol.2, pp.4500104-4500104, 2011.

S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch et al., Skyrmion Lattice in a Chiral Magnet, Science, vol.323, issue.5916, pp.915-919, 2009.

K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer et al., Room-Temperature Quantum Hall Effect in Graphene, Science, vol.315, issue.5817, pp.1379-1379, 2007.

H. S. Park, X. Yu, S. Aizawa, T. Tanigaki, T. Akashi et al., Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography, Nature Nanotechnology, vol.9, issue.5, pp.337-342, 2014.

S. Stuart, M. Parkin, L. Hayashi, and . Thomas, Magnetic domain-wall racetrack memory, Science, vol.320, issue.5873, pp.190-194, 2008.

A. Peigney, C. Laurent, A. Flahaut, and . Rousset, Carbon nanotubes in novel ceramic matrix nanocomposites, Ceramics International, vol.26, issue.6, pp.677-683, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00957547

N. Perrissin, S. Lequeux, N. Strelkov, A. Chavent, L. Vila et al., A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy, Nanoscale, vol.10, issue.25, pp.12187-12195, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01824092

N. Perrissin, S. Lequeux, N. Strelkov, L. Vila, L. Buda-prejbeanu et al., Spin transfer torque magnetic random-access memory : Towards sub-10 nm devices, 2018 International Conference on IC Design Technology (ICICDT), pp.125-128, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01934505

S. D. Pollard, L. Huang, K. S. Buchanan, D. A. Arena, and Y. Zhu, Direct dynamic imaging of non-adiabatic spin torque effects, Nature Communications, vol.3, p.2025, 2012.

S. D. Pollard, J. A. Garlow, J. Yu, Z. Wang, Y. Zhu et al., Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy, Nature Communications, vol.8, 2017.

C. Portet, P. L. Taberna, P. Simon, E. Flahaut, and C. Laberty-robert, High power density electrodes for Carbon supercapacitor applications, Electrochimica Acta, vol.50, issue.20, pp.4174-4181, 2005.

V. Puliafito, L. Torres, O. Ozatay, T. Hauet, B. Azzerboni et al., Micromagnetic analysis of dynamical bubble-like solitons based on the time domain evolution of the topological density, Journal of Applied Physics, vol.115, issue.17, pp.17-139, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01282861

A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, Synthesis of OxidationResistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks, Nano Letters, vol.12, issue.6, pp.3193-3199, 2012.

D. Reyes, N. Biziere, B. Warot-fonrose, T. Wade, and C. Gatel, Magnetic Configurations in Co/Cu Multilayered Nanowires : Evidence of Structural and Magnetic Interplay, Nano Letters, vol.16, issue.2, pp.1230-1236, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01400872

A. Robert, F. Curl, S. Jr, W. Harold, R. E. Kroto et al., The Nobel Prize in Chemistry, 1996.

C. Luis-alfredo-rodríguez, D. Bran, E. Reyes, M. Berganza, C. Vázquez et al., Quantitative Nanoscale Magnetic Study of Isolated Diameter-Modulated FeCoCu Nanowires, ACS Nano, vol.10, issue.10, pp.9669-9678, 2016.

N. Rougemaille, V. Uhlí?, O. Fruchart, S. Pizzini, J. Vogel et al., Phase diagram of magnetic domain walls in spin valve nano-stripes, Applied Physics Letters, vol.100, issue.17, p.172404, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00674182

L. Schaedel, K. John, J. Gaillard, M. V. Nachury, L. Blanchoin et al., Microtubules self-repair in response to mechanical stress, Nature Materials, vol.14, issue.11, pp.1156-1163, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01218413

S. Schaefer, E. Felix, F. Muench, M. Antoni, C. Lohaus et al., NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyst with high noble metal utilisation, RSC Advances, vol.6, issue.74, pp.70033-70039, 2016.

C. Schönenberger, B. M. Van-der-zande, L. G. Fokkink, M. Henny, C. Schmid et al., Template Synthesis of Nanowires in Porous Polycarbonate Membranes : Electrochemistry and Morphology, vol.101, pp.5497-5505, 1997.

L. Serrano-ramón, R. Córdoba, L. A. Rodríguez, C. Magén, E. Snoeck et al., Ultrasmall Functional Ferromagnetic Nanostructures Grown by Focused Electron-Beam-Induced Deposition, ACS Nano, vol.5, issue.10, pp.7781-7787, 2011.

M. Anjan-soumyanarayanan, A. L. Raju, A. K. Gonzalez-oyarce, M. Tan, A. P. Im et al., Tunable roomtemperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nature Materials, vol.16, issue.9, pp.898-904, 2017.

S. Stankovich, A. Dmitriy, G. H. Dikin, K. M. Dommett, E. J. Kohlhaas et al., Graphene-based composite materials, Nature, vol.442, issue.7100, pp.282-286, 2006.

M. Sta?o, Magnetic Microscopy of Domains and Domain Walls in Ferromagnetic Nanotubes, 2017.

M. Sta?o, S. Schaefer, A. Wartelle, M. Rioult, R. Belkhou et al., Imaging magnetic flux-closure domains and domain walls in electroless-deposited CoNiB nanotubes, 2017.

R. Streubel, P. Fischer, F. Kronast, P. Volodymyr, D. D. Kravchuk et al., Magnetism in curved geometries, Journal of Physics D : Applied Physics, vol.49, issue.36, p.363001, 2016.

R. Streubel, C. Lambert, N. Kent, P. Ercius, A. T. N'diaye et al., Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films, Advanced Materials, vol.30, issue.27, p.1800199, 2018.

T. Tanigaki, K. Shibata, N. Kanazawa, X. Yu, and Y. Onose, Hyun Soon Park, Daisuke Shindo, and Yoshinori Tokura. Real-Space Observation of Short-Period Cubic Lattice of Skyrmions in MnGe, Nano Letters, vol.15, issue.8, pp.5438-5442, 2015.

A. Thiaville and Y. Nakatani, Domain-Wall Dynamics in Nanowiresand Nanostrips, Spin Dynamics in Confined Magnetic Structures III, vol.101, pp.161-205, 2006.

L. Tillie, E. Nowak, R. C. Sousa, M. Cyrille, B. Delaet et al., Data retention extraction methodology for perpendicular STT-MRAM, 2016 IEEE International Electron Devices Meeting (IEDM), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01718116

A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo et al., Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave, Physical Review Letters, vol.56, issue.8, pp.792-795, 1986.

A. C. Twitchett, R. E. Dunin-borkowski, R. J. Hallifax, R. F. Broom, and P. A. Midgley, Off-axis electron holography of electrostatic potentials in unbiased and reverse biased focused ion beam milled semiconductor devices, Journal of Microscopy, vol.214, issue.3, pp.287-296, 2004.

J. Vogel, . Cherifi, . Pizzini, . Romanens, . Camarero et al., Layerresolved imaging of domain wall interactions in magnetic tunnel junction-like trilayers, Journal of Physics : Condensed Matter, vol.19, issue.47, p.476204, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00133628

C. Wang, L. Qiao, C. Qu, W. Zheng, and Q. Jiang, First-Principles Calculations on the Emission Properties of Pristine and N-Doped Carbon Nanotubes, The Journal of Physical Chemistry C, vol.113, issue.3, pp.812-818, 2009.

R. Z. Wang, B. Wang, H. Wang, H. Zhou, A. P. Huang et al., Band bending mechanism for field emission in wide-band gap semiconductors, Applied Physics Letters, vol.81, issue.15, pp.2782-2784, 2002.

B. Warot-fonrose, C. Gatel, L. Calmels, V. Serin, and P. Schattschneider, Effect of spatial and energy distortions on energy-loss magnetic chiral dichroism measurements : Application to an iron thin film, Ultramicroscopy, vol.110, issue.8, p.000281216600015, 2010.

P. Weiss, L'hypothèse du champ moléculaire et la propriété ferromagnétique, Journal de Physique Théorique et Appliquée, vol.6, issue.1, pp.661-690, 1907.

L. Wen, F. Li, and H. Cheng, Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage : From Materials to Devices. Advanced Materials, vol.28, issue.22, pp.4306-4337, 2016.

F. Winkler, H. Amir, J. Tavabi, M. Barthel, E. Duchamp et al., Quantitative measurement of mean inner potential and specimen thickness from high-resolution off-axis electron holograms of ultra-thin layered WSe2, Ultramicroscopy, vol.178, pp.38-47, 2017.

D. W. Wong, I. Purnama, G. J. Lim, W. L. Gan, C. Murapaka et al., Current-induced three-dimensional domain wall propagation in cylindrical NiFe nanowires, Journal of Applied Physics, vol.119, issue.15, p.153902, 2016.

H. Wong, Beyond the conventional transistor, IBM Journal of Research and Development, vol.46, issue.2.3, pp.133-168, 2002.

S. M. Wong, What exactly is a Skyrmion, 2002.

M. L. Wu, Y. Chen, L. Zhang, H. Zhan, L. Qiang et al., High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition, ACS Applied Materials & Interfaces, vol.8, issue.12, pp.8137-8144, 2016.

Y. Xu, Y. Peng, T. You, L. Yao, J. Geng et al., Nano-MoS2 and Graphene Additives in Oil for Tribological Applications, Nanotechnology in Oil and Gas Industries, pp.151-191, 2018.

X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang et al., Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe, Nat Mater, vol.10, issue.2, pp.106-109, 2011.

F. Zheng, H. Li, S. Wang, D. Song, C. Jin et al., András Kovács, Jiadong Zang, Mingliang Tian, Yuheng Zhang, Haifeng Du, and Rafal E. Dunin-Borkowski. Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk, 2017.

, Modern Techniques for Characterizing Magnetic Materials, 2005.

.. .. Publications-sélectionnées, Physical Review Letters, p.104, 2010.

, Carbon, p.50, 2012.

. Micron, , p.63, 2014.

. Nanoresearch, , vol.8, 2014.

, Ultramicroscopy, p.164, 2016.

, 31055 Toulouse Cedex 4, France. ? Corresponding author, *Present address: CEMES, 29 rue Jeanne Marvig, vol.94347

N. D. Mermin and H. Wagner, Phys. Rev. Lett, vol.17, p.1133, 1966.

P. Poulopoulos and K. Baberschke, J. Phys. Condens. Matter, vol.11, p.9495, 1999.

A. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, 1999.

W. Döring, J. Appl. Phys, vol.39, p.1006, 1968.

A. S. Arrott and T. L. Templeton, Physica (Amsterdam), vol.233, p.259, 1997.

A. Thiaville, J. M. García, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B, vol.67, p.94410, 2003.

H. Zocher, Faraday Soc, vol.29, p.945, 1933.

F. Brochard, J. Phys, vol.33, p.607, 1972.

P. G. De-gennes, The Physics of, Liquid Crystals Int. Series Monographs, vol.83, 1974.

C. Blanc, D. Svensek, S. Zumer, and M. Nobili, Phys. Rev. Lett, vol.95, p.97802, 2005.

J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaurès et al., Appl. Phys. Lett, vol.83, p.509, 2003.

T. Okuno, K. Shigeto, T. Ono, K. Mibu, and T. Shinjo, J. Magn. Magn. Mater, vol.240, p.1, 2002.

B. Van-waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak et al., Nature, vol.444, p.461, 2006.

R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett, vol.98, p.117201, 2007.

F. Cheynis, A. Masseboeuf, O. Fruchart, N. Rougemaille, J. C. Toussaint et al., Phys. Rev. Lett, vol.102, p.107201, 2009.

J. Zhu, Y. Zheng, and G. A. Prinz, J. Appl. Phys, vol.87, p.6668, 2000.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit et al., Science, vol.309, p.1688, 2005.

K. Kim, J. Lee, S. Ahn, K. Lee, C. Lee et al., Nature, vol.458, p.740, 2009.

P. O. Jubert, J. C. Toussaint, O. Fruchart, C. Meyer, and Y. Samson, Europhys. Lett, vol.63, p.132, 2003.

A. S. Arrott, B. Heinrich, and A. Aharoni, IEEE Trans. Magn, vol.15, p.1228, 1979.

R. Hertel and H. Kronmüller, Phys. Rev. B, vol.60, p.7366, 1999.

J. C. Toussaint, A. Marty, N. Vukadinovic, J. Ben-youssef, and M. Labrune, Comput. Mater. Sci, vol.24, p.175, 2002.

E. Kritsikis, J. C. Toussaint, O. Fruchart, and L. D. Budaprejbeanu,

O. Fruchart,

O. Fruchart, M. Eleoui, P. O. Jubert, P. David, V. Santonacci et al.,

. Meyer, J. Phys. Condens. Matter, vol.19, p.53001, 2007.

J. N. Chapman, J. Phys. D, vol.17, p.623, 1984.

A. Hubert, Phys. Status Solidi, vol.32, p.519, 1969.

D. Li, C. Yu, J. Pearson, and S. D. Bader, Phys. Rev. B, vol.66, p.20404, 2002.

H. A. Van-den and . Berg, J. Magn. Magn. Mater, vol.44, p.207, 1984.

D. H. Kim, B. L. Mesler, E. Anderson, P. Fischer, J. Moon et al., , 2010.

Y. Nakatani, A. Thiaville, and J. Miltat, Nature Mater, vol.2, p.521, 2003.

M. Kläui, M. Laufenberg, L. Heyne, D. Backes, U. Rüdiger et al., Appl. Phys. Lett, vol.88, p.232507, 2006.

M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius et al., Electron microscopy image enhanced, Nature, vol.392, pp.768-777, 1998.

O. L. Krivanek, N. Dellby, and A. R. Lupini, Towards sub-angstrom electron beams, Ultramicroscopy, vol.78, pp.1-11, 1999.

J. Zach, Chromatic correction: a revolution in electron microscopy, Philos Trans R Soc A, vol.367, pp.3699-707, 2009.

A. V. Crewe, D. N. Eggenberger, J. Wall, and L. M. Welter, Electron gun using a field emission source, Rev Sci Instrum, vol.39, pp.576-83, 1968.

P. W. Hawkes and E. Kasper, Principles of electron optics: applied geometrical optics, 1989.

M. J. Fransen, Experimental evaluation of the extended Schottky model for ZrO/W electron emission, J Vac Sci Technol B: Microelectron Nanometer Struct, vol.16, issue.4, pp.2063-72, 1998.

P. E. Batson, N. Dellby, and O. L. Krivanek, Sub-angstrom resolution using aberration-corrected electron optics, Nature, vol.418, pp.617-637, 2002.

D. A. Muller, L. F. Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang et al., Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science, vol.319, pp.1073-1079, 2008.

H. Lichte, D. Geiger, and M. Linck, Off-axis electron holography in an aberration-corrected transmission electron microscope, Philos Trans R Soc A, vol.367, pp.3773-93, 2009.

M. J. Hytch, F. Houdellier, F. Hue, and E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices, Nature, vol.453, pp.1086-1095, 2008.

N. Xu and S. Huq, Novel cold cathode materials and applications, Mater Sci Eng R, vol.48, pp.47-189, 2005.

N. De-jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.420, pp.393-398, 2002.

P. Kruit, M. Bezuijen, and J. E. Barth, Source brightness and useful beam current of carbon nanotubes and other very small emitters, J Appl Phys, vol.99, pp.24315-24337, 2006.

N. De-jonge, Carbon nanotube electron sources for electron microscopes, Advances in imaging and electron physics, vol.156, pp.203-236, 2009.

N. De-jonge, Y. Lamy, and M. Kaiser, Controlled mounting of individual multiwalled carbon nanotubes on support tips, Nano Lett, vol.3, pp.1621-1625, 2003.

C. Kim, H. Jang, S. Lee, H. Lee, Y. Roh et al., In situ characterization of the field-emission behavior of individual carbon nanotubes, Nanotechnology, vol.17, pp.5180-5184, 2006.

B. P. Ribaya, J. Leung, P. Brown, M. Rahman, and C. V. Nguyen, A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes, Nanotechnology, vol.19, pp.185201-185210, 2008.

Y. Saito, K. Seko, and J. Kinoshita, Dynamic behavior of carbon nanotube field emitters observed by in situ transmission electron microscopy, Diamond Relat Mater, vol.14, pp.1843-1850, 2005.

J. Bonard, C. Klinke, K. Dean, and B. Coll, Degradation and failure of carbon nanotube field emitters, Phys Rev B, vol.67, pp.115406-115422, 2003.

P. Vincent, S. T. Purcell, C. Journet, and V. T. Binh, Modelization of resistive heating of carbon nanotubes during field emission, Phys Rev B, vol.66, pp.75406-75417, 2002.

R. L. Jacobsen and M. Monthioux, Carbon beads with protruding cones, Nature, vol.385, pp.211-213, 1997.

H. Allouche, M. Monthioux, and R. L. Jacobsen, Chemical vapor deposition of pyrolytic carbon on carbon nanotubes: Part I. Synthesis and morphology, Carbon, vol.41, pp.2897-912, 2003.

, CARBON, vol.50, pp.2037-2044, 2012.

H. Allouche and M. Monthioux, Chemical vapor deposition of pyrolytic carbon on carbon nanotubes: Part II. Texture and structure, Carbon, vol.43, pp.1265-78, 2005.

M. Monthioux, H. Allouche, and R. Jacobsen, Chemical vapor deposition of pyrolytic carbon on carbon nanotubes: Part III. Formation mechanisms, Carbon, vol.44, pp.3183-94, 2006.

M. Audi, L. Dolcino, F. Doni, and B. Ferrario, A new ultrahigh vacuum combination pump, J Vac Sci Technol A, vol.5, pp.2587-90, 1987.

R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc R Soc London Ser A, vol.119, pp.173-81, 1928.

S. D. Liang and L. Chen, Generalized Fowler-Nordheim theory of field emission of carbon nanotubes, Phys Rev Lett, vol.101, pp.27602-27608, 2008.

J. Bonard, M. Croci, I. Arfaoui, O. Noury, and D. Sarangi, Châ telain A. Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters, Diamond Relat Mater, vol.11, pp.763-771, 2002.

N. De-jonge, M. Allioux, J. T. Oostveen, K. Teo, and W. I. Milne, Optical performance of carbon-nanotube electron sources, Phys Rev Lett, vol.94, pp.186807-186818, 2005.

R. C. Smith, R. D. Forrest, J. D. Carey, W. K. Hsu, and S. Silva, Interpretation of enhancement factor in non-planar field emitters, Appl Phys Lett, vol.87, pp.13111-13115, 2005.

G. Chen, D. H. Shin, S. Roth, and C. J. Lee, Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn, Nanotechnology, vol.20, pp.315201-315207, 2009.

H. J. Kim, M. J. Bae, Y. C. Kim, E. S. Cho, Y. C. Sohn et al., Growth of carbon nanotube field emitters on single strand carbon fiber: a linear electron source, Nanotechnology, vol.22, pp.95602-95610, 2011.

J. Y. Huang, K. Kempa, S. H. Jo, S. Chen, and Z. F. Ren, Giant field enhancement at carbon nanotube tips induced by multistage effect, Appl Phys Lett, vol.87, pp.53110-53113, 2005.

J. Cumings, A. Zettl, M. R. Mccartney, and J. Spence, Electron holography of field-emitting carbon nanotubes, Phys Rev Lett, vol.88, pp.56804-56812, 2002.

M. J. Fransen, M. Overwijk, and P. Kruit, Brightness measurements of a ZrO/W Schottky electron emitter in a transmission electron microscope, Appl Surf Sci, vol.146, pp.357-62, 1999.

A. Van-veen, C. W. Hagen, J. E. Bart, and P. Kruit, Reduced brightness of the ZrO/W Schottky electron emitter, J Vac Sci Technol B, vol.19, pp.2038-2082, 2001.

D. Cooper, R. Truche, P. Rivallin, J. Hartmann, F. Laugier et al., Medium resolution off-axis electron holography with millivolt sensitivity, Appl Phys Lett, vol.91, pp.143501-143505, 2007.

O. L. Krivanek, N. Dellby, R. J. Keyse, M. F. Murfitt, C. S. Own et al., Advances in aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. Aberration-corrected electron microscopy, Advances in imaging and electron physics, vol.153, pp.21-60, 2008.

H. References-allouche, M. Monthioux, and R. L. Jacobsen, Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 1. Synthesis and morphology, Carbon, vol.41, pp.2897-2912, 2003.

F. Banhart, Irradiation effects in carbon nanostructures, Rep. Progr. Phys, vol.62, pp.1181-1221, 1999.

J. M. Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi et al., Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?, Diam. Relat. Mater, vol.11, pp.763-768, 2002.

I. Brodie and C. A. Spindt, Advances in Electronics and Electron Physics, vol.83, pp.1-106, 1992.

J. Cumings, A. Zettl, M. Mccartney, and J. Spence, Electron holography of fieldemitting carbon nanotubes, Phys. Rev. Lett, vol.88, pp.1-4, 2002.

N. De-jonge, Carbon nanotube electron sources for electron microscopes, Advances in Imaging and Electron Physics, pp.203-233, 2009.

N. De-jonge, M. Allioux, M. Doytcheva, M. Kaiser, K. B. Teo et al., Characterization of the field emission properties of individual thin carbon nanotubes, Appl. Phys. Lett, vol.85, pp.1607-1609, 2004.

N. De-jonge and J. M. Bonard, Carbon nanotube electron sources and applications, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci, vol.362, pp.2239-2266, 2004.

N. De-jonge, Y. Lamy, and M. Kaiser, Controlled mounting of individual multiwalled carbon nanotubes on support tips, Nano Lett, vol.3, pp.1621-1624, 2003.

N. De-jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.420, pp.393-395, 2002.

N. De-jonge and N. J. Van-druten, Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope, Ultramicroscopy, vol.95, pp.85-91, 2003.

R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc. R. Soc. Lond, vol.781, pp.173-181, 1928.

R. Gao, Z. Pan, and Z. Wang, Work function at the tips of multiwalled carbon nanotubes, Appl. Phys. Lett, vol.78, pp.1757-1759, 2001.

R. H. Good and E. W. Mueller, Handbuch der Physik, pp.176-231, 1956.

O. Gröning, O. M. Küttel, C. Emmenegger, P. Gröning, and L. Schlapbach, Field emission properties of carbon nanotubes, J. Vac. Sci. Technol. B, vol.18, pp.665-678, 2000.

K. S. Hazra, V. Jain, and D. S. Misra, The role of tunneling barrier modification for the saturation current of carbon nanotube field emission in strong electric field, Chem. Phys. Lett, vol.502, pp.194-197, 2011.

K. He, J. Cho, Y. Jung, T. S. Picraux, and J. Cumings, Silicon nanowires: electron holography studies of doped p-n junctions and biased Schottky barriers, Nanotechnology, vol.24, pp.1-6, 2013.

F. Houdellier, A. Masseboeuf, M. Monthioux, and M. J. Hÿtch, New carbon cone nanotip for use in a highly coherent cold field emission electron microscope, Carbon, vol.50, pp.2037-2044, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678407

L. De-knoop, / Micron, vol.63, pp.2-8, 2014.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, Nanoscale holographic interferometry for strain measurements in electronic devices, Nature, vol.453, pp.1086-1089, 2008.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

R. L. Jacobsen and M. Monthioux, Carbon beads with protruding cones, Nature, vol.385, pp.211-212, 1997.

O. L. Krivanek, T. C. Lovejoy, N. Dellby, and R. W. Carpenter, Monochromated STEM with a 30 meV-wide, atom-sized electron probe, Microscopy, vol.62, pp.3-21, 2013.

P. Liu, Q. Sun, F. Zhu, K. Liu, K. Jiang et al., Measuring the work function of carbon nanotubes with thermionic method, Nano Lett, vol.8, pp.647-651, 2008.

G. Möllenstedt and H. Düker, FRESNELscher Interferenzversuch mit einem Biprisma für Elektronenwellen, Naturwissenschaften, vol.42, p.41, 1955.

E. L. Murphy and R. H. Good, Thermionic emission, field emission, and the transition region, Phys. Rev, vol.102, pp.1464-1473, 1956.

B. P. Ribaya, J. Leung, P. Brown, M. Rahman, and C. V. Nguyen, A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes, Nanotechnology, vol.19, pp.1-8, 2008.

Y. Saito, K. Seko, and J. Kinoshita, Dynamic behavior of carbon nanotube field emitters observed by in situ transmission electron microscopy, Diam. Relat. Mater, vol.14, pp.1843-1847, 2005.

Y. Saito and S. Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, vol.38, pp.169-182, 2000.

M. Shiraishi and M. Ata, Work function of carbon nanotubes, Carbon, vol.39, pp.1913-1917, 2001.

S. Suzuki, Y. Watanabe, Y. Homma, S. Fukuba, S. Heun et al., Work functions of individual single-walled carbon nanotubes, Appl. Phys. Lett, vol.85, pp.127-129, 2004.

K. Svensson, Y. Jompol, H. Olin, and E. Olsson, Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion, Rev. Sci. Instrum, vol.74, pp.4945-4947, 2003.

M. Sveningsson, K. Hansen, K. Svensson, E. Olsson, and E. Campbell, Quantifying temperature-enhanced electron field emission from individual carbon nanotubes, Phys. Rev. B, vol.72, pp.85429-85430, 2005.

H. Todokoro, N. Saitou, and S. Yamamoto, Role of ion bombardment in field emission current instability, Jpn. J. Appl. Phys, vol.21, pp.1513-1516, 1982.

R. Yuge, K. Toyama, T. Ichihashi, T. Ohkawa, Y. Aoki et al., Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation, Appl. Surf. Sci, vol.258, pp.6958-6962, 2012.

H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. D. Appl. Phys, vol.40, pp.149-177, 2007.

S. Manalis, K. Babcock, J. Massie, V. Elings, and M. Dugas, Submicron studies of recording media using thin film magnetic scanning probes, Appl. Phys. Lett, vol.66, pp.2585-2587, 1995.

B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone et al., Magnetic recording at 1.5 Pb m ?2 using an integrated plasmonic antenna, Nat. Photonics, vol.4, pp.484-488, 2010.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng et al., Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer, Nat. Photonics, vol.3, pp.220-224, 2009.

J. M. Thomas, E. T. Simpson, T. Kasama, and R. E. Duninborkowski, Electron holography for the study of magnetic nanomaterials, Acc. Chem. Res, vol.41, pp.665-674, 2008.

A. Masseboeuf, A. Marty, P. Bayle-guillemaud, C. Gatel, and E. Snoeck, Quantitative observation of magnetic flux distribution in new magnetic films for future high density recording media, Nano Lett, vol.9, pp.2803-2806, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00409791

J. J. Kim, K. Hirata, Y. Ishida, D. Shindo, M. Takahashi et al., Magnetic domain observation in writer pole tip for perpendicular recording head by electron holography, Appl. Phys. Lett, p.162501, 2008.

K. Hirata, Y. Ishida, T. Akashi, D. Shindo, and A. Tonomura, Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope, J. Electron Microsc, vol.61, pp.305-308, 2012.

T. Goto, J. S. Jeong, W. X. Xia, Z. Akase, D. Shindo et al., Electron holography of magnetic field generated by a magnetic recording head, vol.62, pp.383-389, 2013.

W. Ehrenberg and R. E. Siday, The refractive index in electron optics and the principles of dynamics, Proc. Phys. Soc. Sect. B, vol.62, pp.8-21, 1949.

Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev, vol.115, pp.485-491, 1959.

Y. Aharonov and D. Bohm, Further considerations on electromagnetic potentials in the quantum theory, Phys. Rev, vol.123, pp.1511-1524, 1961.

A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe et al., Observation of Aharonov-Bohm effect by electron holography, Phys. Rev. Lett, vol.48, pp.1443-1446, 1982.

E. Snoeck and C. Gatel, Magnetic Mapping Using Electron Holography in Transmission Electron Microscopy in Micronanoelectronics

W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich et al., Scalable parallel micromagnetic solvers for magnetic nanostructures, Comput. Mater. Sci, vol.28, pp.366-383, 2003.

S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen, and W. R. Branford, Direct observation of magnetic monopole defects in an artificial spin-ice system, Nat. Phys, vol.6, pp.359-363, 2010.

S. Zhang, I. Gilbert, C. Nisoli, G. W. Chern, M. J. Erickson et al., Crystallites of magnetic charges in artificial spin ice, Nature, vol.500, pp.553-557, 2013.

C. M. Lieber, One-dimensional nanostructures: chemistry, physics & applications, vol.107, pp.209-218, 1998.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers et al., Onedimensional nanostructures: synthesis, characterization, and applications, Adv. Mater, vol.15, issue.5, pp.353-389, 2003.

S. V. Kuchibhatla, A. Karakoti, D. Bera, and S. Seal, One dimensional nanostructured materials, Prog. Mater. Sci, vol.52, issue.5, pp.699-913, 2007.

M. Pratzer, H. Elmers, M. Bode, O. Pietzsch, A. Kubetzka et al., Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes, Phys. Rev. Lett, vol.87, issue.12, p.127201, 2001.

P. M. Rørvik, T. Grande, and M. Einarsrud, One-dimensional nanostructures of ferroelectric perovskites, Adv. Mater, vol.23, issue.35, pp.4007-4034, 2011.

A. I. Boukai, Y. Bunimovich, J. Tahir-kheli, J. Yu, W. A. Goddard-iii et al., Silicon nanowires as efficient thermoelectric materials, Nature, vol.451, issue.7175, pp.168-171, 2008.

T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando et al., Recent developments in one-dimensional inorganic nanostructures for photodetectors, Adv. Funct. Mater, vol.20, issue.24, pp.4233-4248, 2010.

C. Chappert, A. Fert, and F. N. Van-dau, The emergence of spin electronics in data storage, Nat. Mater, vol.6, issue.11, pp.813-823, 2007.

C. Phatak, Ultramicroscopy, vol.164, pp.24-30, 2016.

D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit et al., Magnetic domain-wall logic, Science, vol.309, issue.5741, pp.1688-1692, 2005.

M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. Parkin, Current-controlled magnetic domain-wall nanowire shift register, Science, vol.320, issue.5873, pp.209-211, 2008.

A. Brataas, A. Kent, and H. Ohno, Current-induced torques in magnetic materials, Nat. Mater, vol.11, pp.372-381, 2012.

D. L. Graham, H. A. Ferreira, and P. P. Freitas, Magnetoresistive-based biosensors and biochips, Trends Biotechnol, vol.22, issue.9, pp.455-462, 2004.

H. Huang, T. Ger, Y. Lin, and Z. Wei, Single cell detection using a magnetic zigzag nanowire biosensor, Lab Chip, vol.13, issue.15, pp.3098-3104, 2013.

J. S. Jiang and S. D. Bader, Rational design of the exchange-spring permanent magnet, J. Phys.: Condens. Matter: Inst. Phys. J, vol.26, issue.6, p.64214, 2014.

N. Winkler, J. Leuthold, Y. Lei, and G. Wilde, Large-scale highly ordered arrays of freestanding magnetic nanowires, J. Mater. Chem, vol.22, issue.32, p.16627, 2012.

N. Biziere, C. Gatel, R. Lassalle-balier, M. C. Clochard, J. E. Wegrowe et al., Imaging the fine structure of a magnetic domain wall in a Ni nanocylinder, Nano Lett, vol.13, issue.5, pp.2053-2057, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01143150

N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi et al., Application of carbon nanotubes to field emission displays, Diamond Relat. Mater, vol.10, issue.2, pp.265-270, 2001.

N. De-jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.420, issue.6914, pp.393-395, 2002.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.

M. Monthioux, Carbon Meta-Nanotubes: Synthesis, Properties and Applications, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02106281

R. H. Baughman, A. A. Zakhidov, and W. A. , Heer, Carbon nanotubes-the route toward applications, Science, vol.297, issue.5582, p.12161643, 2002.

A. V. Eletskii, Carbon nanotube-based electron field emitters, Physics-Uspekhi, vol.53, issue.9, p.863, 2010.

F. Houdellier, A. Masseboeuf, M. Monthioux, and M. J. Hÿtch, New carbon cone nanotip for use in a highly coherent cold field emission electron microscope, Carbon, vol.50, issue.5, pp.2037-2044, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678407

S. Chung, R. D. Mcmichael, D. T. Pierce, and J. Unguris, Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis, Phys. Rev. B, vol.81, issue.2, p.24410, 2010.

C. Phatak, A. Petford-long, O. Heinonen, M. Tanase, and M. D. Graef, Nanoscale structure of the magnetic induction at monopole defects in artificial spin-ice lattices, Phys. Rev. B, vol.83, issue.17, p.174431, 2011.

C. Gatel, A. Lubk, G. Pozzi, E. Snoeck, and M. Hÿtch, Counting elementary charges on nanoparticles by electron holography, Phys. Rev. Lett, vol.111, issue.2, p.25501, 2013.

D. Shindo and Y. Murakami, Electron holography study of electric field variations, J. Electron Microsc, vol.60, pp.225-237, 2011.

J. Cumings, A. Zettl, M. R. Mccartney, and J. C. Spence, Electron holography of field-emitting carbon nanotubes, Phys. Rev. Lett, vol.88, issue.5, p.56804, 2002.

Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev, vol.115, issue.3, pp.485-491, 1959.

A. Lubk, D. Wolf, P. Simon, C. Wang, S. Sturm et al., Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires, Appl. Phys. Lett, vol.105, issue.17, p.173110, 2014.

T. Tanigaki, Y. Takahashi, T. Shimakura, T. Akashi, R. Tsuneta et al., Three-dimensional observation of magnetic vortex cores in stacked ferromagnetic discs, Nano Lett, vol.15, issue.2, pp.1309-1314, 2015.

D. Wolf, L. A. Rodriguez, A. Béché, E. Javon, L. Serrano et al., 3D Magnetic induction maps of nanoscale materials revealed by electron holographic tomography, Chem. Mater, vol.27, issue.19, pp.6771-6778, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01707386

R. E. Dunin-borkowski, T. Kasama, A. Wei, S. L. Tripp, M. J. Hÿtch et al., Off-axis electron holography of magnetic nanowires and chains, rings, and planar arrays of magnetic nanoparticles, Microsc. Res. Techn, vol.64, issue.5-6, pp.390-402, 2004.

J. Tatum and W. Jaworski, A solution of Abel's equation, J. Quant. Spectrosc. Radiat. Transf, vol.38, issue.4, pp.319-322, 1987.

J. D. Jackson, Classical Electrodynamics, 1999.

M. De-graef, N. Nuhfer, and M. Mccartney, Phase contrast of spherical magnetic particles, J. Microsc, vol.194, issue.1, p.84, 1999.

S. Ma, H. Gao, and L. Wu, Modified Fourier-Hankel method based on analysis of errors in Abel inversion using Fourier transform techniques, Appl. Opt, vol.47, issue.9, pp.1350-1357, 2008.

A. Savitzky and M. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem, vol.36, issue.8, pp.1627-1639, 1964.

L. De-knoop, F. Houdellier, C. Gatel, A. Masseboeuf, M. Monthioux et al., Determining the work function of a carbon-cone cold-field emitter by in situ electron holography, Micron, vol.63, pp.2-8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430588

J. Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi et al., Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?, Diamond Relat. Mater, vol.11, issue.3-6, pp.763-768, 2002.

J. F. Einsle, C. Gatel, A. Masseboeuf, R. Cours, M. A. Bashir et al., In situ electron holography of the dynamic magnetic field emanating from a hard-disk drive writer, Nano Res, vol.8, issue.4, pp.1241-1249, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430584

M. Beleggia, T. Kasama, D. J. Larson, T. F. Kelly, R. E. Dunin-borkowski et al., Towards quantitative off-axis electron holographic mapping of the electric field around the tip of a sharp biased metallic needle, J. Appl. Phys, vol.116, p.24305, 2014.