A. Lidgett, K. Jennings, X. Johnson, K. Guthridge, E. Jones et al., Isolation and characterisation of a fructosyltransferase gene from perennial ryegrass (Lolium perenne), Patent International Patent PQ8155. Fructosyltransferase homologues from Ryegrass (Lolium) and Fescue (Festuca) species, Filed, vol.159, pp.1037-1043, 2002.

N. Pavis, J. Boucaud, and . Ph, Fructans and Fructan metabolising enzymes in Leaves of Lolium perenne, New Phytologist, vol.150, pp.83-95, 2001.

I. Vijn and . Ss, Fructan more than a reserve carbohydrate ?, Trends In Plant Science, vol.120, pp.351-359, 1999.

F. Volaire, . Th, and F. Lelievre, Survival and recovery of perennial forage grasses under prolonged Mediterannean drought, New Phytologist, vol.140, pp.439-449, 1998.

J. Chalmers, X. Johnson, A. Lidgett, and G. Spangenberg, Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne), J Plant Physiol, vol.160, pp.1385-1391, 2003.

A. Lidgett, . Jx, K. Terdich, K. Guthridge, J. L. Spangenberg et al., The Cloning and Functional Analysis of a Fructosyltransferase cDNA from Perennial Ryegrass, J. Plant Phyisiol, vol.159, pp.1037-1043, 2002.

G. Spangenberg, . Wz, J. Nagel, and I. Potrykus, Protoplast Culture and Generation of transgenic plants in red fescue, Festuca rubra L.) Plant Science, vol.97, pp.83-94, 1994.

N. Sprenger, . Bk, A. Brandt, and T. Boller, Wiemkin A: Purification, cloning and functional expression of 6-SFT, a key enzyme of fructan synthesis in barley, vol.107, pp.1249-1255, 1995.

W. Van-den-ende and V. Laere, A: De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose :sucrose 1fructosyltransferase and fructan :fructan &-fructosyltransferase) from chicory roots, Planta, vol.200, pp.335-342, 1996.

D. Obenland, . Su, T. Boller, and A. Wiemkin, Purification and characterisation of three soluble invertsases from Barley leaves, Plant Physiology, p.101, 1993.

M. T. Chan and . Ys, The 3' untranslated region of a rice alpha-amylase gene functions as a sugar-dependent mRNA stability determinant, Proc Natl Acad Sci, vol.95, pp.6543-6547, 1998.

X. Johnson, A. Lidgett, J. Chalmers, K. Guthridge, L. Jones et al., Isolation and characterisation of an invertase cDNA from perennial ryegrass (Lolium perenne), J Plant Physiol, vol.160, pp.903-911, 2003.

G. Spangenberg, J. X. La, K. Terdich, and C. J. , Fructosyltransferase homologues from Ryegrass (Lolium) and Fescue (Festuca) species,. International Patent PQ8155, 2002.

S. Panter, A. Mouradov, P. Badenhorst, L. Martelotto, K. Smith et al., Re-Programming Photosynthetic Cells of Perennial Ryegrass (Lolium perenne L) for Fructan Biosynthesis through Transgenic Expression of Fructan Biosynthetic Genes under the Control of Photosynthetic Promoters, vol.7, pp.5487-5499, 2017.

C. Rameau, . Bc, D. Cadier, O. Grandjean, and F. Miard, Murfet IC New ramosus mutants at loci Rms1, Rms3, and Rms4 resulting from the mutation breeding program at Versailles, Pisum Genet, vol.29, pp.7-12, 1997.

K. C. Snowden, . Sa, B. J. Janssen, K. R. Templeton, H. M. Loucas et al., Klee HJ The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE 8 gene affects branch production and plays a role in leaf senescence, root growth and flower development, Plant Cell, vol.17, pp.746-759, 2005.

K. Sorefan, . Bj, K. Haurogné, M. Goussot, K. Bainbridge et al., MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and Pea

, Genes Dev, vol.17, pp.1469-1474, 2003.

T. Bennett, T. Sieberer, B. Willett, J. Booker, C. Lusching et al., The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport

, Curr. Biol, vol.16, pp.553-563, 2006.

C. A. Beveridge, . Sg, I. C. Murfet, and J. J. Ross, Rameau C The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s)

, Plant Physiol, vol.115, pp.1251-1258, 1997.

S. E. Morris, . Tc, and I. C. Murfet, Beveridge CA Mutational analysis of branching in pea: evidence that Rms1 and Rms5 regulate the same novel signal, Plant Physiol, vol.126, pp.1205-1213, 2001.

E. Foo, . Be, M. Goussot, F. Foucher, C. Rameau et al., The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea, Plant Cell, vol.17, pp.464-474, 2005.

C. A. Beveridge, J. J. Ross, and . Ic-m, Branching in pea: action of genes Rms3 and Rms4, Plant Physiol, vol.110, pp.859-865, 1996.

C. A. Beveridge and . Rj, Murfet IC Branching mutant rms-2 in Pisum sativum: grafting studies and endogenous indole-3-acetic acid levels.. Plant Physio, vol.104, pp.953-959, 1994.

P. Stirnberg, Leyser HMO MAX1 and MAX2 control shoot lateral branching in Arabidopsis, Development, vol.129, pp.1131-1141, 2002.

H. E. Woo, . Ck, J. Park, S. A. Oh, T. Ahn et al., Nam HG ORE9, an Fbox protein that regulates leaf senescence in Arabidopsis, Plant Cell, vol.13, pp.1779-1790, 2001.

X. Johnson, . Bt, E. A. Dun, M. Goussot, K. Haurogné et al., Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals

, Plant Physiol, vol.142, pp.1014-1026, 2006.

V. Gomez-roldan, S. Fermas, P. B. Brewer, V. Puech-pages, E. A. Dun et al., Strigolactone inhibition of shoot branching, Nature, vol.455, pp.189-194, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02183111

X. Johnson and . Bd, The model species, Arabidopsis thaliana.. Functional Plant Genomics, pp.385-396, 2007.

A. De-saint-germain, G. Clave, M. A. Badet-denisot, J. P. Pillot, D. Cornu et al., An histidine covalent receptor and butenolide complex mediates strigolactone perception, Nat Chem Biol, vol.12, pp.787-794, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02144648

Y. Ligerot, A. De-saint-germain, T. Waldie, C. Troadec, S. Citerne et al., The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxinstrigolactone regulation loop, PLoS Genet, vol.13, p.1007089, 2017.

F. D. Boyer, A. De-saint-germain, J. P. Pillot, J. B. Pouvreau, V. X. Chen et al., Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching, Plant Physiol, vol.159, pp.1524-1544, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00741325

T. Teichmann and M. Muhr, Shaping plant architecture, Front Plant Sci, vol.6, p.233, 2015.

S. S. Merchant, . Ps, and O. Vallon, The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, vol.318, pp.245-250, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188075

J. F. Allen, W. B. De-paula, S. Puthiyaveetil, and J. Nield, A structural phylogenetic map for chloroplast photosynthesis, Trends Plant Sci, vol.16, pp.645-655, 2011.

R. Kuras, F. A. Wollman, and C. A. De-vitry, Specific c-type cytochrome maturation system is required for oxygenic photosynthesis, Proc Natl Acad Sci, vol.104, pp.9906-9910, 2007.

X. Johnson, . Kr, F. A. Wollman, and O. Vallon, Proceedings of PSO7 the 14th International Congress of Photosynthesis Research, 2007.

. Kuras-r-dvc, Y. Choquet, J. Girard-bascou, D. Culler, S. Büschlen et al., Molecular genetic identification of a pathway for heme binding to cytochrome b6, J Biol Chem, vol.272, pp.32427-32435, 1997.

C. Raynaud, . Lc, K. Wostrikoff, R. Kuras, J. Girard-bascou et al., Evidence for regulatory function of nucleus-encoded factors on mRNA stabilization and translation in the chloroplast, Proc Natl Acad Sci U S A, vol.104, pp.9093-9098, 2007.

F. Wang, X. Johnson, M. Cavaiuolo, A. V. Bohne, J. Nickelsen et al., Two Chlamydomonas OPR proteins stabilize chloroplast mRNAs encoding small subunits of photosystem II and cytochrome b6 f, Plant J, vol.82, pp.861-873, 2015.

C. Lurin, . Ac, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

X. Johnson, K. Wostrikoff, G. Finazzi, R. Kuras, C. Schwarz et al., Vallon O: MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis, Plant Cell, vol.22, pp.234-248, 2010.

D. Douchi, Y. Qu, P. Longoni, L. Legendre-lefebvre, J. X. Schmitzlinneweber et al., A Nucleus-Encoded Chloroplast Phosphoprotein Governs Expression of the Photosystem I Subunit PsaC in Chlamydomonas reinhardtii, Plant Cell, vol.28, pp.1182-1199, 2016.
URL : https://hal.archives-ouvertes.fr/cea-02049489

A. Barkan, M. Rojas, S. Fujii, A. Yap, Y. S. Chong et al., Small I: A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins, PLoS Genet, vol.8, p.1002910, 2012.

R. G. Miranda, J. J. Mcdermott, and A. Barkan, RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPRRNA interactions, Nucleic Acids Res, vol.46, pp.2613-2623, 2018.

R. Van-rooijen, W. Kruijer, R. Boesten, F. A. Van-eeuwijk, J. Harbinson et al., Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana, Nature Communications, vol.8, p.1421, 2017.

X. Johnson, G. Vandystadt, S. Bujaldon, F. A. Wollman, R. Dubois et al., A new setup for in vivo fluorescence imaging of photosynthetic activity, Photosynth Res, vol.102, pp.85-93, 2009.

X. Johnson, Manipulating RuBisCO accumulation in the green alga, Chlamydomonas reinhardtii, Plant Mol Biol, vol.76, pp.397-405, 2011.

L. Houille-vernes, F. Rappaport, F. A. Wollman, J. Alric, and X. Johnson, Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas, Proc Natl Acad Sci, vol.108, pp.20820-20825, 2011.

D. Gonzalez-ballester, W. Pootakham, F. Mus, W. Yang, C. Catalanotti et al., Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants, vol.7, p.24, 2011.

A. R. Grossman, S. J. Karpowicz, M. Heinnickel, D. Dewez, B. Hamel et al., Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation, Photosynth Res, vol.106, pp.3-17, 2010.

M. L. Heinnickel, J. Alric, T. Wittkopp, W. Yang, C. Catalanotti et al., Novel thylakoid membrane GreenCut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes, J Biol Chem, vol.288, pp.7024-7036, 2013.

T. M. Wittkopp, S. Saroussi, Y. W. Johnson, X. Kim, R. G. Heinnickel et al., GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6 f complex accumulation, Plant J, vol.94, pp.1023-1037, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01938117

X. Johnson, J. Steinbeck, R. M. Dent, H. Takahashi, P. Richaud et al., Proton gradient regulation 5-mediated cyclic electron flow under ATP-or redox-limited conditions: a study of ?ATpase pgr5 and ?rbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii, Plant Physiol, vol.165, pp.438-452, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02074541

W. Yang, T. M. Wittkopp, X. Li, J. Warakanont, A. Dubini et al., Critical role of Chlamydomonas reinhardtii ferredoxin-5 in maintaining membrane structure and dark metabolism, Proc Natl Acad Sci, vol.112, pp.14978-14983, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01820387

B. Kok, On the Interrelation of Respiration and Photosynthesis in Green Plates, Biochimica Et Biophysica Acta, vol.3, pp.625-631, 1949.

M. Brody and R. Emerson, The quantum yield of photosynthesis in Porphyridium cruentum, and the role of chlorophyll a in the photosynthesis of red algae, J Gen Physiol, vol.43, pp.251-264, 1959.

L. N. Duysens, J. Amesz, and B. M. Kamp, Two photochemical systems in photosynthesis, Nature, vol.190, pp.510-511, 1961.

R. Emerson and C. M. Lewis, The Dependence of the Quantum Yield of Chlorella Photosynthesis on Wave Lenghth of Light, American Journal of Botany, vol.30, pp.165-178, 1943.

F. T. Haxo and L. R. Blinks, Photosynthetic action spectra of marine algae, J Gen Physiol, vol.33, pp.389-422, 1950.

C. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa, Biochim Biophys Acta, vol.189, pp.366-383, 1969.

J. Alric and X. Johnson, Alternative electron transport pathways in photosynthesis: a confluence of regulation, Curr Opin Plant Biol, vol.37, pp.78-86, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770511

R. Emerson and W. Arnold, The Photochemical Reaction in Photosynthesis, J Gen Physiol, vol.16, pp.191-205, 1932.

P. Hans, Pule Amplitude Modulated Fluorimetry, Light Harvesting Antennas in Photosynthesis, vol.13, p.513, 2003.

B. Genty, J. Briantais, and N. R. Baker, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochimica et Biophysica Acta (BBA)-General Subjects, vol.990, pp.87-92, 1989.

J. Lavergne and H. W. Trissl, Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radicalpair equilibrium and restricted energy transfer between photosynthetic units, Biophysical Journal, vol.68, pp.2474-2492, 1995.

D. I. Arnon, COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS, vol.24, pp.1-15, 1949.

P. J. Neale and A. Melis, ALGAL PHOTOSYNTHETIC MEMBRANE COMPLEXES AND THE PHOTOSYNTHESIS-IRRADIANCE CURVE: A COMPARISON OF LIGHT-ADAPTATION RESPONSES IN CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA)1, Journal of Phycology, vol.22, pp.531-538, 1986.

X. Johnson and J. Alric, Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii, J Biol Chem, vol.287, pp.26445-26452, 2012.

F. Chaux, X. Johnson, P. Auroy, A. Beyly-adriano, I. Te et al., PGRL1 and LHCSR3 Compensate for Each Other in Controlling Photosynthesis and Avoiding Photosystem I Photoinhibition during High Light Acclimation of Chlamydomonas Cells, Mol Plant, vol.10, pp.216-218, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01681242

G. D. Farquhar, S. Von-caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, vol.149, pp.78-90, 1980.

S. M. Driever, . Sa, S. Alotaibi, S. J. Fisk, P. J. Madgwick et al., Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions, Philos Trans R Soc Lond B Biol Sci, vol.372, p.1730, 2017.

A. Simkin, P. A. Davey, L. R. Headland, T. Lawson, S. Timm et al., Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO(2) assimilation, vegetative biomass and seed yield in Arabidopsis, Plant Biotechnol J, vol.15, pp.805-816, 2017.

D. M. Rosenthal, . La, M. Khozaei, C. A. Raines, S. P. Long et al., Over-expressing the C(3) photosynthesis cycle enzyme Sedoheptulose, pp.1-7

, Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO(2) fumigation (FACE), BMC Plant Biol, p.11, 2011.

L. Dumas, M. Chazaux, G. Peltier, X. Johnson, and J. Alric, Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow, Photosynth Res, vol.129, pp.307-320, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02022782

A. Simkin, L. Mcausland, T. Lawson, and C. A. Raines, Over-Expression Of The RieskeFeS Protein Increases Electron Transport Rates And Yield In Arabidopsis, 2017.

L. Dumas, F. Zito, S. Blangy, P. Auroy, X. Johnson et al., A stromal region of cytochrome b6f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas, Proc Natl Acad Sci, vol.114, pp.12063-12068, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01709612

K. V. Dang, J. Plet, D. Tolleter, M. Jokel, S. Cuine et al., Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii, Plant Cell, vol.26, pp.3036-3050, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02074531

F. Chaux, G. Peltier, and X. Johnson, A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow, Front Plant Sci, vol.6, p.875, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02049530

J. Kromdijk, K. G?owacka, L. Leonelli, S. T. Gabilly, M. Iwai et al., Improving photosynthesis and crop productivity by accelerating recovery from photoprotection, Science, vol.354, p.857, 2016.

X. Johnson and J. Alric, Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch, Eukaryot Cell, vol.12, pp.776-793, 2013.

M. Iwai, K. Takizawa, R. Tokutsu, A. Okamuro, Y. Takahashi et al., Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis, Nature, vol.464, p.1210, 2010.

S. Krueger, P. Giavalisco, L. Krall, M. C. Steinhauser, D. Bussis et al., A topological map of the compartmentalized Arabidopsis thaliana leaf metabolome, PLoS One, vol.6, p.17806, 2011.

G. U. Balcke, S. Bennewitz, N. Bergau, B. Athmer, A. Henning et al., Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites, The Plant Cell, vol.29, p.960, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606861