I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth, Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods, SIAM Journal on Scientific Computing, vol.19, issue.5, pp.1700-1716, 1998.
DOI : 10.1137/S1064827595293582

I. Aavatsmark, T. Barkve, O. Boe, and . Mannseth, Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results, SIAM Journal on Scientific Computing, vol.19, issue.5, pp.1717-1736, 1998.
DOI : 10.1137/S1064827595293594

L. Agélas, R. Eymard, and R. Herbin, A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, Comptes Rendus Mathematique, vol.347, issue.11-12, pp.11-12, 2009.
DOI : 10.1016/j.crma.2009.03.013

L. Agélas and R. Masson, Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, Comptes Rendus Mathematique, vol.346, issue.17-18, pp.17-18, 2008.
DOI : 10.1016/j.crma.2008.07.015

L. Agelas, C. Guichard, and R. Masson, Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes, International Journal on Finite, vol.7, issue.2, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00340159

L. Agélas and R. Eymard, A symmetric volume scheme for the approximation of the diffusion equation on general meshes, 2008.

L. Agélas, D. Di-pietro, and J. Droniou, The G method for heterogeneous anisotropic diffusion on general meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.4, pp.597-625, 2010.
DOI : 10.1051/m2an:2006013

L. Agélas, C. Guichard, and R. Masson, Convergence of Finite Volume MPFA O type Schemes for Heterogeneous Anisotropic Diffusion Problems on General Meshes, International Journal on Finite Volumes, vol.7, issue.2, pp.1-33, 2010.

L. Agelas, D. Di-pietro, and R. Masson, A symmetric and coercive finite volume scheme for multiphase porous media flow problems with applications in the oil industry, Finite Volumes for Complex Applications V, pp.35-51, 2008.

L. Agélas and D. A. Di-pietro, A Symmetric Finite Volume Scheme for Anisotropic Heterogeneous Second-order Elliptic Problems, Finite Volumes for, pp.705-716, 2008.

G. Ansanay-alex, B. Piar, and D. Vola, A Galerkin Finite Element Solution, Finite Volumes for, pp.717-733, 2008.

J. Kamga and B. Després, CFL Condition and Boundary Conditions for DGM Approximation of Convection???Diffusion, SIAM Journal on Numerical Analysis, vol.44, issue.6, pp.2245-2269, 2006.
DOI : 10.1137/050633159

B. Andreianov, F. Boyer, and F. Hubert, Discrete duality finite volume schemes for Leray???Lions???type elliptic problems on general 2D meshes, Numerical Methods for Partial Differential Equations, vol.152, issue.1, pp.145-195, 2007.
DOI : 10.1002/num.20170

URL : https://hal.archives-ouvertes.fr/hal-00005779

F. Assous, P. Degond, E. Heintzé, P. A. Raviart, and J. Segré, On a Finite-Element Method for Solving the Three-Dimensional Maxwell Equations, Journal of Computational Physics, vol.109, issue.2, pp.222-237, 1993.
DOI : 10.1006/jcph.1993.1214

J. Baranger, J. F. Maître, and F. Oudin, Connection between finite volume and mixed finite element methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.30, issue.4, pp.445-465, 1996.
DOI : 10.1051/m2an/1996300404451

A. Beccantini and S. Gounand, Evaluation of the diffusive Terms of the Navier-Stokes Equations via a Cell-Centered Finite Volume Approach, pp.2-024

E. Bertolazzi and G. Manzini, A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems, SIAM Journal on Numerical Analysis, vol.43, issue.5, pp.2172-2199, 2005.
DOI : 10.1137/040607071

F. Blachère and R. Turpault, An admissibility and asymptotic-preserving scheme for systems of conservation laws with source term on 2D unstructured meshes, Journal of Computational Physics, vol.315
DOI : 10.1016/j.jcp.2016.03.045

X. Blanc and E. Labourasse, A positive scheme for diffusion problems on deformed meshes, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift f??r Angewandte Mathematik und Mechanik, vol.227, issue.12, pp.1-21, 2015.
DOI : 10.1016/j.jcp.2008.03.007

URL : https://hal.archives-ouvertes.fr/hal-01139772

A. Bourgeat, M. Kern, S. Schumacher, and J. Talandier, Nuclear Waste Disposal Far Field Simulation, 2001.

F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series, 2004.

F. Boyer and F. Hubert, Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities, SIAM Journal on Numerical Analysis, vol.46, issue.6, pp.3032-3070, 2008.
DOI : 10.1137/060666196

URL : https://hal.archives-ouvertes.fr/hal-00110436

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Methods, 1991.

F. Brezzi, A. Buffa, and K. Lipnikov, Mimetic finite differences for elliptic problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.187, issue.2, pp.277-295, 2009.
DOI : 10.1016/S0045-7825(00)80001-8

URL : http://www.esaim-m2an.org/articles/m2an/pdf/2009/02/m2an0787.pdf

C. Buet and S. Cordier, On the non existence of monotone linear schema for some linear parabolic equations, Comptes Rendus Mathematique, vol.340, issue.5, pp.399-404, 2005.
DOI : 10.1016/j.crma.2005.01.020

E. Burman and A. Ern, Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes, Comptes Rendus Mathematique, vol.338, issue.8, pp.641-646, 2004.
DOI : 10.1016/j.crma.2004.02.010

C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations, Mathematics of Computation, 2014.

R. Cautrès, R. Herbin, and F. Hubert, The Lions domain decomposition algorithm on non-matching cell-centred finite volume meshes, IMA Journal of Numerical Analysis, vol.24, issue.3, pp.465-490, 2004.
DOI : 10.1093/imanum/24.3.465

G. Chavent and J. E. Roberts, A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems, Advances in Water Resources, vol.14, issue.6, pp.329-348, 1991.
DOI : 10.1016/0309-1708(91)90020-O

C. Chainais-hillairet and J. Droniou, Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media, SIAM Journal on Numerical Analysis, vol.45, issue.5, pp.2228-2258, 2007.
DOI : 10.1137/060657236

URL : https://hal.archives-ouvertes.fr/hal-00022910

C. Chainais-hillairet, J. Droniou, and R. Eymard, Use of Mixed Finite Volume Method. Finite Volumes for, pp.751-760, 2008.

C. Chainais-hillairet, S. Krell, and A. Mouton, Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media, Numerical Methods for Partial Differential Equations, vol.50, issue.3, 2014.
DOI : 10.1137/110831593

URL : https://hal.archives-ouvertes.fr/hal-00929823

P. G. Ciarlet and P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, vol.2, issue.1, pp.17-31, 1973.
DOI : 10.1016/0045-7825(73)90019-4

Y. Coudière, Analyse de schémas volumes finis sur maillage non structurés pour des problèmes linéaires hyperboliques et elliptiques, Thèse de l'université Paul Sabatier de Toulouse, 1999.

Y. Coudière, J. P. Vila, and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.3, pp.493-516, 1999.
DOI : 10.1051/m2an:1999149

Y. Coudière, C. Pierre, O. Rousseau, and R. Turpault, A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation, International Journal on Finite Volumes, Episciences.org, vol.6, issue.1, pp.1-24, 2009.

Y. Coudière and F. Hubert, A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations, SIAM Journal on Scientific Computing, vol.33, issue.4, pp.1739-1764, 2011.
DOI : 10.1137/100786046

F. Dabbène, Schémas de diffusion-convection en éléments finis mixtes hybrides, Rapport CEA- DMT, p.613, 1995.

B. Després, Non linear finite volume schemes for the heat equation in 1D, pp.2-48, 2014.

B. Després and F. Lagoutière, Un sch??ma non lin??aire anti-dissipatif pour l'??quation d'advection lin??aire, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.328, issue.10, pp.939-944, 1999.
DOI : 10.1016/S0764-4442(99)80301-2

B. Després and F. Dubois, Systèmes hyperboliques de lois de conservation. Application à la dynamique des gaz, 2005.

B. Després, Finite volume transport schemes, Numerische Mathematik, vol.12, issue.1, pp.529-556, 2008.
DOI : 10.1017/CBO9780511791253

K. Domelevo and P. Omnes, A Finite Volume Method for the Laplace Equation on almost Arbitrary Two-Dimensional Grids, M2AN, pp.1203-1249, 2005.

J. Droniou, R. Eymard, T. Gallouët, and R. Herbin, A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS, Mathematical Models and Methods in Applied Sciences, vol.17, issue.02, pp.265-295, 2010.
DOI : 10.1007/s10596-004-3771-1

URL : https://hal.archives-ouvertes.fr/hal-00346077

J. Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, M3AS), pp.1575-1619, 2014.
DOI : 10.1016/j.jcp.2008.03.007

URL : https://hal.archives-ouvertes.fr/hal-00813613

F. Dubois, Quels schémas numériques pour les volumes finis ? Neuvième séminaire sur les fluides compressibles, CEA Saclay, 1999.

R. Eymard, T. Gallouët, and R. Herbin, Finite Volume Method, Handbook of Numerical Analysis, 1999.

R. Eymard, T. Gallouët, and R. Herbin, A finite volume scheme for anisotropic diffusion problems, Comptes Rendus Mathematique, vol.339, issue.4, 2004.
DOI : 10.1016/j.crma.2004.05.023

URL : https://hal.archives-ouvertes.fr/hal-00003328

R. Eymard, T. Gallouët, and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA Journal of Numerical Analysis, vol.30, issue.4, pp.1009-1034, 2010.
DOI : 10.1093/imanum/drn084

R. Eymard, C. Guichard, and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: Mathematical Modelling and Numerical Analysis, vol.228, issue.2, pp.265-290, 2012.
DOI : 10.1016/j.jcp.2009.05.002

URL : https://hal.archives-ouvertes.fr/hal-00542667

G. Fauchet, A. Gerschenfeld, and Y. Gorsse, PolyMAC : un schéma décalé sur polyèdres quelconques, exposé interne au CEA du 22, 2016.

I. Faille, T. Gallouët, and R. Herbin, Des mathématiciens découvrent les volumes, p.28, 1991.

L. Gavete, M. L. Gavete, and J. J. Benito, Improvements of generalized finite difference method and comparison with other meshless method, Applied Mathematical Modelling, vol.27, issue.10, pp.831-847, 2003.
DOI : 10.1016/S0307-904X(03)00091-X

E. Godlewski and P. Raviart, Hyperbolic systems of conservation laws, Ellipses, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00113734

S. Gounand, Communication personnelle, 2005.

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, 5th International Symposium on Finite Volumes for Complex Applications, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00580549

F. Hermeline, Une m??thode de volumes finis pour les ??quations elliptiques du second ordre, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.326, issue.12, pp.1433-1436, 1998.
DOI : 10.1016/S0764-4442(98)80406-0

F. Hermeline, A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes, Journal of Computational Physics, vol.160, issue.2, pp.481-499, 2000.
DOI : 10.1006/jcph.2000.6466

F. Hermeline, Approximation of diffusion operators with discontinous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg, pp.192-1939, 2003.

F. Hermeline, Numerical experiments with the DDFV method, Finite Volumes for, pp.851-864, 2008.

F. Hermeline, S. Layouni, and P. Omnes, A finite volume method for the approximation of Maxwell???s equations in two space dimensions on arbitrary meshes, Journal of Computational Physics, vol.227, issue.22, pp.9365-9388, 2008.
DOI : 10.1016/j.jcp.2008.05.013

I. Kapyrin, A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Doklady Mathematics, vol.341, issue.2, pp.734-738, 2007.
DOI : 10.1016/j.crma.2005.10.010

E. Keilegavlen, J. M. Nordbotten, and I. Aavatsmark, Sufficient criteria are necessary for monotone control volume methods, Applied Mathematics Letters, vol.22, issue.8, pp.1178-1180, 2009.
DOI : 10.1016/j.aml.2009.01.048

URL : https://doi.org/10.1016/j.aml.2009.01.048

D. S. Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes, Journal of Computational Physics, vol.39, issue.2, pp.375-395, 1981.
DOI : 10.1016/0021-9991(81)90158-3

R. A. Klausen and R. Winther, Convergence of multipoint flux approximations on quadrilateral grids, Numerical Methods for Partial Differential Equations, vol.36, issue.6, pp.1438-1454, 2006.
DOI : 10.1007/978-3-662-07233-2

D. Kuzmin, M. J. Shashkov, and D. Svyatskiy, A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems, Journal of Computational Physics, vol.228, issue.9, pp.3448-3463, 2009.
DOI : 10.1016/j.jcp.2009.01.031

C. and L. Potier, Méthode de volumes finis pour une équation de transport Application à Couplex1, Rapport SFME, pp.3-46

C. and L. Potier, Finite volume in 2 or 3 dimensions for a diffusion convection equation applied to porous media with Cast3m, Proceedings of the XV th International Conference on Computational methods in Water Resources, pp.1015-1026, 2004.

C. and L. Potier, Une nouvelle formulation volumes finis en 3 dimensions pour une équation de transport avec des tenseurs fortement anisotropes. Application à des calculs de sûreté sur le site de l'Est, Rapport SFME, pp.5-26

C. , L. Potier, and A. Mahamane, Correction non linéaire et principe du maximum avec des schémas hybrides pour la discrétisation d'opérateurs de diffusion, 2012.

C. , L. Potier, A. Mahamane, and P. Omnes, Correction non linéaire d'un schéma volumes finis en dualité discrète (DDFV) respectant le principe du maximum pour la discrétisation d'opérateurs de diffusion, 2012.

R. Leveque, Finite Volume Methods for Hyperbolic Problems, 2002.
DOI : 10.1017/CBO9780511791253

K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, Journal of Computational Physics, vol.228, issue.3, pp.703-716, 2009.
DOI : 10.1016/j.jcp.2008.09.031

K. Lipnikov, M. Shashkov, and I. Yotov, Local flux mimetic finite difference methods Numer, Math, vol.112, pp.115-152, 2009.
DOI : 10.1007/s00211-008-0203-5

URL : http://www.math.pitt.edu/techrep/0513.pdf

K. Lipnikov, Mimetic finite difference method. Finite Volumes for, pp.801-814, 2008.
DOI : 10.1016/j.jcp.2013.07.031

C. Mugler, M. Lamoureux, and D. Rt, Calculs de transport de radionucléides avec le code Castem2000 appliqués à un scénario de sûreté du site Est, pp.2-003

S. Mundal, D. A. Di-pietro, and I. Aavatsmark, Compact-Stencil MPFA Method for Heterogeneous Highly Anisotropic Second-Order Elliptic Problems. Finite Volumes for, pp.905-918, 2008.

K. D. Nikitin, K. M. Terekhov, and Y. V. Vassilevski, A monotone nonlinear finite volume method for diffusion equations and multiphase flows, Computational Geosciences, vol.48, issue.8, pp.311-32410, 2014.
DOI : 10.1134/S0965542508080071

J. M. Nordbotten, I. Aavastsmark, and G. T. Eigestad, Monotonicity of control volume methods, Numerische Mathematik, vol.25, issue.2, pp.255-288, 2007.
DOI : 10.1007/978-1-4612-5282-5

G. Pepin, Projet HAVL. Cahier des charges relatif à la réalisation de calculs de transport de radionucléides avec le code Castem, 2001.

P. A. Raviart and J. M. Thomas, A Mixed Hybrid Finite Element Method for the Second Order Elliptic Problems, Mathematical Aspects of the Finite Element Method, 1977.

I. Toumi, A. Bergeron, D. Gallo, and D. Caruge, FLICA-4: a three-dimensional two-phase flow computer code with advanced numerical methods for nuclear applications, Nuclear Engineering and Design, vol.200, issue.1-2, pp.139-155, 2000.
DOI : 10.1016/S0029-5493(99)00332-5

S. Vandenberghe and G. Bernard-michel, Validation du module de transport de Cast3m. Calcul de sûreté ANDRA 2001 : Site de l'Est, Rapport SFME

D. Vidovi?, M. Dimki?, and M. Pu?-si?, Accelerated non-linear finite volume method for diffusion, Journal of Computational Physics, vol.230, issue.7, pp.2722-2735, 2011.
DOI : 10.1016/j.jcp.2011.01.016

M. Vohralik, Méthodes numériques pour des équations elliptiques et paraboliques non linéaires, Thèse de l'université Paris-Sud, 2004.

Z. Sheng and G. Yuan, The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes, Journal of Computational Physics, vol.230, issue.7, pp.2588-2604, 2011.
DOI : 10.1016/j.jcp.2010.12.037

G. Yuan and Z. Sheng, Monotone finite volume schemes for diffusion equations on polygonal meshes, Journal of Computational Physics, vol.227, issue.12, pp.6288-6312, 2008.
DOI : 10.1016/j.jcp.2008.03.007