J. K. Lee, C. Oh, N. Kim, J. Hwang, Y. Sun et al., Solid-State Lett, J. Mater. Chem. A 2016 J.; Dahn, J. R. Electrochem. Solid-State Lett. J. Electrochem. Soc. Electrochem. Solid-State Lett. J. W.; Ryu, I. Nat. Nanotechnol, vol.4, issue.7, pp.5366-5384, 2001.

M. Ashuri, Q. He, and L. L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale, vol.5, issue.1, pp.74-103, 2016.
DOI : 10.1002/aenm.201401826

Z. Zhang, R. Brydson, Z. Aslam, S. Reddy, A. Brown et al., Investigating the structure of non-graphitising carbons using electron energy loss spectroscopy in the transmission electron microscope, Carbon, vol.49, issue.15, pp.5049-5063, 2011.
DOI : 10.1016/j.carbon.2011.07.023

D. Mazouzi, B. Lestriez, L. Roué, and D. Guyomard, Silicon Composite Electrode with High Capacity and Long Cycle Life, Electrochemical and Solid-State Letters, vol.12, issue.11, p.215, 2009.
DOI : 10.1016/S0927-0248(03)00107-7

URL : https://hal.archives-ouvertes.fr/hal-00432831

D. Mazouzi, N. Delpuech, Y. Oumellal, M. Gauthier, M. Cerbelaud et al., New insights into the silicon-based electrode's irreversibility along cycle life through simple gravimetric method, Journal of Power Sources, vol.220, issue.26, pp.180-184, 2012.
DOI : 10.1016/j.jpowsour.2012.08.007

S. D. Beattie, M. J. Loveridge, M. J. Lain, S. Ferrari, B. J. Polzin et al., Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies, Journal of Power Sources, vol.302, pp.426-430, 2016.
DOI : 10.1016/j.jpowsour.2015.10.066

U. Kasavajjula, C. Wang, and A. J. Appleby, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, Journal of Power Sources, vol.163, issue.2, pp.1003-1039, 2007.
DOI : 10.1016/j.jpowsour.2006.09.084

S. Lai and B. A. Boukamp, Solid Lithium-Silicon Electrode, 32) Li, H Solid State Ionics, pp.1196-1227, 1976.
DOI : 10.1149/1.2133033

M. T. Mcdowell, S. W. Lee, W. D. Nix, and Y. Cui, 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries, Advanced Materials, vol.10, issue.8, pp.4966-85, 2013.
DOI : 10.1021/nl101439x

J. Danet, T. Brousse, K. Rasim, D. Guyomard, P. Moreau et al., Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries, Phys. Chem. Chem. Phys., vol.131, issue.121, pp.220-226, 2010.
DOI : 10.1002/3527605495

URL : https://hal.archives-ouvertes.fr/hal-00468429

B. Key, M. Morcrette, J. Tarascon, and C. P. Grey, Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms, Journal of the American Chemical Society, vol.133, issue.3, pp.503-512, 2011.
DOI : 10.1021/ja108085d

D. Robert, Etude multi-échelle des mécanismes de (dé)lithiation et de d'égradation d'électrodes à base de LiFePO4 et de Silicium pour accumulateurs Li-ion, 2014.

C. Wang, H. Wu, Z. Chen, M. T. Mcdowell, and Y. Cui, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature Chemistry, vol.8, issue.12, pp.1042-1050, 2013.
DOI : 10.1149/1.1847685

E. Radvanyi, W. Porcher, E. De-vito, A. Montani, S. Franger et al., Failure mechanisms of nano-silicon anodes upon cycling: an electrode porosity evolution model, Phys. Chem. Chem. Phys., vol.1, issue.98, pp.17142-53, 2014.
DOI : 10.1039/c3ta12982a

J. Li, J. R. Dahn, M. N. Obrovac, L. Christensen, and . En, An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si, Journal of The Electrochemical Society, vol.10, issue.121, pp.156-199, 2004.
DOI : 10.1016/0038-1098(81)91028-0

D. Nguyen, J. Kang, K. Nam, Y. Paik, and S. Song, Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi 0.5 Co 0.2 Mn 0.3 O 2 //silicon-graphite, Journal of Power Sources, vol.303, pp.150-158, 2016.
DOI : 10.1016/j.jpowsour.2015.10.089

L. Baggetto, R. A. Niessen, F. Roozehoom, and P. H. Notten, High Energy Density All-Solid-State Batteries: A Challenging Concept Towards 3D Integration, Advanced Functional Materials, vol.148, issue.121, pp.1057-1066, 2008.
DOI : 10.1002/adfm.200701245

P. Johari, Y. Qi, and V. B. Shenoy, The Mixing Mechanism during Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study, Nano Letters, vol.11, issue.12, pp.5494-5500, 2011.
DOI : 10.1021/nl203302d

M. T. Mcdowell, I. Ryu, S. W. Lee, C. Wang, W. D. Nix et al., Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy, Advanced Materials, vol.159, issue.45, pp.6034-6075, 2012.
DOI : 10.1149/2.072205jes

X. H. Liu, F. Fan, H. Yang, S. Zhang, J. Y. Huang et al., Self-Limiting Lithiation in Silicon Nanowires, ACS Nano, vol.7, issue.2, pp.1495-1503, 2013.
DOI : 10.1021/nn305282d

X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu et al., Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS Nano, vol.6, issue.2, pp.1522-1553, 2012.
DOI : 10.1021/nn204476h

R. Xu, K. J. Zhao, X. Zhang, S. W. Lee, H. Lee et al., Energy Convers Storage 2016, 13, 030803, 57) Zhang, S. Nat. Comput. Mater. 2017, 3, 7. (58), pp.1953-1958, 2012.

V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan, and P. R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, Journal of Power Sources, vol.195, issue.15, pp.5062-5066, 2010.
DOI : 10.1016/j.jpowsour.2010.02.013

S. P. Nadimpalli, V. A. Sethuraman, G. Bucci, V. Srinivasan, A. F. Bower et al., On Plastic Deformation and Fracture in Si Films during Electrochemical Lithiation/Delithiation Cycling, Journal of the Electrochemical Society, vol.160, issue.10, pp.1885-1893, 2013.
DOI : 10.1149/2.098310jes

G. Bucci, S. P. Nadimpalli, V. Sethuraman, A. F. Bower, and P. R. Guduru, Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation, Journal of the Mechanics and Physics of Solids, vol.62, pp.276-294, 2014.
DOI : 10.1016/j.jmps.2013.10.005

H. Kim, C. Y. Chou, J. G. Ekerdt, G. S. Hwang, . Larche et al., Structure and Properties of Li???Si Alloys: A First-Principles Study, The Journal of Physical Chemistry C, vol.115, issue.5, pp.2514-2521, 1051.
DOI : 10.1021/jp1083899

G. J. Nazri, Composition of Surface Layers on Li Electrodes in PC, LiClO[sub 4] of Very Low Water Content, Journal of The Electrochemical Society, vol.132, issue.9, pp.2050-2054, 1985.
DOI : 10.1149/1.2114288

G. Nazri and R. H. Muller, Effect of Residual Water in Propylene Carbonate on Films Formed on Lithium, Journal of The Electrochemical Society, vol.132, issue.9, pp.2054-2058, 1985.
DOI : 10.1149/1.2114289

G. V. Zhuang, K. Xu, H. Yang, T. R. Jow, and P. N. Ross, /EC:EMC Electrolyte, The Journal of Physical Chemistry B, vol.109, issue.37, pp.17567-73, 2005.
DOI : 10.1021/jp052474w

H. Kim, S. Grugeon, G. Gachot, M. Armand, L. Sannier et al., Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives, Electrochimica Acta, vol.136, pp.157-165, 2014.
DOI : 10.1016/j.electacta.2014.05.072

URL : https://hal.archives-ouvertes.fr/hal-01003182

K. Edström, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, 89) Michan, pp.385-398, 2006.
DOI : 10.1016/j.jpowsour.2005.05.062

S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy, Electrochimica Acta, vol.97, pp.23-32, 2013.
DOI : 10.1016/j.electacta.2013.03.010

D. Alliata, R. Kötz, P. Novák, H. Siegenthaler, T. Yoshida et al., Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes, Electrochemistry Communications, vol.2, issue.6, pp.436-440, 2000.
DOI : 10.1016/S1388-2481(00)00056-4

S. Chattopadhyay, A. L. Lipson, H. J. Karmel, J. D. Emery, T. T. Fister et al., In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode, Chemistry of Materials, vol.24, issue.15, pp.3038-3043, 2012.
DOI : 10.1021/cm301584r

C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cui, Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes, Journal of Power Sources, vol.189, issue.2, pp.1132-1140, 2009.
DOI : 10.1016/j.jpowsour.2009.01.007

Y. M. Lee, J. Y. Lee, H. Shim, J. K. Lee, J. Park et al., SEI Layer Formation on Amorphous Si Thin Electrode during Precycling, A1112. (98) Guo, pp.515-96, 2007.
DOI : 10.1149/1.1505636

B. Philippe, R. Dedryvère, J. Allouche, F. Lindgren, M. Gorgoi et al., Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy, Chemistry of Materials, vol.24, issue.6, pp.1107-1115, 2012.
DOI : 10.1021/cm2034195

URL : https://hal.archives-ouvertes.fr/hal-01560424

Y. Zhang, Y. Li, Z. Wang, K. N. Zhao, and . Lett, DOI: 10, J. Power Sources, vol.161, pp.1254-1259, 1021.
URL : https://hal.archives-ouvertes.fr/hal-01139702

R. Elazari, G. Salitra, G. Gershinsky, A. Garsuch, A. Panchenko et al., Li Ion Cells Comprising Lithiated Columnar Silicon Film Anodes, TiS2 Cathodes and Fluoroethyene Carbonate (FEC) as a Critically Important Component, Journal of the Electrochemical Society, vol.159, issue.9, pp.1440-1445, 2012.
DOI : 10.1149/2.029209jes

R. Jung, M. Metzger, D. Haering, S. Solchenbach, C. Marino et al., Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries, Journal of The Electrochemical Society, vol.163, issue.8, pp.1705-1716, 2016.
DOI : 10.1149/2.0951608jes

C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors et al., Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive, Chemistry of Materials, vol.27, issue.7, pp.2591-2599, 2015.
DOI : 10.1021/acs.chemmater.5b00339

H. Nakai, T. Kubota, A. Kita, A. Kawashima, V. Etacheri et al., Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes, Journal of The Electrochemical Society, vol.158, issue.7, pp.798-109, 2011.
DOI : 10.1016/j.electacta.2009.11.036

K. W. Schroder, J. Alvarado, T. A. Yersak, J. Li, N. Dudney et al., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes, Chemistry of Materials, vol.27, issue.16, pp.5531-5542, 2015.
DOI : 10.1021/acs.chemmater.5b01627

N. Delpuech, N. Dupré, D. Mazouzi, J. Gaubicher, P. Moreau et al., Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell, Electrochemistry Communications, vol.33, issue.115, pp.72-75, 2013.
DOI : 10.1016/j.elecom.2013.05.001

URL : https://hal.archives-ouvertes.fr/hal-00961240

R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, and Y. Cui, Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes, The Journal of Physical Chemistry C, vol.113, issue.26, pp.11390-11398, 2009.
DOI : 10.1021/jp901594g

N. Dupre, P. Moreau, E. De-vito, L. Quazuguel, M. Boniface et al., Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration, Chemistry of Materials, vol.28, issue.8, pp.2557-2572, 2016.
DOI : 10.1021/acs.chemmater.5b04461

URL : https://hal.archives-ouvertes.fr/hal-01598115

S. Leroy, F. Blanchard, R. Dedryvère, H. Martinez, B. Carré et al., Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study, Surface and Interface Analysis, vol.90, issue.98, pp.773-781, 2005.
DOI : 10.1002/sia.2072

URL : https://hal.archives-ouvertes.fr/hal-01504000

J. Danet, Les alliages LixSi : analyse par spectroscopie de perte d'énergie des électrons et caractérisation électrochimique en accumulateur au lithium, References, 2011.

L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman et al., Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy, Chemistry of Materials, vol.18, issue.23, pp.5520-5529, 2006.
DOI : 10.1021/cm0617182

F. Wang, J. Graetz, M. S. Moreno, C. Ma, L. Wu et al., Chemical Distribution and Bonding of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy Loss Spectroscopy, ACS Nano, vol.5, issue.2, pp.1190-1197, 2011.
DOI : 10.1021/nn1028168

L. P. Zenser, . Gruehn, and B. H. Liebscher, Decomposition of MgF2 in the Transmission Electron Microscope, Journal of Solid State Chemistry, vol.157, issue.1, pp.30-39, 2001.
DOI : 10.1006/jssc.2000.9033

A. Yurtsever, M. Weyland, D. A. Muller, M. Pfannmöller, H. Heidari et al., Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography, Applied Physics Letters, vol.89, issue.15, pp.151920-134, 2006.
DOI : 10.1016/0304-3991(95)00029-Z

D. Robert, T. Douillard, A. Boulineau, G. Brunetti, P. Nowakowski et al., -Based Electrodes by Transmission Electron Microscopy and Electron Forward Scattering Diffraction, ACS Nano, vol.7, issue.12, pp.10887-94, 2013.
DOI : 10.1021/nn4043964

M. Adrian, J. Dubochet, J. Lepault, A. W. Mcdowall, R. D. Leapman et al., Cryo-electron microscopy of viruses, 141) Aronova, M. A.; Leapman, R. D. MRS Bull, pp.32-36, 1984.
DOI : 10.1111/j.1365-2818.1983.tb04225.x

S. Yakovlev, N. P. Balsara, and K. H. Downing, Insights on the Study of Nafion Nanoscale Morphology by Transmission Electron Microscopy, Membranes, vol.20, issue.4, pp.424-439, 2013.
DOI : 10.1007/BF01730278

R. F. Egerton, B. G. Williams, and T. G. Sparrow, Fourier Deconvolution of Electron Energy-Loss Spectra, Proc. R. Soc. A Math, pp.395-404, 1985.
DOI : 10.1098/rspa.1985.0041

D. B. Williams and J. W. Edington, High resolution microanalysis in materials science using electron energy loss measurements References (150) Raether, H, Excitation of plasmons and surface transitions by electrons, J. Mater. Chem, vol.21, issue.151, p.6201, 1976.

B. Nguyen, S. Chazelle, M. Cerbelaud, W. Porcher, and B. Lestriez, Manufacturing of industry-relevant silicon negative composite electrodes for lithium ion-cells, Journal of Power Sources, vol.262, pp.112-122, 2014.
DOI : 10.1016/j.jpowsour.2014.03.119

URL : https://hal.archives-ouvertes.fr/hal-01115619

D. Reyter, S. Rousselot, D. Mazouzi, M. Gauthier, P. Moreau et al., An electrochemically roughened Cu current collector for Si-based electrode in Li-ion batteries, Journal of Power Sources, vol.239, pp.308-314, 2013.
DOI : 10.1016/j.jpowsour.2013.03.108

URL : https://hal.archives-ouvertes.fr/hal-00950584

N. Delpuech, D. Mazouzi, N. Dupré, P. Moreau, M. Cerbelaud et al., Critical Role of Silicon Nanoparticles Surface on Lithium Cell Electrochemical Performance Analyzed by FTIR, Raman, EELS, XPS, NMR, and BDS Spectroscopies, The Journal of Physical Chemistry C, vol.118, issue.31, pp.17318-17331, 2014.
DOI : 10.1021/jp503949y

URL : https://hal.archives-ouvertes.fr/hal-01115634

R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J. Tarascon et al., XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode, Journal of The Electrochemical Society, vol.22, issue.4, p.689, 2005.
DOI : 10.1039/ft9969203963

URL : https://hal.archives-ouvertes.fr/hal-01560702

D. B. Williams, C. B. Carter, R. F. Egerton, and R. F. Reports-prog-egerton, Transmission electron microscopy: a textbook for materials science, pp.760-016502, 2009.

M. Boniface, L. Quazuguel, J. Danet, D. Guyomard, P. Moreau et al., Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS, Nano Letters, vol.16, issue.12, pp.7381-7388, 2016.
DOI : 10.1021/acs.nanolett.6b02883

URL : https://hal.archives-ouvertes.fr/cea-01396402

W. Wan, Q. Zhang, Y. Cui, E. Wang, S. P. Kim et al., First principles study of lithium insertion in bulk silicon, Journal of Physics: Condensed Matter, vol.22, issue.41, pp.415501-162, 2010.
DOI : 10.1088/0953-8984/22/41/415501

K. Yoshimura, J. Suzuki, K. Sekine, and T. Takamura, Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode, Journal of Power Sources, vol.146, issue.1-2, pp.445-447, 2005.
DOI : 10.1016/j.jpowsour.2005.03.050

R. L. Sacci, M. L. Lehmann, S. O. Diallo, Y. Q. Cheng, L. L. Daemen et al., Si Anode Investigated by Quasi-elastic Neutron Scattering, The Journal of Physical Chemistry C, vol.121, issue.21, pp.11083-11088, 2017.
DOI : 10.1021/acs.jpcc.7b01133

S. Samarin, O. Artamonov, A. Suvorova, and A. Sergeant, Measurements of insulator band parameters using combination of single-electron and two-electron spectroscopy, Solid State Communications, vol.129, issue.6, pp.389-393, 2004.
DOI : 10.1016/j.ssc.2003.11.008

B. Wu, A. R. Neureuther, R. F. Vac-egerton, and . Ultramicroscopy, Energy deposition and transfer in electron-beam lithography, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.19, issue.6, pp.2508-115, 2001.
DOI : 10.1116/1.1421548

M. S. Bronsgeest, J. E. Barth, L. W. Swanson, and P. J. Kruit, Probe current, probe size, and the practical brightness for probe forming systems, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.26, issue.3, p.949, 2008.
DOI : 10.1116/1.2907780

R. F. Egerton, In Electron Energy-Loss Spectrosc. Electron Microsc, pp.111-229, 2011.

K. Iakoubovskii, K. Mitsuishi, Y. Nakayama, K. Furuya, S. C. Cheng et al., References (175) Malis, Phys. Rev. B J. Electron Microsc. Tech, vol.77, issue.8, pp.193-200, 1988.

M. Gauthier, Electrodes négatives à base de silicium pour accumulateurs au lithium mécanisme réactionnel à l'échelle nanométrique, 2013.

G. Donval, Modélisation de spectres de perte d'énergie des électrons sur des matériaux d'électrode à base de silicium dans les accumulateurs aux ions lithium, Appl. Phys. Lett, vol.96, issue.178, pp.94-97, 2010.

A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan et al., fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Physical Review B, vol.2, issue.77, pp.11089-11103, 2000.
DOI : 10.1103/PhysRevB.2.973

D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Physical Review, vol.120, issue.5, pp.2093-2097, 1962.
DOI : 10.1103/PhysRev.120.37

J. D. Ingham and D. D. Lawson, Refractive index???molecular weight relationships for poly(ethylene oxide), Journal of Polymer Science Part A: General Papers, vol.3, issue.7, pp.2707-2710, 1965.
DOI : 10.1002/pol.1965.100030728

URL : http://onlinelibrary.wiley.com/doi/10.1002/pol.1965.100030728/pdf

N. Sultanova, S. Kasarova, and I. Nikolov, Dispersion Properties of Optical Polymers, Acta Physica Polonica A, vol.116, issue.4, pp.585-587, 2009.
DOI : 10.12693/APhysPolA.116.585

L. Y. Beaulieu, T. D. Hatchard, . Bonakdarpour, M. D. Fleischauer, and . Dahn, Reaction of Li with Alloy Thin Films Studied by In Situ AFM, Journal of The Electrochemical Society, vol.276, issue.11, p.1457, 2003.
DOI : 10.1016/S0022-0728(78)80400-8

M. E. Holtz, Y. Yu, J. Gao, H. D. Abruña, and D. A. Muller, In Situ Electron Energy-Loss Spectroscopy in Liquids, Microscopy and Microanalysis, vol.94, issue.04, pp.1027-1062
DOI : 10.1021/jp057549a

S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni et al., Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid, Journal of Power Sources, vol.195, issue.2, pp.559-566, 2010.
DOI : 10.1016/j.jpowsour.2009.08.015

URL : https://iris.unipa.it/bitstream/10447/56473/1/mustarelli%20spinella%20membrane.pdf

S. Tintignac, R. Baddour-hadjean, J. Pereira-ramos, and R. Salot, High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect, Electrochimica Acta, vol.60, pp.121-129, 2012.
DOI : 10.1016/j.electacta.2011.11.033

Y. An, B. C. Wood, J. Ye, and H. Jiang, Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design, Physical Chemistry Chemical Physics, vol.248, issue.2, pp.17718-17728, 2015.
DOI : 10.1016/j.jpowsour.2013.09.097

J. M. Yuk, H. K. Seo, J. W. Choi, and J. Y. Lee, Graphene Liquid Cell Electron Microscopy, ACS Nano, vol.8, issue.7, pp.7478-85, 2014.
DOI : 10.1021/nn502779n

X. H. Liu, Y. Liu, A. Kushima, S. Zhang, T. Zhu et al., In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures, Advanced Energy Materials, vol.91, issue.1, pp.722-741, 2012.
DOI : 10.1103/PhysRevLett.91.135502

M. M. Zhao and L. Krause, Electrochemical studies of lithium-ion battery anode materials in lithium-ion battery electrolytes, J. J. Electrochem. Soc, vol.154, p.103, 2007.

A. Bordes, E. De-vito, C. Haon, A. Boulineau, A. Montani et al., Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by Time-of-Flight Secondary Ion Mass Spectrometer Imaging Performed on an In Situ Focused Ion Beam Cross Section, Chemistry of Materials, vol.28, issue.5, pp.1566-1573, 2016.
DOI : 10.1021/acs.chemmater.6b00155

M. Gauthier, J. Danet, B. Lestriez, L. Roué, D. Guyomard et al., Nanoscale compositional changes during first delithiation of Si negative electrodes, Journal of Power Sources, vol.227, pp.237-242, 2013.
DOI : 10.1016/j.jpowsour.2012.11.047

URL : https://hal.archives-ouvertes.fr/hal-00980297

J. H. Trill, C. Tao, M. Winter, S. Passerini, and H. Eckert, NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries, Journal of Solid State Electrochemistry, vol.54, issue.121, pp.349-356, 2011.
DOI : 10.1016/j.electacta.2008.07.083

J. Rohrer and K. Albe, Insights into Degradation of Si Anodes from First-Principle Calculations, The Journal of Physical Chemistry C, vol.117, issue.37, pp.18796-18803, 2013.
DOI : 10.1021/jp401379d

L. Q. Chen, F. Fan, L. Hong, J. Chen, Y. Z. Ji et al., A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes, Journal of the Electrochemical Society, vol.161, issue.11, pp.3164-3172, 2014.
DOI : 10.1149/2.0171411jes

F. Gao and W. Hong, Phase-field model for the two-phase lithiation of silicon, Journal of the Mechanics and Physics of Solids, vol.94, pp.18-32, 2016.
DOI : 10.1016/j.jmps.2016.04.020

Z. Zeng, N. Liu, Q. Zeng, S. W. Lee, W. L. Mao et al., In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy, Nano Energy, vol.22, pp.105-110, 2016.
DOI : 10.1016/j.nanoen.2016.02.005

A. D. Drozdov, P. Sommer-larsen, and J. Declaville-christiansen, Self-limiting lithiation of electrode nanoparticles in Li-ion batteries, Journal of Applied Physics, vol.114, issue.22, p.223514, 2013.
DOI : 10.1063/1.477940

K. Zhao, W. L. Wang, J. Gregoire, M. Pharr, Z. Suo et al., Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study, Nano Letters, vol.11, issue.7, pp.2962-2967, 2011.
DOI : 10.1021/nl201501s

M. T. Mcdowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang et al., In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres, Nano Letters, vol.13, issue.2, pp.758-64, 2013.
DOI : 10.1021/nl3044508

J. L. Rouviere, A. Béché, Y. Martin, T. Denneulin, and D. Cooper, Improved strain precision with high spatial resolution using nanobeam precession electron diffraction, Applied Physics Letters, vol.170, issue.24, p.241913, 2013.
DOI : 10.1016/S0022-0248(01)02085-1

J. P. Buban, Q. Ramasse, B. Gipson, N. D. Browning, and H. Stahlberg, High-resolution low-dose scanning transmission electron microscopy, Journal of Electron Microscopy, vol.316, issue.5821, pp.103-115, 2010.
DOI : 10.1126/science.1136155

URL : http://europepmc.org/articles/pmc2857930?pdf=render

J. L. Goldman, B. R. Long, A. A. Gewirth, and R. G. Nuzzo, Strain Anisotropies and Self-Limiting Capacities in Single-Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium-Ion Battery Anodes, Advanced Functional Materials, vol.129, issue.82, pp.2412-2422, 2011.
DOI : 10.1021/ja071330n

T. Yoon, C. C. Nguyen, D. M. Seo, and B. L. Lucht, Capacity Fading Mechanisms of Silicon Nanoparticle Negative Electrodes for Lithium Ion Batteries, Journal of The Electrochemical Society, vol.162, issue.12, pp.2325-2330, 2015.
DOI : 10.1149/2.0731512jes

A. Augustsson, M. Herstedt, J. Guo, K. Edström, G. V. Zhuang et al., Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy, Phys. Chem. Chem. Phys., vol.49, issue.1, p.4185, 2004.
DOI : 10.1103/PhysRevB.49.5024

W. E. Martinez, G. Gregori, and T. Mates, Titanium diffusion in gold thin films, Thin Solid Films, vol.518, issue.10, pp.2585-2591, 2010.
DOI : 10.1016/j.tsf.2009.07.187

K. Leung, S. B. Rempe, M. E. Foster, Y. Ma, J. M. Martinez-del-la-hoz et al., Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries, Journal of the Electrochemical Society, vol.161, issue.3, pp.213-221, 2013.
DOI : 10.1149/2.092401jes

Y. Okuno, K. Ushirogata, K. Sodeyama, Y. Tateyama, and . En, Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: an ab initio study, Physical Chemistry Chemical Physics, vol.98, issue.121, pp.8643-8653, 2016.
DOI : 10.1063/1.464304

C. Pereira-nabais, J. Wiatowska, A. Chagnes, A. Gohier, S. Zanna et al., Insight into the Solid Electrolyte Interphase on Si Nanowires in Lithium-Ion Battery: Chemical and Morphological Modifications upon Cycling, The Journal of Physical Chemistry C, vol.118, issue.6, pp.2919-2928, 2014.
DOI : 10.1021/jp409762m

K. Tasaki, A. Goldberg, J. Lian, M. Walker, A. Timmons et al., Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents, Journal of The Electrochemical Society, vol.27, issue.12, pp.1019-247, 2009.
DOI : 10.1016/j.electacta.2006.10.045

K. Yamamoto, T. Hirayama, and T. Tanji, Development of advanced electron holographic techniques and application to industrial materials and devices, Microscopy, vol.2, issue.suppl 1, 2013.
DOI : 10.1016/j.elecom.2006.03.003

M. N. Obrovac and V. L. Chevrier, Alloy negative electrodes for Li-ion batteries, 2014.
DOI : 10.1021/cr500207g