Skip to Main content Skip to Navigation
Journal articles

Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures

Abstract : We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, $$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$ ( C 10 H 8 O 4 ) n , also called mylar) shock-compressed to ( $$155 \pm 20$$ 155 ± 20 ) GPa and ( $$6000 \pm 1000$$ 6000 ± 1000 ) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
Document type :
Journal articles
Complete list of metadata

https://hal.sorbonne-universite.fr/hal-03266753
Contributor : Hal Sorbonne Université Gestionnaire <>
Submitted on : Tuesday, June 22, 2021 - 9:45:31 AM
Last modification on : Tuesday, July 13, 2021 - 3:26:48 AM

File

s41598-021-91769-0.pdf
Publication funded by an institution

Identifiers

Citation

J. Lütgert, J. Vorberger, N. Hartley, K. Voigt, M. Rödel, et al.. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures. Scientific Reports, Nature Publishing Group, 2021, 11 (1), ⟨10.1038/s41598-021-91769-0⟩. ⟨hal-03266753⟩

Share

Metrics

Record views

33

Files downloads

20