P. Rich, Chemiosmotic coupling: The cost of living, Nature, vol.421, issue.6923, pp.583-583, 2003.

P. R. Rich and A. Maréchal, 8.5 Electron Transfer Chains: Structures, Mechanisms and Energy Coupling, Comprehensive Biophysics, pp.72-93, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00025394

M. Wikström, V. Sharma, V. R. Kaila, J. P. Hosler, and G. Hummer, New Perspectives on Proton Pumping in Cellular Respiration, Chemical Reviews, vol.115, issue.5, pp.2196-2221, 2015.

M. K. Wikström, Proton pump coupled to cytochrome c oxidase in mitochondria, Nature, vol.266, issue.5599, pp.271-273, 1977.

J. F. Nagle and S. Tristram-nagle, Hydrogen bonded chain mechanisms for proton conduction and proton pumping, The Journal of Membrane Biology, vol.74, issue.1, pp.1-14, 1983.

T. E. Decoursey, Voltage-Gated Proton Channels and Other Proton Transfer Pathways, Physiological Reviews, vol.83, issue.2, pp.475-579, 2003.

S. Iwata, C. Ostermeier, B. Ludwig, and H. Michel, Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans, Nature, vol.376, issue.6542, pp.660-669, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01782011

T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi et al., The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 A, Science, vol.272, issue.5265, pp.1136-1144, 1996.

J. A. García-horsman, B. Barquera, J. Rumbley, J. Ma, and R. B. Gennis, The superfamily of heme-copper respiratory oxidases., Journal of Bacteriology, vol.176, issue.18, pp.5587-5600, 1994.

F. L. Sousa, R. J. Alves, M. A. Ribeiro, J. B. Pereira-leal, M. Teixeira et al., The superfamily of heme?copper oxygen reductases: Types and evolutionary considerations, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.4, pp.629-637, 2012.

J. Hemp and R. B. Gennis, Diversity of the Heme?Copper Superfamily in Archaea: Insights from Genomics and Structural Modeling, Bioenergetics, pp.1-31

P. Brzezinski and R. B. Gennis, Cytochrome c oxidase: exciting progress and remaining mysteries, Journal of Bioenergetics and Biomembranes, vol.40, issue.5, pp.521-531, 2008.

P. R. Rich and A. Maréchal, Functions of the hydrophilic channels in protonmotive cytochrome c oxidase, Journal of The Royal Society Interface, vol.10, issue.86, p.20130183, 2013.

P. R. Rich, Mitochondrial cytochrome c oxidase: catalysis, coupling and controversies, Biochemical Society Transactions, vol.45, issue.3, pp.813-829, 2017.

M. Wikström, K. Krab, and V. Sharma, Oxygen Activation and Energy Conservation by CytochromecOxidase, Chemical Reviews, vol.118, issue.5, pp.2469-2490, 2018.

N. Yano, K. Muramoto, A. Shimada, S. Takemura, J. Baba et al., The Mg2+-containing Water Cluster of Mammalian CytochromecOxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle, Journal of Biological Chemistry, vol.291, issue.46, pp.23882-23894, 2016.

S. Yoshikawa and A. Shimada, Reaction Mechanism of CytochromecOxidase, Chemical Reviews, vol.115, issue.4, pp.1936-1989, 2015.

A. M. Hartley, N. Lukoyanova, Y. Zhang, A. Cabrera-orefice, S. Arnold et al., Structure of yeast cytochrome c oxidase in a supercomplex with cytochrome bc1, Nature Structural & Molecular Biology, vol.26, issue.1, pp.78-83, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02171150

B. Meunier, A. Maréchal, and P. R. Rich, Construction of histidine-tagged yeast mitochondrial cytochrome c oxidase for facile purification of mutant forms, Biochemical Journal, vol.444, issue.2, pp.199-204, 2012.

A. Maréchal, B. Meunier, D. Lee, C. Orengo, and P. R. Rich, Yeast cytochrome c oxidase: A model system to study mitochondrial forms of the haem?copper oxidase superfamily, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.4, pp.620-628, 2012.

B. Meunier and P. R. Rich, Second-site reversion analysis is not a reliable method to determine distances in membrane proteins: an assessment using mutations in yeast cytochrome c oxidase subunits I and II 1 1Edited by R. Huber, Journal of Molecular Biology, vol.283, issue.4, pp.727-730, 1998.

B. Chance and G. R. Williams, A Simple and Rapid Assay of Oxidative Phosphorylation, Nature, vol.175, issue.4469, pp.1120-1121, 1955.

C. M. Smith, J. Bryla, and J. R. Williamson, Regulation of mitochondrial alphaketoglutarate metabolism by product inhibition at alpha-ketoglutarate dehydrogenase, J. Biol. Chem, vol.249, pp.1497-1505, 1974.

J. G. Mccormack and R. M. Denton, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex, Biochemical Journal, vol.180, issue.3, pp.533-544, 1979.

J. Lasserre, A. Dautant, R. S. Aiyar, R. Kucharczyk, A. Glatigny et al., Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies, Disease Models & Mechanisms, vol.8, issue.6, pp.509-526, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199669

D. Stock, A. G. Leslie, and J. E. Walker, Molecular Architecture of the Rotary Motor in ATP Synthase, Science, vol.286, issue.5445, pp.1700-1705, 1999.

B. Meunier, P. Lemarre, and A. Colson, Genetic screening in Saccharomyces cerevisiae for large numbers of mitochondrial point mutations which affect structure and function of catalytic subunits of cytochrome-c oxidase, European Journal of Biochemistry, vol.213, issue.1, pp.129-135, 1993.

S. Brown, A. Colson, B. Meunier, and P. R. Rich, Rapid screening of cytochromes of respiratory mutants of Saccharomyces cerevisiae. Application to the selection of strains containing novel forms of cytochrome-c oxidase, European Journal of Biochemistry, vol.213, issue.1, pp.137-145, 1993.

B. Meunier and A. Colson, Random deficiency mutations and reversions in the cytochrome c oxidase subunits I, II and III of Saccharomyces cerevisiae, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1187, issue.2, pp.112-115, 1994.

C. Ortwein, T. A. Link, B. Meunier, A. Colson-corbisier, P. R. Rich et al., Structural and functional analysis of deficient mutants in subunit I of cytochrome c oxidase from Saccharomyces cerevisiae, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1321, issue.1, pp.79-92, 1997.

U. Pfitzner, Cytochrome c oxidase (heme aa 3 ) from Paracoccus denitrificans: Analysis of mutations in putative proton channels of subunit I, J. Bioenerg. Biomembr, vol.30, pp.89-97, 1998.

M. Wikström, Cytochrome c oxidase: 25 years of the elusive proton pump, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1655, pp.241-247, 2004.

J. P. Hosler, S. Ferguson-miller, and D. A. Mills, Energy Transduction: Proton Transfer Through the Respiratory Complexes, Annual Review of Biochemistry, vol.75, issue.1, pp.165-187, 2006.

A. A. Konstantinov, S. Siletsky, D. Mitchell, A. Kaulen, and R. B. Gennis, The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer, Proceedings of the National Academy of Sciences, vol.94, issue.17, pp.9085-9090, 1997.

S. Jünemann, B. Meunier, R. B. Gennis, and P. R. Rich, Effects of Mutation of the Conserved Lysine-362 in CytochromecOxidase fromRhodobacter sphaeroides?, Biochemistry, vol.36, issue.47, pp.14456-14464, 1997.

D. Zaslavsky and R. B. Gennis, Proton pumping by cytochrome oxidase: progress, problems and postulates, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1458, issue.1, pp.164-179, 2000.

H. Lee, T. K. Das, D. L. Rousseau, D. Mills, S. Ferguson-miller et al., Mutations in the Putative H-Channel in the CytochromecOxidase fromRhodobactersphaeroidesShow That This Channel Is Not Important for Proton Conduction but Reveal Modulation of the Properties of Hemea?, Biochemistry, vol.39, issue.11, pp.2989-2996, 2000.

J. R. Fetter, J. Qian, J. Shapleigh, J. W. Thomas, A. Garcia-horsman et al., Possible proton relay pathways in cytochrome c oxidase., Proceedings of the National Academy of Sciences, vol.92, issue.5, pp.1604-1608, 1995.

J. P. Hosler, J. P. Shapleigh, D. M. Mitchell, Y. Kim, M. A. Pressler et al., Polar Residues in Helix VIII of Subunit I of CytochromecOxidase Influence the Activity and the Structure of the Active Site?, Biochemistry, vol.35, issue.33, pp.10776-10783, 1996.

M. L. Verkhovskaya, A. Garcia-horsman, A. Puustinen, J. Rigaud, J. E. Morgan et al., Glutamic acid 286 in subunit I of cytochrome bo3 is involved in proton translocation, Proceedings of the National Academy of Sciences, vol.94, issue.19, pp.10128-10131, 1997.

S. Jünemann, B. Meunier, N. Fisher, and P. R. Rich, Effects of Mutation of the Conserved Glutamic Acid-286 in Subunit I of CytochromecOxidase fromRhodobacter sphaeroides?, Biochemistry, vol.38, issue.16, pp.5248-5255, 1999.

B. Meunier, C. Ortwein, U. Brandt, and R. P. Rich, Effects of mutation of residue I67 on redox-linked protonation processes in yeast cytochrome c oxidase, Biochemical Journal, vol.330, issue.3, pp.1197-1200, 1998.

A. Maréchal, B. Meunier, and P. R. Rich, Assignment of the CO-sensitive carboxyl group in mitochondrial forms of cytochrome c oxidase using yeast mutants, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1817, issue.10, pp.1921-1924, 2012.

A. Maréchal, A. M. Hartley, T. P. Warelow, B. Meunier, and P. R. Rich, Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1859, issue.9, pp.705-711, 2018.

L. N. Öjemyr, Reaction of wild-type and Glu243Asp variant yeast cytochrome c oxidase with O2, Biochim. Biophys. Acta, vol.1837, pp.1012-1018, 2014.

M. L. Björck, J. Vilhjálmsdóttir, A. M. Hartley, B. Meunier, L. Näsvik-Öjemyr et al., Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase, Scientific Reports, vol.9, issue.1, p.20207, 2019.

T. Tsukihara, K. Shimokata, Y. Katayama, H. Shimada, K. Muramoto et al., The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process, Proceedings of the National Academy of Sciences, vol.100, issue.26, pp.15304-15309, 2003.

K. Shimokata, Y. Katayama, H. Murayama, M. Suematsu, T. Tsukihara et al., The proton pumping pathway of bovine heart cytochrome c oxidase, Proceedings of the National Academy of Sciences, vol.104, issue.10, pp.4200-4205, 2007.

J. W. Thomas, A. Puustinen, J. O. Alben, R. B. Gennis, and M. Wikstrom, Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity, Biochemistry, vol.32, issue.40, pp.10923-10928, 1993.

U. Pfitzner, K. Hoffmeier, A. Harrenga, A. Kannt, H. Michel et al., Tracing the D-Pathway in Reconstituted Site-Directed Mutants of CytochromecOxidase fromParacoccus denitrificans?, Biochemistry, vol.39, issue.23, pp.6756-6762, 2000.

A. S. Pawate, J. Morgan, A. Namslauer, D. Mills, P. Brzezinski et al., A Mutation in Subunit I of Cytochrome Oxidase fromRhodobacter sphaeroidesResults in an Increase in Steady-State Activity but Completely Eliminates Proton Pumping?, Biochemistry, vol.41, issue.45, pp.13417-13423, 2002.

D. Han, A. Namslauer, A. Pawate, J. E. Morgan, S. Nagy et al., Replacing Asn207 by Aspartate at the Neck of the D Channel in the aa3-Type CytochromecOxidase fromRhodobacter sphaeroidesResults in Decoupling the Proton Pump?, Biochemistry, vol.45, issue.47, pp.14064-14074, 2006.

J. A. Garcia-horsman, A. Puustinen, R. B. Gennis, and M. Wikström, Proton transfer in cytochrome bo3 ubiquinol oxidase of Escherichia coli: Second-site mutations in subunit I that restore proton pumping in the mutant Asp135?Asn, Biochemistry, vol.34, pp.4428-4433, 1995.

G. Brändén, A. S. Pawate, R. B. Gennis, and P. Brzezinski, Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.317-322, 2006.

V. Rauhamäki and M. Wikström, The causes of reduced proton-pumping efficiency in type B and C respiratory heme-copper oxidases, and in some mutated variants of type A, Biochim. Biophys. Acta, vol.1837, pp.999-1003, 2014.

S. Yoshikawa, Redox-Coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase, Science, vol.280, issue.5370, pp.1723-1729, 1998.

A. Shimada, A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase, Sci. Adv, vol.3, p.1603042, 2017.

I. Ishigami, Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.8011-8016, 2017.

I. Ishigami, Snapshot of an oxygen intermediate in the catalytic reaction of cytochrome c oxidase, Proc. Natl. Acad. Sci. U.S.A, vol.116, pp.3572-3577, 2019.

A. Malkamäki, B. Meunier, M. Reidelbach, P. R. Rich, and V. Sharma, The H channel is not a proton transfer path in yeast cytochrome c oxidase, Biochim. Biophys. Acta Bioenerg, vol.1860, pp.717-723, 2019.

V. Sharma, P. G. Jambrina, M. Kaukonen, E. Rosta, and P. R. Rich, Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.10339-10348, 2017.

S. Supekar, A. P. Gamiz-hernandez, and V. R. Kaila, A protonated water cluster as a transient proton-loading site in cytochrome c oxidase, Angew. Chem. Int. Ed. Engl, vol.55, pp.11940-11944, 2016.

J. Koepke, High-resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: New insights into the active site and the proton transfer pathways, Biochim. Biophys. Acta, vol.1787, pp.635-645, 2009.

X. Cai, Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase, Biochim. Biophys. Acta Bioenerg, vol.1859, pp.997-1005, 2018.

R. Sugitani and A. A. Stuchebrukhov, Molecular dynamics simulation of water in cytochrome c oxidase reveals two water exit pathways and the mechanism of transport, Biochim. Biophys. Acta, vol.1787, pp.1140-1150, 2009.

A. Maréchal, M. Iwaki, and P. R. Rich, Structural changes in cytochrome c oxidase induced by binding of sodium and calcium ions: An ATR-FTIR study, J. Am. Chem. Soc, vol.135, pp.5802-5807, 2013.

A. Timón-gómez, Mitochondrial cytochrome c oxidase biogenesis: Recent developments, Semin. Cell Dev. Biol, vol.76, pp.163-178, 2018.

S. Riistama, L. Laakkonen, M. Wikström, M. I. Verkhovsky, and A. Puustinen, The calciumbinding site in cytochrome aa3 from Paracoccus denitrificans, Biochemistry, vol.38, pp.10670-10677, 1999.

B. Meunier, Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase, Biochem. J, vol.354, pp.407-412, 2001.

N. Fisher, Human disease-related mutations in cytochrome b studied in yeast, J. Biol. Chem, vol.279, pp.12951-12958, 2004.

J. Conde and G. R. Fink, A mutant of Saccharomyces cerevisiae defective for nuclear fusion, Proc. Natl. Acad. Sci. U.S.A, vol.73, pp.3651-3655, 1976.

B. J. Thomas and R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell, vol.56, pp.619-630, 1989.

B. Guérin, P. Labbe, and M. Somlo, Preparation of yeast mitochondria (Saccharomyces cerevisiae) with good P/O and respiratory control ratios, Methods Enzymol, vol.55, pp.149-159, 1979.