L. Mestek-boukhibar, E. Clement, W. D. Jones, S. Drury, L. Ocaka et al., Rapid Paediatric Sequencing (RaPS): comprehensive real-life workflow for rapid diagnosis of critically ill children, Journal of Medical Genetics, vol.55, issue.11, pp.721-728, 2018.

J. R. Rodrigues, A. Couto, A. Cabezas, R. M. Pinto, J. M. Ribeiro et al., Bifunctional Homodimeric Triokinase/FMN Cyclase, Journal of Biological Chemistry, vol.289, issue.15, pp.10620-10636, 2014.

H. Tyynismaa, C. J. Carroll, N. Raimundo, S. Ahola-erkkilä, T. Wenz et al., Mitochondrial myopathy induces a starvation-like response, Human Molecular Genetics, vol.19, issue.20, pp.3948-3958, 2010.

N. Sobreira, F. Schiettecatte, D. Valle, and A. Hamosh, GeneMatcher: A Matching Tool for Connecting Investigators with an Interest in the Same Gene, Human Mutation, vol.36, issue.10, pp.928-930, 2015.

J. A. Mayr, T. B. Haack, E. Graf, F. A. Zimmermann, T. Wieland et al., Lack of the Mitochondrial Protein Acylglycerol Kinase Causes Sengers Syndrome, The American Journal of Human Genetics, vol.90, issue.2, pp.314-320, 2012.

S. F. Garbade, N. Shen, N. Himmelreich, D. Haas, F. K. Trefz et al., Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria, Genetics in Medicine, vol.21, issue.3, pp.580-590, 2018.

H. G. Hers and T. Kusaka, Le metabolisme du fructose-1-phosphate dans le foie, Biochimica et Biophysica Acta, vol.11, pp.427-437, 1953.

J. Rodrigues, J. Cameselle, A. Cabezas, and J. Ribeiro, Closure of the Human TKFC Active Site: Comparison of the Apoenzyme and the Complexes Formed with Either Triokinase or FMN Cyclase Substrates, International Journal of Molecular Sciences, vol.20, issue.5, p.1099, 2019.

C. Siebold, I. Arnold, L. F. Garcia-alles, U. Baumann, and B. Erni, Crystal Structure of theCitrobacter freundiiDihydroxyacetone Kinase Reveals an Eight-stranded ?-Helical Barrel ATP-binding Domain, Journal of Biological Chemistry, vol.278, issue.48, pp.48236-48244, 2003.

C. Jang, S. Hui, W. Lu, A. J. Cowan, R. J. Morscher et al., The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids, Cell Metabolism, vol.27, issue.2, pp.351-361.e3, 2018.

A. Kinote, J. A. Faria, E. A. Roman, C. Solon, D. S. Razolli et al., Fructose-Induced Hypothalamic AMPK Activation Stimulates Hepatic PEPCK and Gluconeogenesis due to Increased Corticosterone Levels, Endocrinology, vol.153, issue.8, pp.3633-3645, 2012.

M. Molin, J. Norbeck, and A. Blomberg, Dihydroxyacetone Kinases inSaccharomyces cerevisiaeAre Involved in Detoxification of Dihydroxyacetone, Journal of Biological Chemistry, vol.278, issue.3, pp.1415-1423, 2002.

B. Steinmann and R. Santer, Disorders of Fructose Metabolism, Inborn Metabolic Diseases, pp.161-168, 2016.

S. A. Hannou, D. E. Haslam, N. M. Mckeown, and M. A. Herman, Fructose metabolism and metabolic disease, Journal of Clinical Investigation, vol.128, issue.2, pp.545-555, 2018.

M. Molin, M. Pilon, and A. Blomberg, Dihydroxyacetone-induced death is accompanied by advanced glycation endproduct formation in selected proteins ofSaccharomyces cerevisiaeandCaenorhabditis elegans, PROTEOMICS, vol.7, issue.20, pp.3764-3774, 2007.

S. Franke, J. Dawczynski, J. Strobel, T. Niwa, P. Stahl et al., Increased levels of advanced glycation end products in human cataractous lenses, Journal of Cataract & Refractive Surgery, vol.29, issue.5, pp.998-1004, 2003.

Z. Hashim and S. Zarina, Advanced glycation end products in diabetic and non-diabetic human subjects suffering from cataract, AGE, vol.33, issue.3, pp.377-384, 2010.

F. A. Shamsi, K. Lin, C. Sady, and R. H. Nagaraj, Methylglyoxal-derived modifications in lens aging and cataract formation, Invest. Ophthalmol. Vis. Sci, vol.39, pp.2355-2364, 1998.

K. R. Smith, F. Hayat, J. F. Andrews, M. E. Migaud, and N. R. Gassman, Dihydroxyacetone Exposure Alters NAD(P)H and Induces Mitochondrial Stress and Autophagy in HEK293T Cells, Chemical Research in Toxicology, vol.32, issue.8, pp.1722-1731, 2019.

K. R. Smith, M. Granberry, M. C. Tan, C. L. Daniel, and N. R. Gassman, Dihydroxyacetone induces G2/M arrest and apoptotic cell death in A375P melanoma cells, Environmental Toxicology, vol.33, issue.3, pp.333-342, 2017.

I. Marco?rius, C. Von-morze, R. Sriram, P. Cao, G. Chang et al., Monitoring acute metabolic changes in the liver and kidneys induced by fructose and glucose using hyperpolarized [2? 13 C]dihydroxyacetone, Magnetic Resonance in Medicine, vol.77, issue.1, pp.65-73, 2016.

S. Balasubramaniam, J. Christodoulou, and S. Rahman, Disorders of riboflavin metabolism, Journal of Inherited Metabolic Disease, vol.42, issue.4, pp.608-619, 2019.

A. Cabezas, M. J. Costas, R. M. Pinto, A. Couto, and J. C. Cameselle, Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases, Biochemical and Biophysical Research Communications, vol.338, issue.4, pp.1682-1689, 2005.

F. Diao, S. Li, Y. Tian, M. Zhang, L. Xu et al., Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase, Proceedings of the National Academy of Sciences, vol.104, issue.28, pp.11706-11711, 2007.

A. Komuro, D. Bamming, and C. M. Horvath, Negative regulation of cytoplasmic RNA-mediated antiviral signaling, Cytokine, vol.43, issue.3, pp.350-358, 2008.

H. Jing and H. C. Su, New immunodeficiency syndromes that help us understand the IFN-mediated antiviral immune response, Current Opinion in Pediatrics, vol.31, issue.6, pp.815-820, 2019.

G. I. Rice, Y. Del-toro-duany, E. M. Jenkinson, G. M. Forte, B. H. Anderson et al., Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling, Nat. Genet, vol.46, pp.503-509, 2014.

S. Asgari, L. J. Schlapbach, S. Anchisi, C. Hammer, I. Bartha et al., Severe viral respiratory infections in children with IFIH1 loss-of-function mutations, Proceedings of the National Academy of Sciences, vol.114, issue.31, pp.8342-8347, 2017.

I. T. Lamborn, H. Jing, Y. Zhang, S. B. Drutman, J. K. Abbott et al., Recurrent rhinovirus infections in a child with inherited MDA5 deficiency, Journal of Experimental Medicine, vol.214, issue.7, pp.1949-1972, 2017.

L. Xu, N. Xiao, F. Liu, H. Ren, and J. Gu, Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria, Proceedings of the National Academy of Sciences, vol.106, issue.5, pp.1530-1535, 2009.

K. Takashima, H. Oshiumi, H. Takaki, M. Matsumoto, and T. Seya, RIOK3-Mediated Phosphorylation of MDA5 Interferes with Its Assembly and Attenuates the Innate Immune Response, Cell Reports, vol.11, issue.2, pp.192-200, 2015.

A. H. Broquet, Y. Hirata, C. S. Mcallister, and M. F. Kagnoff, RIG-I/MDA5/MAVS Are Required To Signal a Protective IFN Response in Rotavirus-Infected Intestinal Epithelium, The Journal of Immunology, vol.186, issue.3, pp.1618-1626, 2010.

R. G. Feichtinger, M. Oláhová, Y. Kishita, C. Garone, L. S. Kremer et al., Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies, The American Journal of Human Genetics, vol.101, issue.4, pp.525-538, 2017.