H. Mangge, G. Almer, I. Stelzer, E. Reininghaus, and R. Prassl, Laboratory medicine for molecular imaging of atherosclerosis, Clinica chimica acta; international journal of clinical chemistry, vol.437, pp.19-24, 2014.

R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya et al.,

M. Cooper, M. Corriere, K. C. Cortinovis, W. De-vaccaro, B. C. Couser et al.,

E. Gabriel, F. Gakidou, R. F. Gaspari, D. Gillum, Y. A. Gonzalez-medina et al.,

A. Kobusingye, R. Koranteng, M. Krishnamurthi, S. E. Lipnick, S. L. Lipshultz et al., Lancet, vol.380, pp.2095-2128, 2010.

J. Hamzah, V. R. Kotamraju, J. W. Seo, L. Agemy, V. Fogal et al.,

K. W. Gagnon, E. Ferrara, and . Ruoslahti, Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E-deficient mice, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.7154-7159, 2011.

I. Cicha, C. D. Garlichs, and C. Alexiou, Cardiovascular therapy through nanotechnology -how far are we still from bedside?, Eur J Nanomed, vol.6, pp.63-87, 2014.

M. Bietenbeck, A. Florian, C. Faber, U. Sechtem, and A. Yilmaz, Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?, International journal of nanomedicine, vol.11, pp.3191-3203, 2016.

M. Karimi, H. Zare, A. Nik, N. Yazdani, M. Hamrang et al.,

L. Moosavi-basri, M. R. Bakhtiari, and . Hamblin, Nanotechnology in diagnosis and treatment of coronary artery disease, Nanomedicine (Lond), vol.11, pp.513-530, 2016.

J. Matuszak, J. Baumgartner, J. Zaloga, M. Juenet, A. E. Silva et al., Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing, vol.11, pp.597-616, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02438946

I. Cicha, K. Beronov, E. L. Ramirez, K. Osterode, M. Goppelt-struebe et al., Shear stress preconditioning modulates endothelial susceptibility to circulating TNF-alpha and monocytic cell recruitment in a simplified model of arterial bifurcations, Atherosclerosis, vol.207, pp.93-102, 2009.

A. Puri, K. Loomis, B. Smith, J. H. Lee, A. Yavlovich et al., Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic, Critical reviews in therapeutic drug carrier systems, vol.26, pp.523-580, 2009.

G. Almer, K. Wernig, M. Saba-lepek, S. Haj-yahya, J. Rattenberger et al., Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques, International journal of nanomedicine, vol.6, pp.1279-1290, 2011.

G. Almer, D. Frascione, I. Pali-scholl, C. Vonach, A. Lukschal et al., Interleukin-10: an anti-inflammatory marker to target atherosclerotic lesions via PEGylated liposomes, Molecular pharmaceutics, vol.10, pp.175-186, 2013.

T. Van-der-geest, J. M. Metselaar, D. Gerrits, P. L. Van-lent, G. Storm et al.,

F. Fdg-pet, /CT imaging to monitor the therapeutic effect of liposome-encapsulated prednisolone in experimental rheumatoid arthritis, Journal of Controlled Release, vol.209, pp.20-26

J. Gravier, F. P. Navarro, T. Delmas, F. Mittler, A. C. Couffin et al., Lipidots: competitive organic alternative to quantum dots for in vivo fluorescence imaging, Journal of biomedical optics, vol.16, p.96013, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01057405

D. Chauvierre, P. Labarre, C. Couvreur, and . Vauthier, Radical emulsion polymerization of alkylcyanoacrylates initiated by the redox system dextran-cerium(IV) under acidic aqueous conditions, Macromolecules, vol.36, pp.6018-6027, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02439139

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochimica et biophysica acta, vol.1790, pp.141-146, 2009.

F. Rouzet, L. Bachelet-violette, J. M. Alsac, M. Suzuki, A. Meulemans et al., Radiolabeled fucoidan as a pselectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation, Society of Nuclear Medicine, vol.52, pp.1433-1440, 2011.

J. Zaloga, C. Janko, J. Nowak, J. Matuszak, S. Knaup et al.,

A. , Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility, International journal of nanomedicine, vol.9, pp.4847-4866, 2014.

H. Unterweger, R. Tietze, C. Janko, J. Zaloga, S. Lyer et al., Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery, International journal of nanomedicine, vol.9, pp.3659-3676, 2014.

H. Unterweger, C. Janko, M. Schwarz, L. Dezsi, R. Urbanics et al., Non-immunogenic dextrancoated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging, International journal of nanomedicine, vol.12, pp.5223-5238, 2017.

A. Kumar and A. Dhawan, Genotoxic and carcinogenic potential of engineered nanoparticles: an update, Archives of toxicology, vol.87, pp.1883-1900, 2013.

B. S. Zolnik, A. Gonzalez-fernandez, N. Sadrieh, and M. A. Dobrovolskaia, Nanoparticles and the immune system, Endocrinology, vol.151, pp.458-465, 2010.

N. Desai, Challenges in development of nanoparticle-based therapeutics, The AAPS journal, vol.14, pp.282-295, 2012.

J. Huwyler, J. Drewe, and S. Krahenbuhl, Tumor targeting using liposomal antineoplastic drugs, International journal of nanomedicine, vol.3, pp.21-29, 2008.

R. H. Muller, R. Shegokar, and C. M. Keck, 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications, Current drug discovery technologies, vol.8, pp.207-227, 2011.

P. J. Wermuth and S. A. Jimenez, Induction of a type I interferon signature in normal human monocytes by gadolinium-based contrast agents: comparison of linear and macrocyclic agents, Clinical and experimental immunology, vol.175, pp.113-125, 2014.

M. Pozo, R. De-nicolas, J. Egido, and J. Gonzalez-cabrero, Simvastatin inhibits the migration and adhesion of monocytic cells and disorganizes the cytoskeleton of activated endothelial cells, European journal of pharmacology, vol.548, pp.53-63, 2006.

M. Gelati, E. Corsini, A. Dufour, E. Ciusani, G. Massa et al., Reduced adhesion of PBMNCs to endothelium in methylprednisolone-treated MS patients: preliminary results, Acta neurologica Scandinavica, vol.96, pp.283-292, 1997.

T. Simoncini, S. Maffei, G. Basta, G. Barsacchi, A. R. Genazzani et al., Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule-1 expression by different transcriptional mechanisms, Circulation research, vol.87, pp.19-25, 2000.

S. Katsuki, T. Matoba, S. Nakashiro, K. Sato, J. Koga et al., Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes, Circulation, vol.129, pp.896-906, 2014.

B. Wong, W. C. Lumma, A. M. Smith, J. T. Sisko, S. D. Wright et al., Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation, Journal of leukocyte biology, vol.69, pp.959-962, 2001.

T. Courant, E. Bayon, H. L. Reynaud-dougier, C. Villiers, M. Menneteau et al., Tailoring nanostructured lipid carriers for the delivery of protein antigens: Physicochemical properties versus immunogenicity studies, Biomaterials, vol.136, pp.29-42, 2017.
URL : https://hal.archives-ouvertes.fr/cea-02202450

J. Merian, R. Boisgard, X. Decleves, B. Theze, I. Texier et al., Synthetic Lipid Nanoparticles Targeting Steroid Organs, Journal of Nuclear Medicine, vol.54, pp.1996-2003, 2013.

M. Goppert and R. H. Muller, Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting, Int J Pharm, vol.302, pp.172-186, 2005.

M. Goppert and R. H. Muller, Protein adsorption patterns on poloxamer-and poloxaminestabilized solid lipid nanoparticles (SLN), European Journal of Pharmaceutics and Biopharmaceutics, vol.60, pp.361-372, 2005.

S. Mura and P. Couvreur, Nanotheranostics for personalized medicine, Advanced drug delivery reviews, vol.64, pp.1394-1416, 2012.

C. Chauvierre, D. Labarre, P. Couvreur, and C. Vauthier, Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles, Pharmaceutical research, vol.20, pp.1786-1793, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02439107

R. H. Muller, C. Lherm, J. Herbort, and P. Couvreur, Invitro Model for the Degradation of Alkylcyanoacrylate Nanoparticles, Biomaterials, vol.11, pp.590-595, 1990.

C. C. Berry and A. S. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, J Phys D Appl Phys, vol.36, pp.198-206, 2003.

G. Sun and J. J. Mao, Engineering dextran-based scaffolds for drug delivery and tissue repair, Nanomedicine, vol.7, pp.1771-1784, 2012.

T. R. Porter, Cardiovascular imaging of remote myocardial ischemia: detecting a molecular trace of evidence left behind, Circulation, vol.115, pp.292-293, 2007.

P. Libby, M. Dicarli, and R. Weissleder, The vascular biology of atherosclerosis and imaging targets, J Nucl Med, vol.51, pp.33-37, 2010.

M. J. Polley, M. L. Phillips, E. Wayner, E. Nudelman, A. K. Singhal et al., Cd62 and Endothelial-Cell Leukocyte Adhesion Molecule-1 (Elam-1) Recognize the Same Carbohydrate Ligand, P Natl Acad Sci, vol.88, pp.6224-6228, 1991.

M. Heinzelmann, H. C. Polk, J. , and F. N. Miller, Modulation of lipopolysaccharide-induced monocyte activation by heparin-binding protein and fucoidan, Infection and immunity, vol.66, pp.5842-5847, 1998.

W. F. Zandberg, J. Kumarasamy, B. M. Pinto, and D. J. Vocadlo, Metabolic inhibition of sialyl-Lewis X biosynthesis by 5-thiofucose remodels the cell surface and impairs selectin-mediated cell adhesion, The Journal of biological chemistry, vol.287, pp.40021-40030, 2012.

A. Cumashi, N. A. Ushakova, M. E. Preobrazhenskaya, A. Incecco, A. Piccoli et al., A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, vol.17, pp.541-552, 2007.

R. A. Trivedi, C. Mallawarachi, U. K. , .. Jm, M. J. Graves et al.,

J. Kirkpatrick, J. H. Brown, and . Gillard, Identifying inflamed carotid plaques using in vivo USPIOenhanced MR imaging to label plaque macrophages, Arteriosclerosis, thrombosis, and vascular biology, vol.26, pp.1601-1606, 2006.

S. P. Howarth, T. Y. Tang, R. Trivedi, R. Weerakkody, U. K. et al., Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals, European journal of radiology, vol.70, pp.555-560, 2009.

T. Y. Tang, K. H. Muller, M. J. Graves, Z. Y. Li, S. R. Walsh et al., Iron oxide particles for atheroma imaging, Arteriosclerosis, thrombosis, and vascular biology, vol.29, pp.1001-1008, 2009.

U. Sadat, S. P. Howarth, A. Usman, T. Y. Tang, M. J. Graves et al., Sequential Imaging of Asymptomatic Carotid Atheroma Using Ultrasmall Superparamagnetic Iron Oxide-enhanced Magnetic Resonance Imaging: A Feasibility Study, Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association, vol.22, pp.271-276, 2013.

J. M. Richards, C. A. Shaw, N. N. Lang, M. C. Williams, S. I. Semple et al.,

S. R. Crawford, A. P. Alam, E. K. Atkinson, C. Forrest, N. L. Bienek et al.,

W. A. Simpson, A. T. Wallace, P. H. Hill, G. Roddie, T. A. Mckillop et al., In vivo mononuclear cell tracking using superparamagnetic particles of iron oxide: feasibility and safety in humans, Circulation Cardiovascular imaging, vol.5, pp.509-517, 2012.

C. Janko, S. Durr, L. E. Munoz, S. Lyer, R. Chaurio et al., Magnetic drug targeting reduces the chemotherapeutic burden on circulating leukocytes, International journal of molecular sciences, vol.14, pp.7341-7355, 2013.

S. Lyer, R. Tietze, R. Jurgons, T. Struffert, T. Engelhorn et al., Visualisation of tumour regression after local chemotherapy with magnetic nanoparticles -a pilot study, Anticancer research, vol.30, pp.1553-1557, 2010.

R. Tietze, S. Lyer, S. Durr, T. Struffert, T. Engelhorn et al., Efficient drug-delivery using magnetic nanoparticles--biodistribution and therapeutic effects in tumour bearing rabbits, Nanomedicine, vol.9, pp.961-971, 2013.

W. J. Zhang and B. Frei, Albumin selectively inhibits TNF alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells, Cardiovasc Res, vol.55, pp.820-829, 2002.

A. C. Desfaits, O. Serri, and G. Renier, Gliclazide reduces the induction of human monocyte adhesion to endothelial cells by glycated albumin, Diabetes, obesity & metabolism, vol.1, pp.113-120, 1999.

S. J. Soenen, N. Nuytten, S. F. Meyer, S. C. De-smedt, and M. Cuyper, High Intracellular Iron Oxide Nanoparticle Concentrations Affect Cellular Cytoskeleton and Focal Adhesion Kinase-Mediated Signaling, Small, vol.6, pp.832-842, 2010.

, Cell index is displayed as x-fold of untreated controls. Right panel: HUVECs were grown in bifurcating slides until confluence and perfused for 18h with medium containing nanoparticles. Fluorescent images of representative laminar and non-uniform regions at 20x objective magnification are shown. The F-actin was visualised with cytoskeleton was stained with Alexa 488, Viability of endothelial cells upon treatment with LP-NP1. HUVECs were treated with (A) LP-NP1 and (B), vol.1