N. Alpy, D. Haubensack, N. Simon, L. Gicquel, G. Rodriguez et al., Gas Cycle Testing Opportunity with ASTRID, the French SFR Prototype, 2011.

. Supercritical and . Power, Cycle Symposium, pp.24-25, 2011.

V. , A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors, 2004.

Y. Chen, Thermodynamic Cycles using Carbon Dioxide as Working Fluid : CO2 Transcritical Power Cycle Study, PHD Dissertation, KTH Royal Institute of Technology, 2011.

D. Sanchez, R. Chacartegui, F. Jimenez-espadafor, and T. Sanchez, A New Concept for High Temperature Fuel Cell Hybrid Systems Using Supercritical Carbon Dioxide, Journal of Fuel Cell Science and Technology, vol.6, issue.2, 2009.

C. S. Turchi, Z. Ma, T. W. Neises, and M. J. Wagner, Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems, Journal of Solar Energy Engineering, vol.135, issue.4, p.41007, 2013.

P. Hejzlar, V. Dostal, M. J. Driscoll, P. Dumaz, G. Poullennec et al., Assessment of Gas-cooled Fast Reactor with Indirect Supercritical CO2 Cycle, Nuclear Engineering and Technology, vol.38, issue.2, pp.436-446, 2006.

H. J. Yoon, Y. Ahn, J. I. Lee, and Y. Addad, Potential Advantages of Coupling Supercritical CO2 Brayton Cycle to Water-cooled Small and Medium Size Reactor, Nuclear Engineering and Design, vol.245, pp.223-232, 2012.

S. Ishiyama, Y. Muto, Y. Kato, S. Nishio, T. Hayashi et al., Study of Steam, Helium and Supercritical CO2 Turbine Power Generations in Prototype Fusion Power Reactor, Progress in Nuclear Energy, vol.50, issue.2-6, pp.325-332, 2008.

G. Angelino, Carbon Dioxide Condensation Cycles For Power Production, Journal of Engineering for Power, vol.90, issue.3, pp.287-295, 1968.

Y. Ahn, S. J. Bae, M. Kim, S. K. Cho, S. J. Baik et al., Review of supercritical co2 power cycle technology and current status of research and development, Nuclear Engineering Technology, vol.47, pp.647-661, 2015.

J. S. Noall and J. J. Pasch, Achievable Efficiency and Stability of Supercritical CO2 Compression Systems, Proceedings of the 2014 Supercritical CO2 Power Cycle Symposium, p.9, 2014.

J. Floyd, N. Alpy, A. Moisseytsev, D. Haubensack, G. Rodriguez et al., A Numerical Investigation of the sCO2 Recompression Cycle off-design Behaviour, Coupled to a Sodium-cooled Fast Reactor, for Seasonal Variation in the Heat Sink Temperature, Nuclear Engineering and Design, vol.260, pp.78-92, 2013.

D. Haubensack, C. Thévenot, and P. Dumaz, The Copernic/Cyclop Computer Tool: Preconceptual Design of Generation 4 Nuclear Systems, Proceedings of the 2004 Conference on High Temperature Reactors, 2004.

J. A. Nelder and R. Mead, A Simplex Method for Function Minimization, The Computer Journal, vol.7, issue.4, pp.308-313, 1965.

R. Span and W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa, The 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety Gyeongju, vol.11, pp.11-1234, 2016.

, Physical and Chemical Reference Data, vol.25, p.1509, 1996.

J. Floyd, N. Alpy, D. Haubensack, G. Avakian, and G. Rodriguez, On-design Efficiency Reference Charts for the Supercritical CO2 Brayton Cycle Coupled to an SFR, Proceedings of the 2011 International Congress on Advances in Nuclear Power Plants (ICAPP'11), 2011.

L. Cachon, C. Biscarrat, F. Morin, D. Haubensack, and I. Moro, Innovative power conversion system for the French SFR prototype, Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants -ICAPP '12, pp.24-28, 2012.

H. S. Pham, N. Alpy, J. H. Ferrasse, O. Boutin, J. Quenaut et al., Mapping of the thermodynamic performance of the supercritical CO2 cycle and optimization for a small modular reactor and a sodium-cooled fast reactor, vol.87, pp.4212-424, 2015.

M. Aritomi, T. Ishizuka, Y. Muto, and N. Tsuzuki, Performance Test Results of a Supercritical CO2 Compressor Used in a New Gas Turbine Generating System, Journal of Power and Energy Systems, vol.5, pp.45-59, 2011.

S. K. Roberts and S. A. Sjolander, Effect of the Specific Heat Ratio on the Aerodynamic Performance of Turbomachinery, Journal of Engineering for Gas Turbines and Power, vol.127, issue.773, 2005.

A. Moisseytsev, *. , and J. J. Sienicki, Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor, Nuclear Engineering and Design, vol.238, issue.8, pp.2094-2105, 2008.

S. A. Wright, R. F. Radel, T. M. Conboy, and G. E. Rochau, Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles, p.108840, 2011.

A. J. Glassman, Turbine Design and Application, 1972.

G. Mauger, Description of an improved turbomachinery model to be developed in the cathare3 code for ASTRID power conversion system application, Proceedings of the International Topical Meeting on Nuclear Reactor Thermal Hydraulics NURETH-16, 2015.

M. S. Plesset, The dynamics of cavitation bubbles, Journal of Applied Physics, vol.16, pp.277-282, 1949.

L. Rayleigh, On the pressure developed in a liquid during the collapse of a spherical cavity, Philosophical Magazine, vol.6, issue.34, pp.94-98, 1917.

L. W. Florschuetz and B. T. Chao, On the Mechanics of Vapor Bubble Collapse, Journal of Heat Transfer, vol.87, pp.209-220, 1965.

C. C. Tseng, W. Shyy, and W. , Modeling for isothermal and cryogenic cavitation, Journal of Heat and Mass Transfer, vol.53, pp.513-525, 2010.

T. Theofanous, L. Biasi, H. S. Isbin, and H. Fauske, A theoretical study on bubble growth in constant and time-dependent pressure fields, Chemical Engineering Science, vol.24, pp.885-897, 1969.

S. Fujikawa and T. Akamatsu, Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid, Journal of Fluid Mechanics, vol.97, pp.481-512, 1980.