Comparison of the method of classes and the quadrature of moment for the modelling of Neodymium Oxalate Precipitation

J.-Ph. Gaillard, S. Lalleman, M. Bertrand, E. Plasari

To cite this version:

J.-Ph. Gaillard, S. Lalleman, M. Bertrand, E. Plasari. Comparison of the method of classes and the quadrature of moment for the modelling of Neodymium Oxalate Precipitation. ATALANTE 2016, Jun 2016, Montpellier, France. hal-02441927

HAL Id: hal-02441927

https://hal-cea.archives-ouvertes.fr/hal-02441927

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Comparison of the method of classes and the quadrature of moment for the modelling of Neodymium Oxalate Precipitation

J.Ph. Gaillard a – S. Lallemant b – M. Bertrand a – E. Plasari b

a CEA, Nuclear Energy Division, Radiochemistry & Process Department, French Alternatives Energies and Atomic Energy Commission. F-30207 Bagnoles sur Céze, France
b Reaction and Chemical Engineering Laboratory, Université de Lorraine, 1 rue Granville BP 80451, 54001 Nancy, France

Introduction

- Oxalic precipitation:
 - To deal with radioactive waste and recover the actinides lanthanides
 - To facilitate the development of experimental methods

- Modelling approach:
 - Experimentation \(\rightarrow\) Thermodynamics + kinetics & numerical methods

Thermodynamics et kinetic laws

- Supersaturation ratio (S) \(\rightarrow\) The driving force of the precipitation process
- Kinetic laws of nucleation, crystal growth and agglomeration = f (S)

Homogeneous primary nucleation

\[R = 3 \times 10^{10} \exp \left(\frac{67000}{RT} \right) \exp \left(\frac{-187}{(LT)^2} \right) \]
\[S > 50 \]

Crystal growth

\[G = 2.91 \times 10^{-4} \exp \left(\frac{-14000}{RT} \right) \left(p_{O_2} \right)^{0.5} (S-1) \]
\[293K < T < 333K \]

Agglomeration

\[\gamma = \frac{55.1 \times 10^{-2}}{V} \exp \left(\frac{-40900}{RT} \right) \]
\[S > 61 \]
\[293K < T < 333K \]

Continuous experiments

- Short mean residence time = 1 min \(\rightarrow\) high S
- Constant agglomeration kernel: \(\beta\)
- Scanning Electron Microscopy \(\rightarrow\) crystal size distributions

Experimental Study

MSMPR

- Continuous precipitation until steady state
- \(V = 200 \text{ ml}\)
- Temperature = 20\(^\circ\) C
- four stainless steel baffles
- stainless steel four 45\(^\circ\) pitched blade turbine \(\rightarrow N_p = 1.5\)

Two population balances

Method of classes

\[\frac{dN_p}{dt} = \frac{V}{\tau} \left(R_p - \frac{1}{\nu} \frac{dG}{d\nu} \right) \]

Main results

- Comparison of volume fractions at 5 \(\tau\)

Conclusions

- Kinetic laws (\(R_p, G, \) et \(\beta\)) and loose agglomerates from experimental runs
- Two population balance models: solved by the Method of classes and QMOM
- Both methods compared well with experimental data during transient and at steady state
- QMOM required much less computational effort and is preferentially used with the reconstruction method detailed in [10]

Références

CEA, Nuclear Energy Division
Radiochemistry & Process Department
30207 Bagnoles sur Céze, France

French Alternatives Energies and Atomic Energy Commission
Centre de Marcoule | BP17171 | 30207 Bagnoles-sur-Céze Cedex
T. +33 (0)4 66 79 18 77 | F. +33 (0)4 66 79 60 27