J. F. Brinkworth and L. B. Barreiro, The contribution of natural selection to presentday susceptibility to chronic inflammatory and autoimmune disease, Curr Opin Immunol, vol.31, pp.66-78, 2014.

J. L. Casanova, L. Abel, and L. Quintana-murci, Immunology taught by human genetics, Cold Spring Harb Symp Quant Biol, vol.78, pp.157-72, 2013.

J. L. Casanova, Severe infectious diseases of childhood as monogenic inborn errors of immunity, Proc Natl Acad Sci U S A, vol.112, pp.7128-7165, 2015.

J. L. Casanova, Human genetic basis of interindividual variability in the course of infection, Proc Natl Acad Sci U S A, vol.112, pp.7118-7145, 2015.

M. Fumagalli and M. Sironi, Human genome variability, natural selection and infectious diseases, Curr Opin Immunol, vol.30, pp.9-16, 2014.

M. Fumagalli, M. Sironi, U. Pozzoli, A. Ferrer-admetlla, L. Pattini et al., Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution, PLoS Genet, vol.7, p.1002355, 2011.

J. L. Casanova and L. Abel, Inborn errors of immunity to infection: the rule rather than the exception, J Exp Med, vol.202, pp.197-201, 2005.

E. K. Karlsson, D. P. Kwiatkowski, and P. C. Sabeti, Natural selection and infectious disease in human populations, Nat Rev Genet, vol.15, pp.379-93, 2014.

L. Quintana-murci and A. G. Clark, Population genetic tools for dissecting innate immunity in humans, Nat Rev Immunol, vol.13, pp.280-93, 2013.

K. J. Siddle and L. Quintana-murci, The Red Queen's long race: human adaptation to pathogen pressure, Curr Opin Genet Dev, vol.29, pp.31-39, 2014.

L. B. Barreiro and L. Quintana-murci, From evolutionary genetics to human immunology: how selection shapes host defence genes, Nat Rev Genet, vol.11, pp.17-30, 2010.

Z. D. Smith and A. Meissner, DNA methylation: roles in mammalian development, Nat Rev Genet, vol.14, pp.204-224, 2013.

D. Schubeler, Function and information content of DNA methylation, Nature, vol.517, pp.321-327, 2015.

R. Feil and M. F. Fraga, Epigenetics and the environment: emerging patterns and implications, Nat Rev Genet, vol.13, pp.97-109, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193314

Z. A. Kaminsky, T. Tang, S. C. Wang, C. Ptak, G. H. Oh et al., DNA methylation profiles in monozygotic and dizygotic twins, Nature Genet, vol.41, pp.240-245, 2009.

L. L. Lam, E. Emberly, H. B. Fraser, S. M. Neumann, C. E. Miller et al., Factors underlying variable DNA methylation in a human community cohort, Proc Natl Acad Sci, vol.109, issue.2, pp.17253-60, 2012.

M. J. Ziller, H. Gu, F. Muller, J. Donaghey, L. T. Tsai et al., Charting a dynamic DNA methylation landscape of the human genome, Nature, vol.500, pp.477-81, 2013.

A. K. Marr, J. L. Macisaac, R. Jiang, A. M. Airo, M. S. Kobor et al., Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages, PLoS Pathog, vol.10, p.1004419, 2014.

A. Pacis, L. Tailleux, A. M. Morin, J. Lambourne, J. L. Macisaac et al., Bacterial infection remodels the DNA methylation landscape of human dendritic cells, Genome Res, vol.25, pp.1801-1812, 2015.

J. R. Gibbs, M. P. Van-der-brug, D. G. Hernandez, B. J. Traynor, M. A. Nalls et al., Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain, PLoS Genet, vol.6, p.1000952, 2010.

D. Zhang, L. Cheng, J. A. Badner, C. Chen, Q. Chen et al., Genetic control of individual differences in genespecific methylation in human brain, Am J Hum Genet, vol.86, pp.411-420, 2010.

J. T. Bell, A. A. Pai, J. K. Pickrell, D. J. Gaffney, R. Pique-regi et al., DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines, Genome Biol, vol.12, p.10, 2011.

M. Gutierrez-arcelus, T. Lappalainen, S. B. Montgomery, A. Buil, H. Ongen et al., Passive and active DNA methylation and the interplay with genetic variation in gene regulation, eLife, vol.2, p.523, 2013.

N. E. Banovich, X. Lan, G. Mcvicker, B. Van-de-geijn, J. F. Degner et al., Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels, PLoS Genet, vol.10, p.1004663, 2014.

A. H. Olsson, P. Volkov, K. Bacos, T. Dayeh, E. Hall et al., Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets, PLoS Genet, vol.10, p.1004735, 2014.

E. Hannon, E. Dempster, J. Viana, J. Burrage, A. R. Smith et al., An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation, Genome Biol, vol.17, p.176, 2016.

E. Hannon, H. Spiers, J. Viana, R. Pidsley, J. Burrage et al., Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci, Nat Neurosci, vol.19, pp.48-54, 2016.

J. R. Wagner, S. Busche, B. Ge, T. Kwan, T. Pastinen et al., The relationship between DNA methylation, genetic and expression interindividual variation in untransformed human fibroblasts, Genome Biol, vol.15, p.37, 2014.

J. Van-dongen, M. G. Nivard, G. Willemsen, J. J. Hottenga, Q. Helmer et al., Genetic and environmental influences interact with age and sex in shaping the human methylome, Nat Commun, vol.7, p.11115, 2016.

J. L. Mcclay, A. A. Shabalin, M. G. Dozmorov, D. E. Adkins, G. Kumar et al., High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction, Genome Biol, vol.16, p.291, 2015.

J. T. Bell, P. C. Tsai, T. P. Yang, R. Pidsley, J. Nisbet et al., Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population, PLoS Genet, vol.8, p.1002629, 2012.

S. Wahl, A. Drong, B. Lehne, M. Loh, W. R. Scott et al., Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity, Nature, vol.541, pp.81-87, 2017.

M. Kulis and M. Esteller, DNA methylation and cancer, Adv Genet, vol.70, pp.27-56, 2010.

S. B. Baylin and P. A. Jones, Epigenetic determinants of cancer, Cold Spring Harb Perspect Biol, vol.8, issue.9, p.19505, 2016.

C. G. Bell, S. Finer, C. M. Lindgren, G. A. Wilson, V. K. Rakyan et al., Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus, PLoS One, vol.5, p.14040, 2010.

J. C. Chambers, M. Loh, B. Lehne, A. Drong, J. Kriebel et al., Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study, Lancet Diabetes Endocrinol, vol.3, pp.526-560, 2015.

Y. Liu, M. J. Aryee, L. Padyukov, M. D. Fallin, E. Hesselberg et al., Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis, Nat Biotechnol, vol.31, pp.142-149, 2013.

H. Heyn, S. Moran, I. Hernando-herraez, S. Sayols, A. Gomez et al., DNA methylation contributes to natural human variation, Genome Res, vol.23, pp.1363-72, 2013.

E. L. Moen, X. Zhang, W. Mu, S. M. Delaney, C. Wing et al., Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits, Genetics, vol.194, pp.987-96, 2013.

H. B. Fraser, L. L. Lam, S. M. Neumann, and M. S. Kobor, Population-specificity of human DNA methylation, Genome Biol, vol.13, p.8, 2012.

M. Fagny, P. E. Macisaac, J. L. Rotival, M. Flutre, T. Jones et al., The epigenomic landscape of African rainforest hunter-gatherers and farmers, Nat Commun, vol.6, p.10047, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01238387

O. Carja, J. L. Macisaac, S. M. Mah, B. M. Henn, M. S. Kobor et al., Worldwide patterns of human epigenetic variation, Nat Ecol Evol, vol.1, pp.1577-83, 2017.

J. M. Galanter, C. R. Gignoux, S. S. Oh, D. Torgerson, M. Pino-yanes et al., Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures, Elife, vol.6, p.20532, 2017.

S. Gopalan, O. Carja, M. Fagny, P. E. Myrick, J. W. Mcewen et al., Trends in DNA methylation with age replicate across diverse human populations, Genetics, vol.206, pp.1659-74, 2017.

H. Sugawara, K. Iwamoto, M. Bundo, J. Ueda, J. Ishigooka et al., Comprehensive DNA methylation analysis of human peripheral blood leukocytes and lymphoblastoid cell lines, Epigenetics, vol.6, pp.508-523, 2011.

E. A. Houseman, W. P. Accomando, D. C. Koestler, B. C. Christensen, C. J. Marsit et al., DNA methylation arrays as surrogate measures of cell mixture distribution, BMC Bioinformatics, vol.13, p.86, 2012.

A. E. Teschendorff and C. L. Relton, Statistical and integrative system-level analysis of DNA methylation data, Nat Rev Genet, vol.19, pp.129-176, 2018.

H. Quach, M. Rotival, J. Pothlichet, Y. E. Loh, M. Dannemann et al., Genetic adaptation and Neandertal admixture shaped the immune system of human populations, Cell, vol.167, pp.643-56, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01385620

Y. Nedelec, J. Sanz, G. Baharian, Z. A. Szpiech, A. Pacis et al., Genetic ancestry and natural selection drive population differences in immune responses to pathogens, Cell, vol.167, pp.657-69, 2016.

L. B. Barreiro, L. Tailleux, A. A. Pai, B. Gicquel, J. C. Marioni et al., Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection, Proc Natl Acad Sci, vol.109, pp.1204-1213, 2012.

B. P. Fairfax, P. Humburg, S. Makino, V. Naranbhai, D. Wong et al., Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression, Science, vol.343, p.1246949, 2014.

M. N. Lee, C. Ye, A. C. Villani, T. Raj, W. Li et al., Common genetic variants modulate pathogen-sensing responses in human dendritic cells, Science, vol.343, p.1246980, 2014.

M. Caliskan, S. W. Baker, Y. Gilad, and C. Ober, Host genetic variation influences gene expression response to rhinovirus infection, PLoS Genet, vol.11, p.1005111, 2015.

S. Kim, J. Becker, M. Bechheim, V. Kaiser, M. Noursadeghi et al., Characterizing the genetic basis of innate immune response in TLR4-activated human monocytes, Nat Commun, vol.5, p.5236, 2014.

S. Kim-hellmuth, M. Bechheim, B. Putz, P. Mohammadi, Y. Nedelec et al., Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations, Nat Commun, vol.8, p.266, 2017.

A. A. Pai, J. K. Pritchard, and Y. Gilad, The genetic and mechanistic basis for variation in gene regulation, PLoS Genet, vol.11, p.1004857, 2015.

X. Yang, H. Han, D. Carvalho, D. D. Lay, F. D. Jones et al., Gene body methylation can alter gene expression and is a therapeutic target in cancer, Cancer Cell, vol.26, pp.577-90, 2014.

D. Jjingo, A. B. Conley, S. V. Yi, V. V. Lunyak, and I. K. Jordan, On the presence and role of human gene-body DNA methylation, Oncotarget, vol.3, pp.462-74, 2012.

A. K. Maunakea, R. P. Nagarajan, M. Bilenky, T. J. Ballinger, D. Souza et al., Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, vol.466, pp.253-260, 2010.

M. Gutierrez-arcelus, H. Ongen, T. Lappalainen, S. B. Montgomery, A. Buil et al., Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing, PLoS Genet, vol.11, p.1004958, 2015.

C. L. Relton, D. Smith, and G. , Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease, Int J Epidemiol, vol.41, pp.161-76, 2012.

T. G. Richardson, J. Zheng, D. Smith, G. Timpson, N. J. Gaunt et al., Mendelian randomization analysis identifies CpG sites as putative mediators for genetic influences on cardiovascular disease risk, Am J Hum Genet, vol.101, pp.590-602, 2017.

E. Hannon, M. Weedon, N. Bray, M. O'donovan, and J. Mill, Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci, Am J Hum Genet, vol.100, pp.954-963, 2017.

C. G. Bell, F. Gao, W. Yuan, L. Roos, R. J. Acton et al., Obligatory and facilitative allelic variation in the DNA methylome within common disease-associated loci, Nat Commun, vol.9, p.8, 2018.

M. J. Bonder, R. Luijk, D. V. Zhernakova, M. Moed, P. Deelen et al., Disease variants alter transcription factor levels and methylation of their binding sites, Nat Genet, vol.49, pp.131-139, 2017.

J. K. Pickrell, Joint analysis of functional genomic data and genome-wide association studies of 18 human traits, Am J Hum Genet, vol.94, pp.559-73, 2014.

M. A. Schaub, A. P. Boyle, A. Kundaje, S. Batzoglou, and M. Snyder, Linking disease associations with regulatory information in the human genome, Genome Res, vol.22, pp.1748-59, 2012.

P. Du, X. Zhang, C. C. Huang, N. Jafari, W. A. Kibbe et al., Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis, BMC Bioinformatics, vol.11, p.587, 2010.

N. D. Johnson, H. W. Wiener, A. K. Smith, S. Nishitani, D. M. Absher et al., Non-linear patterns in age-related DNA methylation may reflect CD4(+) T cell differentiation, Epigenetics, vol.12, pp.492-503, 2017.

A. A. Shabalin, Matrix eQTL: ultra fast eQTL analysis via large matrix operations, Bioinformatics, vol.28, pp.1353-1361, 2012.

V. Emilsson, G. Thorleifsson, B. Zhang, A. S. Leonardson, F. Zink et al., Genetics of gene expression and its effect on disease, Nature, vol.452, pp.423-431, 2008.

E. T. Dermitzakis, Cellular genomics for complex traits, Nat Rev Genet, vol.13, pp.215-235, 2012.

A. C. Nica, S. B. Montgomery, A. S. Dimas, B. E. Stranger, C. Beazley et al., Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations, PLoS Genet, vol.6, p.1000895, 2010.

W. Cookson, L. Liang, G. Abecasis, M. Moffatt, and M. Lathrop, Mapping complex disease traits with global gene expression, Nat Rev Genet, vol.10, pp.184-94, 2009.

J. Malone, E. Holloway, T. Adamusiak, M. Kapushesky, J. Zheng et al., Modeling sample variables with an Experimental Factor Ontology, Bioinformatics, vol.26, pp.1112-1120, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00721833

J. Gu, M. Stevens, X. Xing, D. Li, B. Zhang et al., Mapping of variable DNA methylation across multiple cell types defines a dynamic regulatory landscape of the human genome. G3 (Bethesda), vol.6, pp.973-86, 2016.

E. Hannon, K. Lunnon, L. Schalkwyk, and J. Mill, Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes, Epigenetics, vol.10, pp.1024-1056, 2015.

W. A. Cheung, X. Shao, A. Morin, V. Siroux, T. Kwan et al., Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome, Genome Biol, vol.18, p.50, 2017.

M. D. Schultz, Y. He, J. W. Whitaker, M. Hariharan, E. A. Mukamel et al., Human body epigenome maps reveal noncanonical DNA methylation variation, Nature, vol.523, pp.212-218, 2015.

P. Farre, M. J. Jones, M. J. Meaney, E. Emberly, G. Turecki et al., Concordant and discordant DNA methylation signatures of aging in human blood and brain, Epigenetics Chromatin, vol.8, p.19, 2015.

A. A. Pai, J. T. Bell, J. C. Marioni, J. K. Pritchard, and Y. Gilad, A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues, PLoS Genet, vol.7, p.1001316, 2011.

J. Nititham, K. E. Taylor, R. Gupta, H. Chen, R. Ahn et al., Meta-analysis of the TNFAIP3 region in psoriasis reveals a risk haplotype that is distinct from other autoimmune diseases, Genes Immun, vol.16, pp.120-126, 2015.

X. Yin, H. Q. Low, L. Wang, Y. Li, E. Ellinghaus et al., Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility, Nat Commun, vol.6, p.6916, 2015.

M. J. Bonder, S. Kasela, M. Kals, R. Tamm, K. Lokk et al., Genetic and epigenetic regulation of gene expression in fetal and adult human livers, BMC Genomics, vol.15, p.860, 2014.

S. Ecker, L. Chen, V. Pancaldi, F. O. Bagger, J. M. Fernandez et al., Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types, Genome Biol, vol.18, p.18, 2017.

D. Shlyueva, G. Stampfel, and A. Stark, Transcriptional enhancers: from properties to genome-wide predictions, Nat Rev Genet, vol.15, pp.272-86, 2014.

R. Rickels and A. Shilatifard, Enhancer logic and mechanics in development and disease, Trends Cell Biol, vol.28, issue.8, pp.608-638, 2018.

L. Yao, B. P. Berman, and P. J. Farnham, Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes, Crit Rev Biochem Mol Biol, vol.50, pp.550-73, 2015.

E. Grundberg, E. Meduri, J. K. Sandling, A. K. Hedman, S. Keildson et al., Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements, Am J Hum Genet, vol.93, pp.876-90, 2013.

D. Tingley, T. Yamamoto, K. Hirose, L. Keele, and K. Imai, mediation: R package for causal mediation analysis, J Stat Softw, vol.59, pp.1-38, 2014.

D. P. Mackinnon, Multivariate applications series. Introduction to statistical mediation analysis, 2008.

M. B. Stadler, R. Murr, L. Burger, R. Ivanek, F. Lienert et al., DNA-binding factors shape the mouse methylome at distal regulatory regions, Nature, vol.480, pp.490-495, 2011.

H. Stroud, S. Feng, M. Kinney, S. Pradhan, S. Jacobsen et al., 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells, Genome Biol, vol.12, p.54, 2011.

I. Choi, R. Kim, H. W. Lim, K. H. Kaestner, and K. J. Won, 5-Hydroxymethylcytosine represses the activity of enhancers in embryonic stem cells: a new epigenetic signature for gene regulation, BMC Genomics, vol.15, p.670, 2014.

M. A. Song, T. M. Brasky, C. Marian, D. Y. Weng, C. Taslim et al., Racial differences in genome-wide methylation profiling and gene expression in breast tissues from healthy women, Epigenetics, vol.10, pp.1177-87, 2015.

K. S. Zaret and J. S. Carroll, Pioneer transcription factors: establishing competence for gene expression, Genes Dev, vol.25, pp.2227-2268, 2011.

L. Valeri, S. L. Reese, S. Zhao, C. M. Page, W. Nystad et al., Misclassified exposure in epigenetic mediation analyses. Does DNA methylation mediate effects of smoking on birthweight?, Epigenomics, vol.9, pp.253-65, 2017.

F. Wang, S. Zhang, Y. Wen, Y. Wei, H. Yan et al., Revealing the architecture of genetic and epigenetic regulation: a maximum likelihood model, Brief Bioinform, vol.15, pp.1028-1071, 2014.

G. Project, C. Auton, A. Brooks, L. D. Durbin, R. M. Garrison et al., A global reference for human genetic variation, Nature, vol.526, pp.68-74, 2015.

P. Du, W. A. Kibbe, and S. M. Lin, lumi: a pipeline for processing Illumina microarray, Bioinformatics, vol.24, pp.1547-1555, 2008.

M. J. Aryee, A. E. Jaffe, H. Corrada-bravo, C. Ladd-acosta, A. P. Feinberg et al., Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays, Bioinformatics, vol.30, pp.1363-1372, 2014.

A. E. Teschendorff, F. Marabita, M. Lechner, T. Bartlett, J. Tegner et al., A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data, Bioinformatics, vol.29, pp.189-96, 2013.

J. T. Leek, W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments, Bioinformatics, vol.28, pp.882-885, 2012.

G. K. Smyth, R. Gentleman, V. Carey, S. Dudoit, I. Irizarry et al., Limma: linear models for microarray data, Bioinformatics and computational biology solutions using R and Bioconductor, pp.397-420, 2005.

J. Macarthur, E. Bowler, M. Cerezo, L. Gil, P. Hall et al., The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog), Nucleic Acids Res, vol.45, pp.896-901, 2017.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J Stat Softw, vol.33, pp.1-22, 2010.

S. Kim, ppcor: an R package for a fast calculation to semi-partial correlation coefficients, Commun Stat Appl Methods, vol.22, pp.665-74, 2015.

L. T. Husquin, M. Rotival, and M. Fagny, Exploring the genetic basis of human population differences in DNA methylation and their causal impact on immune gene regulation, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02352909

H. Quach, M. Rotival, and J. Pothlichet, Genetic adaptation and Neandertal admixture shaped the immune system of human populations, EGA, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01385620

J. Ernst and M. Kellis, ChromHMM: automating chromatin-state discovery and characterization, Nat Methods, vol.9, pp.215-221, 2012.

J. Ernst and M. Kellis, Chromatin-state discovery and genome annotation with ChromHMM, Nat Protoc, vol.12, pp.2478-92, 2017.