W. Aniszewski, Large eddy simulation of turbulent two-phase flow, 2011.

W. Aniszewski, T. Ménard, and M. Marek, Volume of Fluid (VOF) type advection methods in two-phase flow: A comparative study, Comput. Fluids, vol.97, issue.0, pp.52-73, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01611171

G. Batchelor, An introduction to fluid dynamics, 1967.

R. Caflisch, M. Miksis, G. Papanicolaou, and L. Ting, Effective equations for wave propagation in bubbly liquids, J. Fluid Mech, vol.153, pp.259-273, 1985.

B. Carnahan, H. Luther, and J. Wilkes, Applied Numerical Methods, 1969.

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern et al., VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data, High Performance VisualizationEnabling Extreme-Scale Scientific Insight, pp.357-372, 2012.

S. Cummins, M. Francois, and D. Kothe, Estimating curvature from volume fractions, Comput. Struct, vol.83, issue.6-7, pp.425-434, 2004.

T. De-rességuier, L. Signor, A. Dragon, and G. Roy, Dynamic fragmentation of laser shock-melted tin: experiment and modelling, Int. J. Fracture, vol.163, issue.1-2, pp.109-119, 2010.

S. Everitt, O. Harlen, and H. Wilson, Competition and interaction of polydisperse bubbles in polymer foams, J. Non-Newt. Fluid, vol.137, issue.1-3, pp.60-71, 2006.

R. Falgout and U. Yang, hypre: a library of high performance preconditioners, Computational Science -ICCS 2002, vol.2331, pp.632-641, 2002.

L. A. Girifalco, Statistical Mechanics of Solids, 2000.

C. Hirth and B. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys, vol.39, issue.1, pp.201-225, 1981.

Y. Ilinskii, M. Hamilton, and E. Zabolotskaya, Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics, J. Acoust. Soc. Am, vol.121, issue.2, pp.786-795, 2007.

J. Li, Calcul d'interface affine par morceaux, C.R. Acad. Sci. II B, vol.320, issue.8, pp.391-396, 1995.

Y. Ling, S. Zaleski, and R. Scardovelli, Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model, Int. J. Multiphas. Flow, vol.76, pp.122-143, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01196361

J. López, J. Hernández, P. Gómez, and F. Faura, An improved plic-vof method for tracking thin fluid structures in incompressible two-phase flows, Journal of Computational Physics, vol.208, issue.1, pp.51-74, 2005.

L. Malan, Y. Ling, R. Scardovelli, A. Llor, and S. Zaleski, Direct numerical simulations of pore competition in idealized micro-spall using the VOF method, Comput. Fluids (submitted) also available as, 2018.

L. Malan and S. Zaleski, Numerical simulation of bubble competition during micro-spalling, 2015.

M. Marek, W. Aniszewski, and A. Boguslawski, Simplified volume of fluid method (SVOF) for two-phase flows, TASK quaterly, vol.12, pp.255-265, 2008.

T. Ménard, S. Tanguy, and A. Berlemont, Coupling level set/ volume of fluid/ ghost fluid methods, validation and application to 3d simulation of the primary breakup of a liquid jet, International Journal of Multiphase Flows, vol.33, pp.510-524, 2007.

J. Pilliod and E. Puckett, Second order accurate volume of fluid algorithms for tracking material interfaces, Journal of Computational Physics, pp.465-502, 1999.

S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys, vol.190, issue.2, pp.572-600, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01445436

T. Qiu, Y. Xiong, S. Xiao, X. Li, W. Hu et al., Non-equilibrium molecular dynamics simulations of the spallation in ni: Effect of vacancies, Computational Materials Science, vol.137, pp.273-281, 2017.

F. Salvador, R. Crialesi-esposito, M. Blanquer, and I. , Analysis on the effects of turbulent inflow conditions on spray primary atomization in the near-field by direct numerical simulation, International Journal of Multiphase Flow, vol.102, pp.49-63, 2018.

R. Scardovelli and S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys, vol.164, issue.1, pp.228-237, 2000.

C. Shu, Essentially Non-Oscillatory and Weighted Essentially NonOscillatory schemes for hyperbolic conservation laws, 1997.

L. Signor, T. De-rességuier, A. Dragon, G. Roy, A. Fanget et al., Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin, Int. J. of Impact Eng, vol.37, issue.8, pp.887-900, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00836554

P. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal, vol.21, issue.5, pp.995-1011, 1984.

G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct numerical simulations of gas-liquid multiphase flows, 2011.

G. Vaudor, T. Ménard, W. Aniszewski, and A. Berlemont, A consistent mass and momentum flux computation method for two phase flows. application to atomization process, Computers and Fluids, vol.152, pp.204-216, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01525891

K. Wang, S. Xiao, H. Deng, W. Zhu, and W. Hu, An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals, International Journal of Plasticity, vol.59, pp.180-198, 2014.

T. Williams and C. Kelley, , 2010.

F. Xiao, S. Ii, and C. Chen, Revisit to the THINC scheme: A simple algebraic vof algorithm, Journal of Comput. Physics, vol.230, pp.7086-7092, 2011.

D. Youngs, Numerical simulation of turbulent mixing by RayleighTaylor instability. Fronts, Interfaces and Patterns, p.32, 1984.