On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Accéder directement au contenu
Article Dans Une Revue Metrologia Année : 2017

On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay

Résumé

The hypothesis that seasonal changes in proximity to the Sun cause variation of decay constants at permille level has been tested for radionuclides disintegrating through electron capture and beta plus decay. Activity measurements of Na-22, Mn-54, Fe-55, Co-57, Zn-65, Sr82+85, Sr-90, Cd-109, Sb-124, Ba-133, Eu-152, and Bi-207 sources were repeated over periods from 200 d up to more than four decades at 14 laboratories across the globe. Residuals from the exponential nuclear decay curves were inspected for annual oscillations. Systematic deviations from a purely exponential decay curve differ from one data set to another and appear attributable to instabilities in the instrumentation and measurement conditions. Oscillations in phase with Earth's orbital distance to the sun could not be observed within 10(-4)-10(-5) range precision. The most stable activity measurements of beta(+) and EC decaying sources set an upper limit of 0.006% or less to the amplitude of annual oscillations in the decay rate. There are no apparent indications for systematic oscillations at a level of weeks or months.
Fichier principal
Vignette du fichier
Openaccess_SPomme_Metrologia_part3.pdf (3.22 Mo) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

hal-01881370 , version 1 (28-03-2020)

Identifiants

Citer

S. Pomme, S Stroh, J. Paepen, V van Ammel, M. Marouli, et al.. On decay constants and orbital distance to the Sun—part III: beta plus and electron capture decay. Metrologia, 2017, 54 (1), pp.36 - 50. ⟨10.1088/1681-7575/54/1/36⟩. ⟨hal-01881370⟩
96 Consultations
51 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More