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ABSTRACT

Recovering the cosmic microwave background (CMB) from WMAP data requires that Galactic foreground emissions are accurately
separated out. Most component separation techniques rely on second-order statistics such as internal linear combination (ILC) tech-
niques. We present a new WMAP nine-year CMB map with a resolution of 15 arcmin, which is reconstructed using a recently
introduced sparse-component separation technique, called local generalized morphological component analysis (LGMCA). This fo-
cuses on the sparsity of the components to be retrieved in the wavelet domain. We show that although they are derived from a radically
different separation criterion (i.e. sparsity), the LGMCA-WMAP 9 map and its power spectrum are fully consistent with their more
recent estimates from WMAP 9.

Key words. methods: data analysis – cosmic background radiation – methods: statistical

1. Introduction

The cosmic microwave background (CMB) is a snapshot of the
state of the Universe at the time of recombination. It provides
information about the primordial Universe and its evolution to
the current state. Our current understanding of our Universe is
heavily based on measurements of the CMB radiation. The sta-
tistical properties of CMB fluctuations depend on the primordial
perturbations from which they arose as well as on the subsequent
evolution of the Universe as a whole. For cosmological models
in which initial perturbations are of a Gaussian nature, the infor-
mation carried by CMB anisotropies can completely be charac-
terized by their angular power spectrum, which depends on the
cosmological parameters. This makes the precise measurement
of the CMB power spectrum a gold mine for understanding and
describing the Universe throughout its history.

In estimating the CMB map, the astrophysical foreground
emissions from our galaxy and the extraGalactic sources have
to be removed. In addition, the instrumental noise hinders es-
timating the CMB map. In the low frequency regime (below
100 GHz, i.e. for WMAP channels) the strongest contamina-
tion comes from the Galactic synchrotron and free-free emis-
sion, with the highest contribution at large angular scales. At
higher frequencies, dust emissions dominate, whereas the syn-
chrotron and free-free emissions are low. The spinning dust is an
extra emission that spatially correlates with dust and dominates
at low frequencies.

Since second-order statistics provide sufficient statistics for
a Gaussian CMB field, most of the component separation tech-
niques, such as the internal linear combination (ILC), are built
upon them to recover the CMB map from the observed sky
maps. However, these techniques are not ideal for non-stationary
and non-Gaussian components such as the foregrounds (or
even non-stationary noise). In contrast, sparsity-based source-
separation techniques that focus on the higher-order statistics of

? Appendices A–C are available in electronic form at
http://www.aanda.org

the components have proven to be highly efficient (Bobin et al.
2007, 2013).

In this paper, we present a new WMAP nine-year CMB es-
timation based on this sparsity concept and compare the results
to the official WMAP products. Section 2 briefly describes the
local generalized morphological component analysis (LGMCA)
method. We then describe in Sect. 3 the processing of WMAP
data, and the derived LGMCA products are displayed in Sect. 4.
The results of WMAP simulations are presented in Appendix C.

2. Component separation for CMB maps

Exploiting the fact that foreground components are sparse in the
wavelet domain (i.e., a few wavelet coefficients are enough to
represent most of the energy of the component), LGMCA (Bobin
et al. 2013) estimates the components of interest and the mixing
matrix by maximizing the sparsity level of each component; it
seeks the sparsest sources possible on a wavelet basis. The as-
sumption is that the observed sky is a linear combination of all
components, each resulting from a completely different physical
process, and the instrumental noise. The separation principle in
this method relies on the different spatial morphologies or struc-
tures of the various foregrounds, which translate into different
sparsity patterns when transformed to a fixed wavelet dictionary.
A linear combination of these components decreases the level of
sparsity. Therefore, reconstructing each component from the ob-
served map by maximizing its sparsity level in wavelet space is
an efficient strategy to distinguish between physically different
sources. As mentioned in Appendix A, channel resolution varia-
tion and spatial variations of component emissions such as dust
are taken into account by estimating a mixing matrix per wavelet
scale and per area. Full details are given in Bobin et al. (2013).

In Appendix C, the LGMCA is evaluated on simulated
WMAP data and we found the following:
– The recovered power spectrum from the LGMCA map at

15 arcmin is within the 2σ error bars from the input CMB
power spectrum.
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– The propagated noise in the map is the main residual con-
tamination for the LGMCA; for low multipoles, the contam-
inants are much lower than the cosmic variance.

– Compared to a pixel-based localized ILC computed at 1 de-
gree, both noise and foregrounds residuals are lower using
the LGMCA.

– No significant non-Gaussianities at various scales and posi-
tions are detected in the LGMCA maps, either at 1 degree
or 15 arcmin. Compared to the pixel-based localized ILC,
no significant difference is observed for LGMCA at 1 degree
compared to the errors expected.

In combination, these results are an incentive to apply the
LGMCA to WMAP9 data.

3. Map and power spectrum estimation

The WMAP satellite has observed the sky in five frequency
bands denoted K, Ka, Q, V , and W centered on 23, 33, 41, 61,
and 94 GHz. The released data include sky maps obtained with
ten differencing assemblies for nine individual years; per year,
there is one map for the K band and one for the Ka band, two for
the Q band, two for the V band and four for the W band. These
maps are sampled using the HEALPix pixelization scheme at
a resolution corresponding to nside of 1024. At first, we aver-
aged all differencing-assembly maps obtained for the same fre-
quency band, which yields five band-averaged maps. However,
these maps are not offset-corrected. To determine the offset value
for a particular frequency band, we used the standard resolu-
tion of the nine-year band-average maps of WMAP as reference
maps. Offset values were obtained by determining the mean of
the difference between the band-averaged map being considered
and the reference map.

At the WMAP frequencies, the major sources of contamina-
tion in the maps are the synchrotron, free-free, spinning dust, and
thermal dust. To model the foreground contamination, we used
two foreground templates in our analysis: dust at 100 microns,
as obtained by (Schlegel et al. 1998) and the composite all-sky
H-alpha map of (Finkbeiner 2003). Among these templates, the
thermal dust template is the most important one, as it helps in
removing the dust emission on small scales, which is otherwise
significant in the W channel. Because the spinning dust is spa-
tially correlated with thermal dust, the thermal dust template also
helps in reducing the spinning dust residuals. It is standard to use
the 408 MHz synchrotron map of (Haslam et al. 1981) as a tem-
plate for the synchrotron emission. However, this map has a quite
resolution of about 1 degree. Furthermore, adding this template
to the LGMCA did not improve the component separation.

LGMCA map: following (Bobin et al. 2013), the LGMCA
was applied to the five offset-corrected WMAP maps and the two
templates used as extra observations. Details on the LGMCA
parameters are given in Appendix B.

LGMCA power spectrum: using the mixing matrices pre-
viously estimated from all data, we can estimate a CMB map
from each of the nine individual year data sets. From these nine
maps, we derived all 36 possible cross-spectra using the high-
resolution temperature analysis mask kq85 with ( fsky = 0.75)1

provided by WMAP collaboration. The final CMB power spec-
trum is then obtained by averaging them and using a MASTER
mask deconvolution (Hivon et al. 2002). In contrast to the CMB
and foreground signals, noise is uncorrelated between different

1 http://lambda.gsfc.nasa.gov/product/map/dr5/m_
products.cfm

Fig. 1. ILC official WMAP nine year map (1 degree resolution). Units
in µK.

years of data and is therefore considerably reduced in the aver-
aged cross spectrum.

4. Results

LGMCA map and power spectrum

Figure 1 shows the official ILC WMAP nine years CMB map,
which has a 1 degree resolution, and Fig. 2 shows the LGMCA
WMAP CMB map at 15 arcmin resolution and at 1 degree. The
15 arcmin LGMCA map exhibits slight high-frequency struc-
tures, which are most likely related to point source emission
from the Galactic center. The two 1-degree maps look very clean,
even on the Galactic center. Figure 3 features the difference at
1 degree resolution between the CMB map estimated with the
LGMCA and the official ILC-based CMB map provided by the
WMAP consortium. The difference map shows significant fore-
ground residuals at the Galactic center, which are roughly three
times lower than the CMB level however. When masking the
Galactic center with the kq85 WMAP mask (Fsky = 75%), no
significant feature can be seen anymore.

The estimated power spectrum is displayed in Fig. 4. The
error bars, essentially the cosmic variance and the noise-related
variance, were derived from classical power spectrum variance
estimators as described in (Greason et al. 2013). Note that ex-
cept for ` < 32, the official WMAP nine year power spectrum
(in blue in Fig. 4) was computed from the V and W bands only. In
contrast, the spectrum in red in Fig. 4 was derived from the full
dataset. Even if the estimation procedure differs slightly, it is re-
markable that the two power spectra look very similar. They also
tend to depart from each other with a slightly lower third multi-
pole. Furthermore, the measurement of the third peak seems to
be higher to some extent. However, the two spectra are compat-
ible at all scales within 2σ error bars.

Sanity check: the LGMCA algorithm computes mixture pa-
rameters (i.e., mixing matrices and their inverse) that were ap-
plied subsequently to the data to estimate the CMB map. It is
important to note that the final CMB map linearly depends on
the input data. This makes it possible to check whether the inver-
sion process may induce some bias at the level of the estimated
CMB map and its power spectrum (assuming no calibration or
beam errors). For that purpose, we applied exactly the same pa-
rameters as we computed from the real data to 100 random CMB
realizations. These realizations were generated as Gaussian ran-
dom processes with a power spectrum defined by the WMAP
nine-year best-fit theoretical power spectrum. The point spread
function of these simulations were chosen as the beams of the
nine-year band-average maps of WMAP, which provided pure
CMB simulations that mimic the CMB part of the WMAP nine
year data. Figure 5 shows in blue the ratio between the estimated
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Fig. 2. Estimated LGMCA CMB map from WMAP (nine years) at 15 arcmin resolution and 1 degree. Units in µK.

Fig. 3. Difference between the estimated CMB map with LGMCA and the official ILC map. The bottom panel shows the same difference map
masked with the kq85 mask.

Fig. 4. Estimated CMB map power spectrum from WMAP (nine years) in linear scale (top panel) and logarithmic scale (bottom panel). Units
in µK2.

Fig. 5. Mean ratio of CTT
` /CTT,th

` over 100 random CMB simula-
tions. The error bars are related to the cosmic variance over the 100
simulations.

and theoretical power spectrum CTT
` /CTT,th

`
computed from an

average of 100 random CMB simulations. The theoretical power
spectrum CTT,th

`
of the simulated CMB maps is exactly defined

as the WMAP nine year best-fit power spectrum. The error bars

are defined as the cosmic variance from 100 simulations. If the
estimation with the LGMCA of the CMB map and more specif-
ically its power spectrum were biased, the CTT

` /CTT,th
`

would de-
part from 1. Figure 5 shows that there is no statistical evidence
of discrepancy from 1. We therefore conclude that the LGMCA
does not introduce any bias at the level of the CMB power spec-
trum. Any bias of the estimated CMB map will come from re-
maining noise and foreground contamination.

Higher order statistics — non-Gaussianities: higher order
statistics were also computed for the full nine year CMB maps
recovered at 1 degree with ILC and LGMCA to assess potential
differences in their distribution. The 75% mask was employed
on both maps to avoid computing the higher order statistics in
regions contaminated by foreground residuals. Sparse inpaint-
ing was then performed to interpolate the signal inside the mask
(Starck et al. 2013) to avoid artifacts on the wavelet coeffi-
cients, and the skewness and kurtosis were calculated for each
wavelet scale considering only the wavelet coefficients within
the mask. These statistics were centered and normalized by
similarly processing a set of 100 realizations of noise and CMB
according to the Λ-CDM fit provided by the WMAP consortium.

L4, page 3 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=5


A&A 553, L4 (2013)

Fig. 6. Comparison of skewness and kurtosis in ILC and LGMCA map at 1 degree computed for the various wavelet scales described in Fig. C.4
(left). The wavelet filters peak multipole 240, 120, 60, 30, and 15 for scales 1 to 5.

Figure 6 shows the skewness and kurtosis versus the wavelet
scale and illustrates that not only that the ILC and LGMCA maps
are compatible with no non-Gaussianities, but also that no sig-
nificant difference between ILC and LGMCA can be found with
these statistics at that resolution.

5. Conclusion

We have investigated how sparsity could be used for a WMAP
CMB map reconstruction. Based on WMAP simulations, we
showed that the LGMCA provides a low-foreground map and
that noise remains the main source of contamination. Then a
high-resolution (15 arcmin) clean CMB map was computed from
the full WMAP nine year dataset and its power spectrum was
estimated. Remarkably, though the LGMCA-based and official
WMAP nine year power spectrum were derived from completely
different estimation procedures, they agree very well and are
compatible within 2σ error bars. Lastly, non-Gaussianity tests
based on higher order statistics were carried out, and showed no
statistically significant departure from Gaussianity at a resolu-
tion of 1 degree. The LGMCA and the official WMAP 9 maps
essentially differ close to the Galactic center where it remains
extremely difficult to assess which map is less contaminated by
foreground residuals or biases due to chance correlations in be-
tween CMB and foregrounds.

The LGMCA code is available at http://www.
cosmostat.org/lgmca and the LGMCA CMB map
as well as the estimated power spectrum are available at
http://www.cosmostat.org/product.
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Appendix A: The LGMCA method

The GMCA framework

The generalized morphological component analysis (GMCA)
method is based on blind source separation (BSS, Bobin et al.
2013). In the framework of BSS, each of the five WMAP fre-
quency channels are modeled as a linear combination of n
components:

∀i = 1, · · · , 5; xi =

n∑
j=1

ai js j + ni, (A.1)

where s j stands for the jth component, ai j is a scalar that models
the contribution of the jth component to channel i, and ni models
the instrumental noise. This problem is more conveniently recast
into the matrix formulation

X = AS + N. (A.2)

In practice, the number of components is set to n = 5, which
allows for more degrees of freedom to obtain a clean CMB
map while keeping A invertible. In constrast to standard ap-
proaches in astrophysics (see Bobin et al. 2013, and references
therein), the GMCA relies on the sparsity of the components S
in the wavelet domain. Taking the data to the wavelet representa-
tion only alters the statistical distribution of the data coefficients
without affecting its information content. A wavelet transform
tends to grab the informative coherence between pixels while
averaging the noise contributions, thus enhancing the structure
in the data. This allows one to better distinguish components
that do not share the same sparse distribution in the wavelet do-
main. In addition, sparsity has the ability to be more sensitive to
non-Gaussian processes, which has been shown to improve the
foreground separation method.

With A as the mixing matrix and Φ as a wavelet transform,
we assume that each source s j can be sparsely represented inΦ;
s j = α jΦ. The multichannel noiseless data Y can be written as

Y = AαΦ , (A.3)

where α is a Ns × T matrix whose rows are α j.
This means that the sparsity of the sources in Φ translates

into sparsity of the multichannel data Y. The GMCA algorithm
seeks an unmixing scheme through estimating A, which leads to
the sparsest sources S. This is expressed by the following opti-
mization problem (written in the augmented Lagrangian form)

min
1
2
‖X − AαΦ‖2F + λ ‖α‖

p
p , (A.4)

where typically p = 0 (or its relaxed convex version with p = 1)
and ‖X‖F = sqrt

(
trace(XTX)

)
is the Frobenius norm.

Local GMCA

The local-GMCA (LGMCA) algorithm (Bobin et al. 2013) has
been introduced as an extension of GMCA:

– multi-frequency instruments generally provide observations
that do not share the same resolution. For example, the
WMAP frequency channels have a resolution that ranges
from 13.2 arcmin for the W band to 52.8 arcmin for the
K band. This makes the linear mixture model underlying
the GMCA algorithm invalid. It is customary to alleviate
this problem by degrading the frequency channels down to

a common resolution prior to applying any component sep-
aration technique (the official CMB map provided by the
WMAP consortium has a resolution of 1 degree). For this
purpose, the data are decomposed in the wavelet domain,
and at each wavelet scale we only use the observations with
invertible beams and then degrade the maps to a common
resolution. This allows us to estimate a CMB map with a
resolution of 15 arcmin.

– most foreground emissions (e.g. thermal dust, synchrotron,
free-free) have electromagnetic spectra that are not spatially
constant. In the framework of GMCA, this translates into a
mixing matrix A that also varies across the pixels. Dealing
with the variation across pixels of the electromagnetic spec-
trum of some of the components, the LGMCA estimates the
mixing matrices on patches at various wavelet scales with
band-dependent size.

The LGMCA algorithm has been implemented and evaluated on
simulated Planck data in (Bobin et al. 2013).

Appendix B: LGMCA parameters for WMAP data

As described in Appendix A, LGMCA mixing matrices are es-
timated from a set of input channels at a given resolution on
a patch of data at a given wavelet scale. For WMAP data, the
parameters used by the LGMCA to compute these matrices are
described in Table B.1. Figure B.1 displays the filters in spher-
ical harmonics defining the wavelet bands at which the derived
weights (by inverting these mixing matrices) were applied.

Table B.1. Parameters used in LGMCA to process the WMAP data with
ancillary data.

Band Obs. Patch size Res.
I WMAP 9 data no 60

dust and Hα
II WMAP 9 data 256 53

dust
III Ka, Q, V , W bands 128 39

dust
IV Q, V , W bands 64 30

dust
V V , W bands 64 22

dust
VI W band 64 15

dust

Notes. For each band, the second column gives the subset of data used
to analyze the data, the third column provides the size of the square
patches at the level of which the analysis is made, the fourth column
gives the common resolution of the data.

LGMCA filters in spherical harmonics

1 10 100 1000
Multipoles(l)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. B.1. Filters defining the wavelet bands used in LGMCA.
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Appendix C: Simulations

In this section, the LGMCA algorithm is applied to data simu-
lated by the Planck Sky Model (PSM) developed by Delabrouille
and collaborators2 (Delabrouille et al. 2013). The PSM models
the astrophysical foregrounds in the range of frequencies probed
by WMAP, the simulated instrumental noise, and the beams. In
detail, the simulations were obtained as follows.

– Frequency channels: the simulated data comprised the
5 WMAP channels at frequency 23, 33, 41, 61, and 94 GHz.
The frequency-dependent beams are perfectly isotropic
PSFs; their profiles were obtained as the mean value of the
beam transfer functions of at each frequency as provided by
the WMAP consortium (nine years version).

– Instrumental noise: instrumental noise was generated ac-
cording to a Gaussian distribution with the covariance matrix
provided by the WMAP consortium (nine years version).

– Cosmic microwave background: the CMB map is a Gaussian
random realization whose theoretical power spectrum is de-
fined as the WMAP (nine years) best-fit power spectrum
(from the six cosmological parameters model). The simu-
lated CMB is perfectly Gaussian, and no non-Gaussianity
(e.g. lensing, ISW, fNL) was added. This will allow for non-
Gaussianity tests under the null assumption in the sequel.

– Dust emissions: the Galactic dust emissions is composed
of two distinct dust emissions: thermal dust and spinning
dust (a.k.a. anomalous microwave emission). Thermal dust is
modeled with the Finkbeiner model (Finkbeiner et al. 1999),
which assumes that two hot/cold dust populations contribute
to the signal in each pixel. The emission law of thermal dust
varies across the sky.

– Synchrotron emission: the synchrotron emission, as simu-
lated by the PSM, is an extrapolation of the Haslam 408 MHz
map (Haslam et al. 1982). The emission law of the syn-
chrotron emission is an exact power law with a spatially
varying spectral index.

– Free-free emission: the spatial distribution of free-free emis-
sion is inspired by the Hα map built from the SHASSA and
WHAM surveys. The emission law is a perfect power law
with a fixed spectral index.

– Point sources: infrared and radio sources were added
based on existing catalogs at that time (including WMAP7
sources). In the following, the brightest point sources are
masked prior to the evaluation results.

A simulated WMAP dataset was produced for each of the nine
years. This allows to process the simulated data in the same man-
ner as the WMAP data are processed.

Component separation

The same templates and parameters as listed in Table B.1 were
used for the LGMCA. We also implemented an ILC as for the
WMAP9 release: first computing the weights in the same regions
as for the WMAP9 release, then smoothing them to 1.5 degree,
and finally applying them to the data at 1 degree in the same
regions as defined in the official WMAP9 product. Note that no
post-processing was performed to subtract the ILC bias due to
foreground propagation as in the official product. This allows us
to compare with the simulations the relative performance of the
LGMCA and a localized ILC in pixel space at a resolution of
1 degree.
2 For more details about the PSM, see the PSM website: http://www.
apc.univ-paris7.fr/~delabrou/PSM/psm.html

Recovered maps and power spectra

The power spectrum was computed following the procedure de-
scribed in Sect. 3. Figure C.1 displays the theoretical power-
spectrum in black and the LGMCA estimated power-spectrum
in red. The pseudo-spectrum of the input map is shown in blue;
these points would correspond to a perfect estimation of the
CMB map where only cosmic variance is a source of uncer-
tainty. The larger 1σ red errors originate from the error from
the remaining instrumental noise. In this experiment, 75% of the
sky coverage was used; the mask we used is a combination of
point sources and Galactic masks. These two plots show that
the power-spectrum of the CMB map estimated after component
separation does not show any statistically significant bias.

Using simulations allows a precise decomposition of the
CMB estimation error into its different components: CMB, re-
maining instrumental noise, and foregrounds. For that purpose
we applied the inversion parameters estimated with LGMCA in-
dependently to the simulated foregrounds and the instrumental
noise. The resulting maps give the exact level of contamina-
tion of the CMB estimated by LGMCA. Figure C.2 shows the
power spectra of the CMB as well as the residual noise and fore-
grounds that contaminate the estimated map. The resolution of
the map estimated with LGMCA is 15 arcmin; therefore the dif-
ferent spectra in Fig. C.2 remain at the same resolution and are
not deconvolved to infinite resolution. Again, exactly the same
sky coverage of 75% was used in this experiment which quanti-
fies the exact level of foreground contamination of the estimated
CMB power spectrum displayed in Fig. C.1. The two panels of
Fig. C.2 first show that the main source of contamination is the
remaining instrumental noise, which predominates for ` > 600.
This translates to the large error bars of the estimated power
spectrum at small scales in Fig. C.1. For very low-` (` < 20),
the contribution of both the remaining noise and foregrounds is
less than 1%, which is far below the error related to the cosmic
variance. In this experiment, the level of foreground contamina-
tion seems to be below 1% at all scales. This very low level has
to be tempered: the ancillary data, namely the composite all-sky
H-alpha map of (Finkbeiner 2003) and the Finkbeiner thermal
dust template (Finkbeiner et al. 1999) were also used within the
PSM to produce the simulations of the free-free emission and
thermal dust emission. We therefore expect the level of resid-
ual foregrounds to be higher when the LGMCA is applied to
the real WMAP data. Interestingly, we also applied the LGMCA
with exactly the same parameters except that only the WMAP
maps without ancillary data were used. The contamination lev-
els are featured in Fig. C.2 as the dashed line. If using templates
indeed lowers the level of the remaining foregrounds, their con-
tribution is still much lower than the level of CMB. Noise is
therefore the main source of contamination in the final CMB es-
timate, whether external templates are used or not.

Finally, in Fig. C.3 all components were propagated using
weights computed by ILC and LGMCA. This figure illustrates
that LGMCA is more efficient at lowering noise levels (due to
the high amplification of noise in the ILC map when the 1 de-
gree deconvolution is performed) and foreground contamination
(due to localization and the use of templates) than the computed
ILC map.

Higher order statistics – non-Gaussianities

The level of non-Gaussianity in the recovered CMB map pro-
vides a sanity check to measure and localize any remaining fore-
ground contamination in the recovered CMB map, since in this
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Fig. C.1. Estimated CMB map power spectrum from simulated WMAP (nine years).

Fig. C.2. Estimated CMB map, noise, and remaining foreground power spectra from simulated WMAP (nine years) at 15 arcmin resolution.

Fig. C.3. Comparisons between LGMCA and ILC at 1 degree resolution. Estimated CMB map, noise, and remaining foreground power spectra
from simulated WMAP (nine years). Additionally, the amplitudes have been amplified by h2

` , the square of the 1 degree resolution Gaussian beam.

case the CMB is generated as a Gaussian random field. In this
work, we computed the non-Gaussianity levels from the recov-
ered CMB maps for LGMCA and ILC at 1 degree, and for the
LGMCA map at 15 arcmin. The 75% mask was employed and
sparse inpainting was performed to interpolate the signal inside
the mask (Starck et al. 2013). The skewness and kurtosis were
then computed on the simulation inside these masks on different
wavelet scales using an isotropic undecimated wavelet on the
sphere (Starck et al. 2006), with the wavelet filters in spherical

harmonic space described in Fig. C.4. These statistics were then
centered on the expected value (computed by propagating only
the simulated noise and CMB) and normalized by the standard
deviation computed from a set of 100 CMB and noise realiza-
tions. These statistics were also computed at different latitude
bands for each wavelet scale to assess the level of foreground
contamination in the maps at various scales and positions.

The comparison between LGMCA and ILC at 1 degree is
displayed in Figs. C.5 and C.6. For both methods, the skewness
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Fig. C.4. Legendre coefficients of the wavelet filters employed for non-Gaussianity analyses at 1 degree (left) and 15 arcmin (right). These wavelets
are well localized in pixel space, allowing a fine analysis per latitude band.

Fig. C.5. Comparison of skewness levels in the LGMCA (red) and ILC (blue) maps at 1 degree computed for various wavelet scales. These
statistics were centered on the expected value and normalized from a set of 100 simulations of CMB and noise (see text).

and kurtosis are compatible with the error bars due to propa-
gated noise and cosmic variance, with a maximal detection at
2.5σ close to the Galactic center. The same tests were also per-
formed for the LGMCA map at the full resolution of 15 arcmin

and are displayed in Figs. C.7–C.9. The difference observed be-
tween the LGMCA non-Gaussianity levels and those computed
from the simulation without foregrounds is compatible with the
errors expected at that resolution.
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Fig. C.6. Comparison of centered and normalized kurtosis in the LGMCA (red) and ILC (blue) maps at 1 degree computed for various wavelet
scales. The same mask and set of simulations where employed as in Fig. C.5.

Fig. C.7. Centered and normalized skewness and kurtosis in the LGMCA map at 15 arcmin computed for various wavelet scales. A 75% mask and
a set of 100 simulations of CMB and noise were used to compute these statistics (see text).

L4, page 9 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321382&pdf_id=14


A&A 553, L4 (2013)

Fig. C.8. Centered and normalized skewness in the LGMCA map at 15 arcmin computed for various wavelet scales and locations. The same mask
and set of simulations were employed to derive the statistic as in Fig. C.7.

Fig. C.9. Centered and normalized kurtosis in the LGMCA map at 15 arcmin computed for various wavelet scales and locations. The same mask
and set of simulations were employed the statistic as in Fig. C.7.
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