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Abstract

Within the framework of Best-Estimate-Plus-Uncertainty approaches, the assessment
of model parameter uncertainties, associated with numerical simulators, is a key element
in safety analysis. The results (or outputs) of the simulation should be compared and
validated against experimental values, when such data is available. This validation step
is required to ensure a reliable use of the simulator for modeling and prediction. In addi-
tion, it must take into account both model and experimental uncertainties (measurement
uncertainties). This work aims to de�ne quantitative criteria to carry out this validation
for multivariate outputs, while taking into account the di�erent sources of uncertainty.
For this purpose, di�erent statistical indicators, based on likelihood or statistical depths,
are investigated and extended to the multidimensional case. First, the properties of the
criteria are studied, either analytically or by simulation, for some speci�c cases (Gaus-
sian distribution for experimental uncertainties, identical distributions of experiments and
simulations, particular discrepancies). Then, some natural extensions to multivariate out-
puts are proposed, with guidelines for practical use depending on the objectives of the
validation (strict/hard or average validation). From this, transformed criteria are pro-
posed to make them more comparable and less sensitive to the dimension of the output.
It is shown that these transformations allow for a fairer and more relevant comparison
and interpretation of the di�erent criteria. Finally, these criteria are applied to a code
dedicated to nuclear material behaviour simulation. The need to reduce the uncertainty
of the model parameters is thus highlighted, as well as the outputs on which to focus.

Keywords| Uncertainty quanti�cation, Model validation, Statistical criteria, Experimental re-
sults, Likelihood, Depth statistics, Multivariate output.

1 Introduction
For several decades, numerical simulators have become fundamental tools for understanding, modeling
and predicting physical phenomena. Large simulation models (or computer codes) implement com-
plex mathematical models and have been successfully used in risk and safety assessments, in design
optimization, or performance assessment of industrial systems. For nuclear engineering applications,
physical experiments are often costly, limited or even sometimes impossible, therefore simulation is
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of prime interest. However, simulation models, even the most representative and faithful to phys-
ical reality, often take a large number of uncertain (or not well known) input parameters. These
parameters can characterize the studied phenomenon or be related to its physical and numerical mod-
eling. The assessment of input uncertainties (also called uncertainty quanti�cation) associated with
numerical simulators is a key element in safety analysis for nuclear power plants, and has become
of prime importance in the so-called Best-Estimate-Plus-Uncertainty (BEPU) methodology [Baccou
et al., 2020, Wilson, 2013]. This quanti�cation of input uncertainties can be supported by expert
opinion or available data, or be determined by solving an inverse calibration or assimilation problem.

To allow a reliable use, the simulators (including their uncertain inputs) have to undergo a thor-
ough, rigorous, and extensive veri�cation and validation process. We focus here on the validation step
which consists in \determining the degree to which a model is an accurate representation of the real
world from the perspective of the intended uses of the model" [ASME, 2009, 2019, Oberkampf and
Trucano, 2002]. This validation process is mostly based on comparison with experimental data. It is
important to underline that we consider here as "simulator" the calculation code with its uncertain
model parameters (and thus their associated variation ranges). In this framework, the assessment of
consistency between simulations and reality must �rst take into account the two types of uncertainty:
that of the simulator inputs and that of the experimental measurements. Second, the comparison be-
tween simulations and experiments under uncertainties also raises the question of de�ning quanti�able
validation (or consistency) indicators. These indicators must make it possible to go beyond a some-
times subjective and complex graphical analysis, particularly in the case of multivariate or functional
outputs. They must be adaptable to the di�erent types and dimensions of experimental data available.
In addition, it requires a clear de�nition of the meaning and purpose of the validation, which may
di�er depending on the application and the context considered. Should the simulator \encompass"
the experiments (including their uncertainties), or, conversely, should it rather produce simulations
that would have a high probability of being observed experimentally? The second objective will be
addressed here, as explained in the following, but the proposed indicators can be directly adapted for
the �rst objective (cf. Section 2.1). The objective may also be to compare two simulation models,
without necessarily considering experimental data (one of the simulators would be the reference sim-
ulator). It is therefore necessary to de�ne precisely the problem and the objective of the validation
process, and to adapt the indicators proposed in this work accordingly. Besides, several versions of
the indicators will be proposed in this work but only some of them will be used for the considered
application.

1.1 Validation by comparison with experimental results and associ-
ated issues

First, we recall the following de�nitions proposed by the SAPIUM report [Baccou et al., 2020] on good
practice guidance:

ˆ \Validation (of input uncertainties): the process involving a comparison between the results of
input uncertainty propagation and experimental data to determine the degree to which input
uncertainties are compatible with an intended use.

ˆ Validation (of simulation model): the process involving a comparison between the results of
a simulation model and the experimental data to determine the degree to which a simulation
model is compatible with an intended use."

We focus here on the �rst de�nition and associated notions. Furthermore, we consider a prob-
abilistic framework where these uncertainties are modeled by fully or partially known probability
distributions [Helton, 1997, Oberkampf et al., 2001]. In practice, information on the distributions of
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simulations and experiments usually di�ers. The former can be based on available data, expert opin-
ions or bibliographic databases, while the latter are mostly known only through random sampling.
More precisely, the uncertain inputs of the simulator are here randomly drawn according to their
(assumed) probabilistic distributions and the corresponding simulator output(s) are computed.

Among the available literature on validation indicators [Liu et al., 2011], the OECD/NEA SAPIUM
project highlights several drawbacks and shortcomings of usual metrics [Baccou et al., 2020]. For exam-
ple, the so-calledcalibration indicators often check whether experimental values fall in the uncertainty
intervals of simulations, regardless of the position of the experimental value within the interval. Al-
ternatively, the simulations interval can be divided into sub-intervals and the uniform location of the
experimental data can be assessed using hypothesis tests such as the� 2-test. Based on the same
idea of comparing the probability distribution of the simulations with that of the experimental data,
statistical tests of Goodness-Of-Fit which estimates a discrepancy (or dissimilarity) measure [Cha,
2007] between both distributions can be used. In the same vein, area metric indicators [Ferson and
Oberkampf, 2009] can be built. However, comparing the two probability distributions in this way is
not necessarily desirable or relevant to the validation objective considered here. For example, if the
uncertainty around the measurement completely encompasses the (much sharper) distribution of the
simulations, a dissimilarity measure would lead to reject the adequacy of both distributions while the
expected conclusion should be that there is an agreement between the experiments and simulations.
Indeed, in this situation, the simulations are consistent with the available experimental data: the
information provided by the latter (probably too imprecise) does not allow to detect a discordance
and/or an inaccurate simulated model.

Furthermore, as mentioned above, the information on the distribution of simulations and experi-
ments di�ers: the �rst one is sampled and must be estimated, while the second one is often assumed
to be a given parametric analytical model (e.g. Gaussian centered on the measured value, with a
standard deviation given by the accuracy of the measuring equipment).

Moreover, the dissimilarity-measures-based approaches do not provide a ranking of simulations
by order of agreement with the experimental results. This possibility is of particular interest for
identifying a group of highly consistent simulations and, on the contrary, some incompatible simula-
tions. Finally, their extension to di�erent types of multivariate or functional data to provide a unique
aggregated result is not straightforward.

1.2 Objectives
To overcome some of the aforementioned limitations, [Marie et al., 2019] have recently proposed to use
a likelihood-based indicator, and applied it to the validation of sodium fast reactor simulation tools.
The work proposed here aims to go further by studying indicators based on the notions of likelihood but
also statistical depth, and to assess how they can be adapted for validation with multivariate outputs.
A key element in this work is also that it does not consider in a symmetric way the experimental
and simulation uncertainties. The angle chosen here is that the experimental probability distribution
constitutes the reference distribution that de�nes the admissible simulations, and those too extreme
to model reality correctly. From this, we want to answer the following question: \Is the simulation
plausible with respect to (w.r.t.) the information provided by the experiments?". The objective is
therefore to assess the consistency of the simulated outputs, individually and conjointly, with the
experimental data.

1.3 Organization of the paper and notations
The rest of the document is organized as follows. Section 2 proposes some criteria which rely on
the statistical likelihood of simulations. These criteria are �rst de�ned for the one-dimensional case
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before being extended to the multivariate case. Another type of criteria based on the notion of depth
statistics is studied in Section 3 and adapted to our validation purpose. In particular, transformed
versions are proposed for an easier comparison and analysis of likelihood- and depth-based criteria,
especially regardless of the dimension of the output. Section 4 proposes an application of some of the
criteria to a nuclear test case that simulates the behaviour of a nuclear material under irradiation.

Before that, we introduce a few notations for numerical simulator and experimental results. The
numerical model is represented by the relation:

M : X �! Y

X 7�! M (X ) = Ysim ;

where X = ( X 1; : : : ; X l )> and Ysim are respectively thel uncertain inputs and the output. As part of
the probabilistic approach, the l inputs are assumed to be continuous random variables with known
joint probability distributions. Consequently, Ysim is also a random variable de�ned in a measurable
spaceYsim with probability distribution denoted PYsim . It is also assumed to be continuous with
probability density function (PDF) denoted f Ysim . This distribution is unknown and only observations
(or realizations) of M are available. It is therefore assumed that we have a sample of sizen of inputs
and associated outputs

�
X (m) ; Y (m)

sim

�

1� m� n
where Y (m)

sim = M (X (m) ) for m = 1 ; : : : ; n. The output

can be 1-D or multidimensional (vector of d components), denotedYsim and Y sim , respectively.
In addition, it is assumed that some experimental results are available, including quantities of in-

terest similar to the outputs computed by the simulator. These experimental data are also uncertain
due to measurement error and are denotedYexp and Y exp for the 1-D and multivariate cases, respec-
tively. Evolving in measurable spaceYexp, their probability distribution denoted PYexp is assumed to
be known, continuous and of PDFf Yexp . Note that the issue of modeling experimental errors (prob-
abilistic or extra-probabilistic modeling? Exploitation of available data, metrology, considerations,
etc.) is not addressed here.
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2 Criteria based on likelihood of simulations
For a one dimensional output, a graphical comparison can be done by comparing each simulation
ysim with the PDF of the experimental data f Yexp . Ideally, it is hoped that a large proportion of
ysim has a high probability of being observed experimentally. From this point of view, considering a
likelihood-based criterion seems relevant to re
ect the capability of the simulator to correctly predict
the reality, even if some of its input parameters are not well known.

2.1 Initial formulation for 1-D output
To quantify the likelihood (and compatibility) of each possible simulation ysim w.r.t. the experimental
distribution, Marie et al. [2019] have proposed the following criterion de�ned on [0; 1]:

C(ysim jPYexp ) = Proba
�
f Yexp (Yexp) � f Yexp (ysim )

�
=

Z

Yexp

1f Yexp (y)� f Yexp (ysim ) (y)f Yexp (y)dy; (1)

where 1A (y) is the indicator function de�ned by 1A (y) = 1 if y 2 A or y satis�es A, and 0
otherwise. C(ysim jPYexp ) is the estimated probability that Yexp takes a value less likely (i.e. \less
probable") than ysim . A very low C(ysim jPYexp ), e.g. lower than 5%, is a signi�cant presumption that
a simulation result is unlikely to be physically observed. Conversely,C(ysim jPYexp ) is one whenysim

corresponds to the most probable experimental value, which translates a high compatibility between
the simulations and the experimental results. This criterion can be generalized to any type of variable
Yexp (and ysim ): scalar, vectorial, functional, etc. as long as a probability distribution is de�ned to
characterize its uncertainty.

Note that C can be more generally used to compare any couple of variables with given probability
distributions. It could otherwise be formulated as C(yexpjPYsim ) for assessing the concordance of an
experimental result with the distribution predicted by the simulator. This last formulation di�ers
from Eq. (1), f Yexp being replaced byf Ysim . It can be considered in the context of the quali�cation of
experimental results by simulation (validation of an experimental device by simulation via a digital
twin, for instance).

2.2 1-D Criterion for a set of simulations and C� -trimmed regions
As Ysim is a random variable, so isC(Ysim jPYexp ). To summarize its distribution into a global quan-
titative indicator of validation, the median value denoted Cmed

Ysim jPYexp
can be considered. Other global

indicators can obviously be derived from the distribution of C(Ysim jPYexp ), according to the purpose
and the way of thinking about the validation of the simulator with experiments (see [Marie et al.,
2019]).

For � 2 [0; 1], we can then de�ne the sets of simulationsysim that have a C(ysim jPYexp ) criterion
of at least � . This form a �rst nested family of C � -trimmed regions denoted:

RC �; 1
PYexp

= f ysim : C(ysim jPYexp ) � � g: (2)

RC � max ;1
PYexp

with � max the maximal value obtained on the set of simulations therefore de�nes the set of

more likely simulations. More generally RC �; 1
PYexp

provides a C(�j PYexp )-based order statistic for the
simulations and induces an outlyingness function.

SomeRC �; 1
PYexp

-based regions might contain all the simulations while others contain none. To avoid
this and further ranking the observed simulations, another trivial solution to de�ne nested regions is
to rank the set of n simulations according to the value of their criterion:

RC �; 2
PYexp

= f ~y(b�n c+1)
sim ; ~y(b�n c+2)

sim ; : : : ; ~y(n)
sim g; (3)
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wherebxc denotes the integer part ofx and
�

~y(m)
sim

�

m2f 1;:::;n g
the ordered values of (ym

sim )m2f 1;:::;n g such

that C(~y(1)
sim jPYexp ) � : : : � C(~y(n)

sim jPYexp ).

2.3 Analytical computation and distribution for some speci�c cases
First of all, if we consider the particular case whereYsim and Yexp are identically distributed, it can
be demonstrated that the criterion C(Ysim jPYexp ) follows a uniform distribution on [0 ; 1], (under some
assumptions on the distribution of f Yexp (Ysim )). See A.1 for the demonstration and details.

Considering now the case of two Gaussian distributions, we obtain:

C(ysim jPYexp ) = 1 � F� 2
(1)

2

4

 
ysim � � exp

� exp

! 2
3

5 (4)

where � exp and � exp are respectively the mean and standard deviation ofYexp, and F� 2
(1)

being the

cumulative density function (CDF) of the chi-squared distribution with one degree of freedom. From
this, the CDF of the criterion, denoted FC , can then be expressed as follows:

FC (x) = 1 � F� 2
(1) ;( � sim � � exp ) 2

"
� 2

exp

� 2
sim

� F � 1
� 2

(1)
(1 � x)

#

(5)

where � sim and � sim are respectively the mean and standard deviation ofYsim , and F� 2
(1) ;( � sim � � exp ) 2

is the CDF of a non-central chi-squared distribution with non-centrality parameter ( � sim � � exp)2

and with one degree of freedom. See A.2 for the demonstration. Eq (5) makes it possible to better
understand (in the Gaussian case) the evolution of the criterion distribution according to a shift
between the means (model bias) or a dilation between the variances (impact of modeling uncertainty
and/or measurement errors).

2.4 Proposed extensions to multivariate output
In the multivariate case, the output consists of d variables of interest forming a d-dimensional vector
Y sim = ( Ysim; 1; : : : ; Ysim;d )> and Y exp = ( Yexp;1; : : : ; Yexp;d)> , for the simulation and the experiment
respectively. This vector can be composed of a similar physical variable but observed for di�erent
experimental conditions, or of a set of several physical variables of di�erent units and order of magni-
tude. The criterion C(ysim jPY exp ) can be naturally extended with the multivariate density of f Y exp

and will be given for every observationysim 2 Rd by:

Cd(ysim jPY exp ) = Proba
�
f Y exp (Y exp ) � f Y exp (ysim )

�
: (6)

This �rst criterion will thus address this question: is my simulation consistent with the experimental
results on all the variables of interest? It is easy to understand that a single output that deviates
completely from the experiment would seriously degrade the value of the criterion (this simulation
having a very low statistical likelihood w.r.t. the experimental PDF).

If one wishes to further assess whether the results are correctly represented on average, it is worth
considering other criteria. Moreover, since in most cases the components ofY exp can be assumed to
be independent random variables1, we propose to consider the one-dimensional criteria calculated for

1Most of the time, the di�erent experimental quantities of interest (temperature, pressure, etc.) are evaluated
using di�erent measuring instruments, the resulting measurement errors are thus independent. This assumption
can also be made for the same physical quantity measured at di�erent points or times for example.
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each quantity of interest and then to aggregate the information that they provide. This can be done
for example by considering the mean value of the one-dimensional criteria:

Cmean (ysim jPY exp ) =
1
d

dX

i =1

ci (7)

where ci = C(ysim;i jPYexp;i ) denotes the one-dimensional criterion computed for the ith component.
Other aggregation functions, not considered here for the sake of brevity, can obviously be considered
depending on the purpose of the validation (min , product or weighted product function, e.g.). As
in the one-dimensional case, global indicators, such as the median value, can then be considered to
summarize the distribution of Cd or Cmean . Nested family of Cd- or Cmean -trimmed regions can also
be de�ned (in a similar way to Eqs. (2, 3)).

2.5 Distribution of multivariate criteria for some speci�c cases and
proposed transformations

Considering the reference case whereY sim � Y exp , Cd still follows a uniform distribution as in
the one-dimensional case (Figure 1, plot (a) in blue solid line). If we further assume that the ran-
dom variables (Yexp;i )I 2f 1;:::;D g are independent, we can show thatCmean follows a Bates distribu-
tion [Johnson et al., 1994] de�ned on interval [0; 1], as a mean ofd independent uniform variables.
While its mean is constant, E[Cmean (Y sim jPY exp )] = 0 :5, its variance depends on dimensiond since
VAR[Cmean (Y sim jPY exp )] = 1p

12d
. This may not be desirable for a fair comparison of the predictive

quality (on average) of two groups of quantities of interest, that are of di�erent dimension d for in-
stance. Figure 1 plot (b) illustrates this: the PDF of Cmean are drawn in solid lines for di�erent d
from 5 to 40.

In addition, the result obtained in the case of a divergence betweenY sim and Y exp is also illus-
trated on the same graph (plots (a) and (b), in dotted lines). More precisely, Y sim still follows a
centered Gaussian distribution but di�ers from Y exp by the variance over 20% of its components. A
dilation of 100%, i.e. a standard deviation twice as large as that ofY exp , is considered for the law of
these components. In the case of an average validation objective for a group of outputs, it would be
desirable to have, for the same rate of disturbed components, similar distributions of criteria (and thus
a deviation from the reference case) regardless ofd. It is clear that Cd does not exhibit this behavior
at all, which is logical and consistent with what this criterion controls (see Section 2.4). Concerning
Cmean , even though the dissimilarity between the PDFs of the perturbed and reference cases increases
less rapidly, its PDF remains dependent ond for the same rate of perturbed components. This is more
problematic for this criterion since it is dedicated to the evaluation of the coherence on average.

To remedy this, we propose to consider two transformations ofCmean that allow to have a
PDF independent of d, at least in the reference case (two identical distributions). The �rst one
consists in applying the CDF of the Bates distribution (denoted FBates;d ) to Cmean , as follows:
eCBates

mean = FBates;d (Cmean ). The transformed criterion therefore follows a uniform distribution, un-
der the hypothesis Y sim � Y exp . This can be referred to as the probability integral transform2

(or universality of the uniform). This transformation paves the way for a simpli�ed interpretation
and an easier comparison to the reference case, whatever the dimensiond. Perfectly relevant when
Y sim � Y exp , eCBates

mean also remains well suited when most of the individualci criteria are high (the
simulations are on average very consistent with the experiment for all the outputs of interest). On the
other hand, it can become too penalizing as soon as a signi�cant number of individual criteria are low,

2It relates to the result that i.i.d. realizations of a random variable from any given continuous distribution
can be converted to i.i.d. realizations of a variable having a standard uniform distribution.

7



in the sense that it compresses the distribution too much making comparisons and interpretation dif-
�cult. Figure 1 plot (c) illustrates this analysis. Moreover, as for Cd, the PDF of eCBates

mean (Y sim jPY exp )
for the same rate of perturbedY sim components still depends ond, but to a lesser extent. The use of
eCBates

mean is therefore not recommended for comparing groups of di�erent and large dimension, especially
in the case of large discrepancies between simulations and experimental results.

To address larger deviations while trying to get rid of the dimension, another solution is to trans-
form Cmean to only make its mean and variance (for the reference case) independent ofd, and not its
entire distribution. For this, we propose the following linear transformation:

eCscal
mean (ysim jPY exp ) =

1
p

d

dX

i =1

ci �

p
d � 1
2

: (8)

The distribution of ~Cmean under Y sim � Y exp thus obtained is therefore very close for anyd, with a
constant mean and variance, respectivelyE[ eCscal

mean (Y sim jPY exp )] = 1
2 and VAR[ ~Cscal

mean (Y sim jPY exp )] =
1
12. Note that the support of the distribution is

h
�

p
d� 1
2 ;

p
d+1
2

i
and still depends ond (see Figure 1

plot (d), in solid lines). Moreover, we can see that the perturbation of 20% of components yields a
quite similar PDF for d = 5 or 10. The divergence with the reference case then increases for higher
d (d = 40, e.g.) but to a much lesser extent than for the other criteria. This behavior has also been
observed for other cases of divergence (e.g. on the mean), not shown here for the sake of brevity.
Applicable to broader discrepancy cases, the criterioneCscal

mean therefore allows for a fairer comparison
regardless ofd.

In summary, several likelihood-based criteria have been proposed to deal with multivariate output:
Cd as the natural extension of the 1-D criterion, to be reserved for the �ne validation of all the
quantities of interest, Cmean for a validation on average which makes sense in the case of independent
experimental uncertainty, and two transformed versions of Cmean to allow for fair validation (still
on average) and comparison between multidimensional outputs, regardless of their dimension. The
former should be reserved for small divergences between simulations and experimental results, while
the latter could address larger ones. Of course, a selection of the most relevant criteria has been
proposed, but other versions could be considered.
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(a) (b)

(c) (d)

Figure 1: Estimated PDF of likelihood-based multivariate criteria for dimensionsd = 5 to 40,
and Y exp � Nd(0; I d). The reference caseY sim � Y exp is plotted in solid lines. The case where
Y sim also follows ad-normal distribution but with a di�erent standard deviation on 20% of the
components is plotted in dotted lines. The criteria represented here areCd (Eq. 6), Cmean (Eq.
7), eCBates

mean and eCscal
mean (Eq. 8).
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3 Criteria based on the statistical depth of simulations

3.1 Brief review and selection of statistical depths
The notion of statistical depth was �rst introduced by Tukey [Tukey, 1975] as a measure of the
centrality of a point among a data set in Rd, generalizing the notion of median to the multivariate
case. The concept of data depth has then been extended for the ordering of multivariate data, and
di�erent depth functions have been proposed in order to measure how \deep" is a point relatively to
a given data cloud. Many depth functions have been proposed for various application areas and have
di�erent characteristics regarding robustness, high dimensional computability, and ability to re
ect
asymmetries of the distributions (See Mosler [2013] for a complete review and a relevant classi�cation
of depth functions). Among them, we focus here on some usual distance-based and halfspaced-based
depths:

ˆ Mahalanobis depth is a distance-based depth function given by:

DMah (ysim jPY exp ) = (1 + ( ysim � � exp )> � � � 1
exp � (ysim � � exp )) � 1; (9)

where � exp 2 Rd and � exp 2 M d(R) are the mean vector and covariance matrix ofY exp ,
respectively. � exp is assumed to be nonsingular and consequently invertible.

ˆ Tukey depth is a halfspace-based combinatorial depth which is de�ned as the minimum prob-
ability mass carried by any closed halfspace containingysim :

DT uk (ysim jPY exp ) = inf f Proba(H ) : H is a closed halfspace,ysim 2 H g: (10)

ˆ Spherical depth is de�ned to be the probability that the point ysim is contained inside a
random closed hyperball de�ned by a pair of points sampled from the reference distribution
PY exp . More precisely, the spherical depth is expressed as:

DSph;init (ysim jPY exp ) = Proba [ ysim 2 S(Y 1 ; Y 2)] (11)

where Y 1 and Y 2 are two independent random vectors in Rd both following PY exp , and
S(Y 1 ; Y 2) designates the unique, closed hypersphere formed byY 1 and Y 2 . We propose here a
modi�ed version of the spherical depth where a preliminary standardization based on the inverse
square root of the covariance matrix is applied:

DSph(ysim jPY exp ) = Proba
h
� � 1=2

exp ysim 2 S(� � 1=2
exp Y 1 ; � � 1=2

exp Y 2)
i

: (12)

In a nutshell, this transformation consists in considering the probability that ysim belongs to
the random closed ellipsoid obtained by deforming the hypersphere with the covariance matrix-
based a�ne transformation. Consider the case where one component ofY exp , the ith e.g., has a
high measurement uncertainty while other components may be more precise. A simulationysim

which is physically unlikely according to only one componentysim;j with j 6= i , will still have a
high spherical depth. This problem is avoided by the standardization proposed in Eq. (12).

Note that the spherical and Tukey depths lie in [0; 0:5] as opposed to [0; 1] for the Mahalanobis
depth. Similarly as for the likelihood-based criteria in Section 2.2, global indicators, such as the median
value, can be calculated to summarize the distribution of any depth-based criterionD(Y sim jPY exp ).
Nested family of D � -trimmed regions can be de�ned in a similar way.

It is noteworthy that a connection can be made between the likelihood-based criterionC(ysim jPYexp )
de�ned by Eq. (1) and the family of \Type D depths" de�ned by Zuo and Ser
ing [2000]. For a given
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point z and a probability measure PX , the authors de�ne them as the minimum probability mass of
PX carried by a set containing the point z and belonging to a given class of closed subsets inRd.
Such kind of depth can be interpreted as the \tailedness" ofz w.r.t. PX . A direct link can therefore
be made with criterion Cd(ysim jPY exp ) for z = ysim and PX = PY exp by considering for the closed
subsets, the subsets of points with a PDF smaller than that ofysim .

3.2 Analytical distribution for some speci�c cases and proposed
transformations

Considering the speci�c case whereY exp follows a multivariate Gaussian distribution Nd(� exp ; � exp),
we obtain for the Tukey depth:

DT uk (ysim jPY exp ) = 1 � �
h




 � � 1=2

Y exp
(ysim � � exp )







i

;

where � denotes the CDF of the standard normal distribution (demonstration given by B). In addition,
if we assume the same law for the two variablesY sim � Y exp , we obtain the following PDF for the
Mahalanobis and Tukey depths:

f Mah; Y sim � Y exp (x) =
1
x2 f � 2

( d)
(
1
x

� 1) 8x 2 [0; 1]; (13)

f T uk;Y sim � Y exp (x) =
1

f N (0;1)

h
� � 1

N (0;1)(1 � x)
i � f � ( d)

h
� � 1

N (0;1)(1 � x)
i

8x 2 ]0; 0:5]; (14)

where f N (0;1) , f � 2
( d)

and f � ( d) respectively denote the PDFs of the standard normal, chi-squared and

chi distribution with d degrees of freedom (for the latter two). Demonstrations are provided in B.2
and B.3 for Mahalanobis and Tukey depths, respectively. Note that ford = 1 (only), the Tukey depth
follows a uniform distribution.

Figure 2, plots (a) to (b), illustrates these PDFs for di�erent d from 5 to 40 (in solid lines). The
perturbed case (de�ned as in Figure 1) is also represented. Similar plots can be obtained by intensive
simulation for spherical depth (not given here for sake of brevity). As previously for likelihood-based
criterion Cd, the PDFs of the depth criteria have the disadvantage of having a very di�erent shape
depending ond, even whenY sim � Y exp .

To mitigate this dependence whenY sim � Y exp , the criteria can be �rst transformed by using
their CDFs under the reference case:

eD CDF
� (ysim jPY exp ) = FD � ;Y sim � Y exp

(D � (ysim jPY exp )) ; (15)

where FD � ;Y sim � Y exp is the CDF of depth criterion D � when Y sim � Y exp . This CDF can be com-
puted analytically for Mahalanobis and Tukey depths when Y exp follows a multivariate Gaussian
distribution (cf. formulas given by Eq. (24) Eq. (25) in B.2 and B.3, respectively), or otherwise by
intensive simulation. Note that under the assumption of a Gaussian distribution for Y exp , the trans-
formed Tukey depth given by Eq. (15) is actually equivalent to the criterion Cd de�ned by Eq. (6).
Demonstration is given in C. This result is true for any given simulation vector ysim 2 Rd and any
dimension d. Unfortunately, the eD CDF

� transformation does not allow to alleviate the impact of d
when Y sim follows a perturbed distribution with the same percentage of perturbed components, as
illustrated for Mahalanobis depth by plot (c) Figure 2. As soon as d increases, the PDF of eD CDF

�
compresses rapidly around very low values of the criterion. This also raises a problem of numerical
accuracy on high-dimensional data and with very large deviations. This behavior, also observed for
the other CDF-based transformed depths, is understandable as depth is a measure of centrality. So
the more the simulation deviates on a large number of components, the less central the simulation
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becomes. For this reason, it is questionable whether the depth criteria should be modi�ed to remove
their d-dependence and cope with larger dissimilarities. At least, such modi�cations should be re-
served for comparison (of two groups of variables for example or the predictions of two simulators)
rather than for validation stricto sensu. To this end, we have considered several more or less successful
modi�cations. One of them, relevant enough for the Mahalanobis depth, is given by:

eD scal
Mah (ysim jPY exp ) =

d + 1
2

DMah (ysim jPY exp ): (16)

This transformation is motivated by the analysis of the PDF of DMah under the reference case and
the approximation of its moments. The corrective factor d+1

2 has been chosen so that the mean value
tends towards 0.5 with d, when Y sim � Y exp . As illustrated by plot (d) of Figure 2, the mean value
of eD scal

Mah is thus less sensitive tod for the reference case, as well as for the case with dilation.

Several validation criteria from depth measures have been proposed for the validation of a simulator
with multidimensional outputs, some of which have been adapted (spherical depth). They allow for a
joint validation of all the outputs by assessing whether, for a given simulation, all the predicted values
are central to the experimental distribution. They can naturally be used on the one-dimensional
case. These depth-based criteria are geometric in nature and di�er from the likelihood criteria. But
it is clear that these two approaches will be very close whenY exp follows a unimodal distribution,
and in particular a Gaussian law. We notably show in this case the equivalence betweenCd and
some transformation of Tukey depth. In the more general case, we have also established relevant
connections between the likelihood-based criterionCd and family of \Type D depths". Moreover, some
transformations of the depth-based criteria have been proposed for a fairer validation and comparison
regardless of the dimension of the output. However, both the original and the transformed depth-
based criteria assess strict validation of all predicted outputs: they will quickly become null whend
increases in the case of signi�cant deviations of the simulation from the experimental results, even on
a small number of components.
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(a) (b)

(c) (d)

Figure 2: Estimated PDF of depth-based criteria for dimensions fromd = 5 to 40, and Y exp �
Nd(0; I d). The reference caseY sim � Y exp is plotted in solid lines. The case whereY sim

also follows ad-normal distribution but with a di�erent standard deviation on 20% of the
components is plotted in dotted lines. The criteria represented here areDMah (Eq. 9), DT uk

(Eq. 10), fD CDF
Mah (Eq. 15) and fD scal

Mah (Eq. 16).
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4 Application to the simulation of the behavior of a nu-
clear material under irradiation conditions

To illustrate the practical application and value of some of the indicators previously proposed, we
consider here a simulator of the behaviour of a material in irradiation conditions. This simulator
models the various physical phenomena occurring in the nuclear material and provides output quan-
tities characteristic of its evolution. For reasons of industrial con�dentiality, the simulator (which will
be referred to asM NuclMat ) and the modeled phenomena are not detailed. TheM NuclMat model
depends on several modeling parameters, some of which cannot be determined experimentally. We
consider here about ten uncertain conceptual parameters without prior information on their proba-
bility distribution. Only a variation range and a uniform distribution over this range are assumed for
each input parameter.

To validate the M NuclMat simulator in steady state conditions and within a BEPU approach
(i.e. including its uncertain parameters), an experimental database of about 40 experimental objects
is considered. Post irradiation examinations performed at CEA give 3 types of physical quantities
measured. The results of these quantities are not available for all the experimental objects. More
precisely, we have a total of 94 variables of interest consisting of 40, 41, and 13 measures of type 1, 2,
and 3 respectively. In addition, a measurement uncertainty is associated with each observed values:
independent truncated normal distributions with known mean and standard deviation are assumed for
each observed variable. The three corresponding random vectors are notedY i with i = 1 : : : 3 and Y i ;j

corresponds to the jth variable of group i . On the other hand, a sample ofn = 200 simulations of the
M NuclMat simulator is available: the uncertain inputs are randomly drawn using a Latin hypercube
design (Loh [1996], Park [1994]), and for every tuple of inputs, the 94 variables of interest listed above
are computed by the simulator. No observed or predicted values are provided here, and all plotted
values will be normalized, again for con�dentiality.

The objective of the validation process of theM NuclMat simulator (M NuclMat code + uncertain
inputs) is twofold. Firstly, it is necessary to evaluate whether improving the knowledge and reduce the
uncertainty of the inputs is required. The faithful modeling of the phenomenology by the calculation
code (only) is already acquired, and it is rather a question of determining whether the uncertainty on
the modeling parameters is acceptable to well represent the experimental results, or if on the contrary,
a better characterization (and/or reduction) of their uncertainty is necessary. This reduction could
be done via a calibration of the parameters (deterministic or Bayesian Kennedy and O'Hagan [2001]).
Secondly, we also wish to rank the 3 groups of variables of interest (Y 1 , Y 2 and Y 3) according to
whether they are well represented or not by the simulator, and perhaps identify the group on which
to focus the calibration e�orts.

4.1 Graphical analysis
Before applying validation criteria, a graphical comparison between the distribution of simulations and
experimental results is made. An illustration is given by Figure 3. We observe very variable results
depending on the predicted output, even within the same group. Simulations are sometimes central
to the experimental PDF (cases (b,d,e,g)), with a slight bias (case (h)), centered on the observed
values but too spread out with a very high proportion of values outside the experimental PDF (case
(a)), or even completely out of line with the experimental results (very large bias, like plots (c,f,i)).
This preliminary analysis highlights the complexity and the need to summarize all these very di�erent
results as best as possible.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Comparison of the distributions ofM NuclMat simulations and experimental results,
for some variables of each of the three groups (Y 1, Y 2 and Y 3). A kernel density estimator is
also plotted (in black solid line), for then = 200-size random sample ofM NuclMat simulations.
The measured experimental values (resp. the associated PDF) are indicated by a red dotted
(resp. solid) line.

4.2 Computation of one-dimensional criteria
The di�erent validation criteria proposed in Sections 2 and 3 are �rst applied on the M NuclMat use-
case for each one-dimensional variable of interest alone. Results are given in D by Figures 5, 6 and
7 for criterion C and transformed depth-based criteria eD CDF

Mah and eD CDF
Sph , respectively. All these

criteria have the property of following a uniform distribution if Y sim � Y exp , which facilitates their
comparison. Note that eD CDF

T uk is not shown because the results are almost identical toC: the criteria
are equivalent in the case of an experimental Gaussian distribution and the presence here of truncated
Gaussians for some variables does not result in a signi�cant di�erence.

For a given output, all 1D-criteria give similar results, which is explained by the fact that the
experimental laws here are unimodal and mostly Gaussian. The observed di�erences (as forY1;10,
Y1;11, and Y1;12, e.g.) are explained by the truncation at 0 of the experimental Gaussian distribution,
which has a greater impact on the criterionC. The obtained results also con�rm the great variability
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between outputs. Most of theY 2 outputs are relatively well �tted (except for Y2;5), while the simulated
Y 1 outputs appear inconsistent with the experimental values. The results are more heterogeneous
for the Y 3 outputs with some simulations physically very likely (Y3;5 or Y3;7) and others much less so
(Y3;9 and Y3;12).

4.3 Computation of multidimensional criteria
The di�erent multidimensional criteria are now applied to each group of outputs f Y i gi =1 :::3, as well
as to the whole set. The empirical mean ofC and depth-based criteria are given by Tables 1 and 2,
respectively. The variation range of criteria is recalled, as it can depend ond. In this case (i.e. for
eCscal

mean and eD scal
Mah ), the criteria are calculated only for the three groups for an analysis of their relative

value. In addition, the distributions of C-based criteria are shown as boxplots on Figure 4.
First of all, regarding the criteria on the group composed of all outputs,Cmean has a mean value

below 0.5 (0.37 exactly): the simulator on average gives predictions that are not very consistent with
experimental results. A signi�cant proportion of outputs takes values that are physically unlikely. This
naturally results in zero values for all other criteria that control the strict validation of all outputs.
The M NuclMat simulator used with no informative prior uncertainty on the modeling parameters does
not yield reliable predictions. The validity of the M NuclMat calculation code being already established,
this means that a better quanti�cation (or re�nement) of the uncertainties on the modeling parameters
is required.

If we now look at the di�erent group of outputs individually, we can observe that only the Y 2

group is faithfully predicted with a Cmean equal to 0:61 (higher than 0:5 which is the mean value
obtained if Y sim � Y exp ), and CDF-transformed depths eD CDF

Mah and eD CDF
T uk close to one. By the way,

the latter values illustrate the interest of these transformations, the original depths being close to zero
due to the very large dimensiond. Concerning the two other groups,Y 3 and Y 1 , results are far less
good with a Cmean much lower than 0.5 and depths close to zero. Even if better results are obtained
for Y 3 with Cmean , this does not allow to conclude on the ranking betweenY 3 and Y 1 because of the
penalizing impact of the dimension (dimension ofY 1 being much higher than Y 3). To mitigate this
impact, one can turn to the CDF-transformed criteria. Unfortunately, their near-zero values do not
allow a robust conclusion. Criteria eCscal

mean and eD scal
Mah then o�er a relevant alternative. Their analysis

clearly reveals that the Y 1 group is the most discordant with the experimental results, regardless of
its larger dimension. This is con�rmed by the boxplot of eCscal

mean given by Figure 4.
In conclusion, e�orts to reduce uncertainty (e.g. through calibration) should be focused �rst and

foremost on the Y 1 group.

Cd Cmean
eCBates

mean
eCscal

mean

[0; 1] [0; 1] [0; 1]
h

1�
p

d
2 ; 1+

p
d

2

i

Y 1, d = 40 0 0.13 0 -1.85
Y 2, d = 41 0.99 0.61 0.99 1.23
Y 3, d = 13 0 0.36 0.04 -0.01
f Y 1, Y 2, Y 3g, d = 94 0 0.37 0

Table 1: Empirical mean of multidimensional likelihood-based criteria computed on then =
200-size sample ofM NuclMat simulations. Results are given for each group of outputs and for
the whole set (last line). The theoretical interval of possible variation for each criterion is also
recalled (under the name of the criterion).
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DMah
fD CDF

Mah
fD scal

Mah DT uk
fD CDF

T uk Dsph
fD CDF

sph

[0; 1] [0; 1]
h
0; d+1

2

i
[0; 0:5] [0; 1] [0; 0:5] [0; 1]

Y 1, d = 40 0 0 0.02 0 0 0 0
Y 2, d = 41 0.05 0.99 1.02 0 0.99 0.44 0.68
Y 3, d = 13 0.02 0 0.16 0 0 0 0
f Y 1, Y 2, Y 3g, d = 94 0 0 0 0 0 0

Table 2: Empirical mean of multidimensional depth-based criteria computed on then = 200-
size sample ofM NuclMat simulations. Results are given for each group of outputs and for the
whole set (last line). The theoretical interval of possible variation for each criterion is also
recalled (under the name of the criterion).

Figure 4: Boxplot of the multidimensional likelihood-based criteriaCmean , eCscal
mean and eCBates

mean for
the 3 di�erent groups of outputs, computed on the sample ofM NuclMat simulations. Empirical
mean and median are indicated by a cross and a horizontal line, respectively.
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5 Conclusions and prospects
In support to the Best-Estimate-Plus-Uncertainty (BEPU) methodology or more generally to the
Veri�cation, Validation and Uncertainty Quanti�cation (VVUQ) approach, this paper has addressed
the problem of a quanti�ed validation of simulation tools, with uncertain input parameters, and
from the comparison with available experimental results. The objective is therefore to assess the
consistency of the simulated outputs, individually and conjointly, with the experimental data. To
meet this objective, we have proposed and investigated di�erent statistical indicators, based on the
concepts of likelihood and depth statistics. We have extended them to the multidimensional case
(i.e. when there are several scalar experimental results, and corresponding simulated outputs). The
proposed indicators (or criteria) can be applied to the result (output(s)) of a single simulation or
to a random sample of simulations. In the latter case, each criterion is itself a random variable, as
a function of the random output of the simulator. It thus yields a global BEPU validation of the
simulator, as well as a ranking of simulations according to their consistency with experiments.

For each proposed criterion, its probability distribution was �rst studied analytically or by simula-
tion, for some speci�c cases: Gaussian experimental distribution, identical probability distribution of
experiments and simulations (reference case), or case of speci�c divergence between both distributions.
Then, some natural extensions to a multivariate output were proposed. Their behavior was analyzed,
in particular as a function of the dimension of the output variable, and recommendations for their use
were formulated with regard to the objectives of the validation (strict or average validation).

From there, transformed criteria were proposed either to \homogenize" the criteria by ensuring
that they all follow a uniform distribution in the reference case, or to mitigate in a more general case
the impact of the output dimension. These transformations (or standardization in a nutshell) allows
a fairer comparison of the di�erent criteria, independently of the dimension, and w.r.t. the reference
case. Some of them should be reserved for small divergences between simulations and experimental
results, while others, which have only a relative interpretation, could address and compare larger
divergences.

Finally, the validation criteria were applied to a test case with a simulator modeling the behaviour
of a nuclear material. This simulator is based on a validated release of theM NuclMat code, and on
a set around ten uncertain model parameters. As they cannot be directly measured, only variation
ranges of these parameters are �rst assumed. The objective here was to evaluate the accuracy of the
simulator and more precisely the relevance of the assumed non-informative uncertainty on the model
parameters. For this, we relied on an experimental database composed of 94 variables of interest,
grouped into 3 types. On the simulation side, a sample ofn = 200 simulations was available: each
simulation corresponds to a random draw of the input model parameters and leads to a prediction of
the 94 variables of interest. For any given output variable (among the 94), the di�erent unidimen-
sional criteria gave similar results. By contrast, a large variability was observed between the outputs:
most of the outputs of one group are relatively well �tted, while the simulated outputs of the other
two groups are much more inconsistent with the experimental values. The multidimensional criteria
applied to the whole set of outputs showed that the simulator used with non-informative prior un-
certainty as currently de�ned, is not validated. As the validity of the M NuclMat calculation code has
been established, it is the uncertainty of the model parameters that must be better characterized and
more precisely reduced. The transformed criteria then o�ered a relevant alternative to compare the
3 output groups with each other, independently of their dimensions. It was clearly revealed that the
�rst group of variables is the most discordant with the experimental results.

E�orts to reduce model uncertainties should therefore focus primarily on improving the modeling
and prediction of the the �rst group of outputs. To this end, a Bayesian calibration of the model
parameters is currently ongoing and should allow a more accurate representation of the outputs. In
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addition, to better understand the role played by the model parameters in the faithful representation
of reality, it would be interesting to perform a sensitivity analysis of the validation criteria themselves.
The objective would be to identify the in
uential (and non-in
uential) parameters on the criteria and
especially on the occurrence of a low value (target sensitivity analysis, see [Marrel and Chabridon,
2021]). For this purpose, HSIC dependence measures ([Gretton et al., 2005]) seem to be very relevant
because they allow to capture a large spectrum of dependencies. They are well adapted to the size of
the sample (n = 200) and conditional versions have recently been proposed by [Marrel and Chabridon,
2021]. This sensitivity analysis could be carried out for each group of outputs or for the whole. In
addition, the marginal laws of the main in
uential parameters, a priori and conditional on low values
of the criteria, could also be compared and interpreted.

As far as the validation criteria themselves are concerned, their extension to the case of functional
outputs (temporal or spatial outputs, for example) is currently being studied. This extension could
be based either on functional dimension reduction for likelihood-based criteria, or on functional depth
statistics, such as the band-depth measure of [L�opez-Pintado and Romo, 2009] or the h-mode depth
([Cuevas et al., 2007]).
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A Demonstrations of formulas for the likelihood-based
criteria

A.1 Analytical distribution of criterion C(Ysim jPYexp ) when Ysim � Yexp

In the general case whenYsim � Yexp, we can prove that C(Ysim jPYexp ) follows a uniform distribution
U[0;1]. Let denote f Y the probability density function (PDF) of both Yexp and Ysim , and FC the CDF
of C(Ysim jPYexp ). More generally, FW will denote the CDF of any variable W . We have 8x 2 [0; 1] :

FC (x) = Proba
�
C(Ysim jPYexp ) � x

�

= Proba [Proba [ f Y (Yexp) � f Y (Ysim ) j Ysim ] � x]

= Proba
h
E

h
1f Y (Yexp )� f Y (Ysim ) j Ysim

i
� x

i

= Proba [ E [1W � W 0 j Ysim ] � x] where W = f Y (Yexp) and W 0 = f Y (Ysim )

= Proba
�
E

�
1W � W 0 j W 0� � x

�

= Proba
�
Proba

�
W � W 0 j Ysim

�
� x

�

= Proba
�
FW (W 0) � x

�
: (17)

W and W 0 are i.i.d. with cumulative density function (CDF) FW and therefore FW (W 0) � U [0;1],
provided FW is continuous and strictly increasing. The �rst condition is veri�ed as Y and therefore
f Y (Y ) are continuous variables. For the second condition, if we denotef Y;min (resp. f Y;max ) the
minimal (resp. maximal) value of f Y on its support3, we �rst use the fact that FW is strictly increasing
on [f Y;min ; f Y;max ] since f Y (Y ) is continuous and from the intermediate value theorem. Secondly,W
as well asW 0 are de�ned on [f Y;min ; f Y;max ], by de�nition.

Hence Eq. (17) becomesFC (x) = Proba [ FW (W 0) � x] = x. It follows that C(Ysim jPYexp ) � U [0;1],
when Ysim � Yexp � Y and if f Y (Y ) has a continuous and strictly increasing CDF.

A.2 Analytical expression of one-dimensional criterion for the Gaus-
sian case

If Yexp is normally distributed with Yexp � N (� exp; � 2
exp), we have:

C(ysim jPYexp ) = Proba
�
(f Yexp (Yexp) � f Yexp (ysim )

�

= Proba

2

4 1
p

2�� exp
e

� ( Yexp � � exp ) 2

2� 2
exp �

1
p

2�� exp
e

� ( ysim � � exp ) 2

2� 2
exp

3

5

= 1 � Proba

2

4

 
Yexp � � exp

� exp

! 2

�

 
ysim � � exp

� exp

! 2
3

5

= 1 � F� 2
(1)

2

4

 
ysim � � exp

� exp

! 2
3

5 since
Yexp � � exp

� exp
� N (0; 1): (18)

3The set-theoretic support of a densityf de�ned on a setX is de�ned as the set of points wheref is non-zero:
supp(f ) = f x 2 X : f (x) 6= 0g.
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If Ysim is also normally distributed with Ysim � N (� sim ; � 2
sim ) then the global criterion C(Ysim jPYexp )

is a random variable de�ned as follows:

C(Ysim jPYexp ) = 1 � F� 2
(1)

2

4

 
Ysim � � exp

� exp

! 2
3

5

= 1 � F� 2
(1)

"
� 2

sim

� 2
exp

�
Ysim � � exp

� sim

� 2
#

= 1 � F� 2
(1)

h
� 2 � eY

i
where � =

� sim

� exp
and eY =

�
Ysim � � exp

� sim

� 2

: (19)

We have eY � � 2
(1)( � sim � � exp )2 where � 2

(1)( � ) denotes the non-central chi-squared distribution of non-
centrality parameter � ). We then obtain for the CDF of C(Ysim jPYexp ):

8x 2 [0; 1]; FC (x) = Proba
�
1 � F� 2

(1)

h
� 2 � eY

i
� x

�

= 1 � FeY

�
1

� 2 F � 1
� 2

(1)
(1 � x)

�

= 1 � F� 2
(1)( � sim � � exp ) 2

"
� 2

exp

� 2
sim

� F � 1
� 2

(1)
(1 � x)

#

: (20)

Note that in the particular case where Ysim � Yexp we �nd the result of A.1:

C(Ysim jPYexp ) = 1 � F� 2
(1)

�
F � 1

� 2
(1)

(1 � x)
�

= x:
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B Demonstrations for depth statistics with multivariate
Gaussian distribution

B.1 Formulation of the Tukey depth when Y exp � N d(� exp ; � exp)
First, we consider DT ukey (zjPX ) when X � N d(0; I d). In this case, the closed halfspace that contains
the smallest number of data points with boundary through z is delimited by the hyperplan that
contains z and is orthogonal to the vector z = ( z1; : : : ; zd)> . The equation of this hyperplan can be
written as

P d
i =1 � i x i � � = 0 with � i being the coordinates ofz in the natural basis, i.e. � i = zi

kzk and
� = kzk. The Tukey depth can therefore be expressed as following:

DT ukey (zjPX ) = inf f Proba(H ) : H is a closed halfspace,z 2 H g

= Proba

" dX

i =1

� i X i � � � 0

#

= 1 � Proba

" dX

i =1

� i X i � �

#

: (21)

Since
P d

i =1 � 2
i = 1 and X � N d(0; I d), we have

P d
i =1 � i X i � N (0; 1) and:

DT ukey (zjPX ) = 1 � �( � ) with � the CDF of N (0; 1)

= 1 � �( kzk): (22)

If we now generalize to the caseY sim � Y exp � N d(� exp ; � exp), we have � � 1=2
exp (Y exp � � exp ) �

Nd(0; I d), and since the Tukey depth satis�es the property of linear invariance presented in 3.1, we
obtain:

DT ukey (ysim jPY exp ) = DT ukey

�
� � 1=2

exp (ysim � � exp )jP
� � 1=2

exp (Y exp � � exp )

�
= 1 � �

h




 � � 1=2

exp (ysim � � exp )






i

:

(23)

B.2 Distribution of the Mahalanobis depth when Y sim � Y exp �
Nd(� exp ; � exp)

Let W = � � 1=2
exp (Y sim � � exp ), we haveW � N d(0; I d). The CDF of D Mah (Y sim jPY exp ) is expressed

8x 2 [0; 1] by:

FMah; Y sim � Y exp (x) = Proba
h
D Mah (Y sim jPY exp ) � x

i

= Proba
� �

1 + ( Y sim � � exp )> � � 1
exp(Y sim � � exp )

� � 1
� x

�

= Proba
h
(1 + W > W ) � 1 � x

i

=

(
1 � F� 2

( d)

�
1
x � 1

�
for x > 0 sinceW > W � � 2

(d)

0 otherwise
; (24)

whereF� 2
( d)

denotes the CDF of the chi-squared distribution with d degrees of freedom. The associated

PDF is given 8x 2 [0; 1] by:

f Mah; Y sim � Y exp (x) =

(
1

x2 f � 2
( d)

�
1
x � 1

�
for x > 0;

0 otherwise,

with f � 2
( d)

the PDF of the chi-squared distribution with d degrees of freedom.
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B.3 Distribution of the Tukey depth when Y sim � Y exp � N d(� exp ; � exp)

Keeping the previous notation W = � � 1=2
exp (Y sim � � exp ) � N d(0; I d), we havekW k � � (d) . From Eq.

(23), we obtain the CDF of DT ukey (Y sim jPY exp ), given 8x 2]0; 0:5] by:

FT ukey;Y sim � Y exp (x) = Proba
�
DT ukey (Y sim jPY exp ) � x

�

= Proba [1 � �( kW k) � x] with � being the CDF of N (0; 1)

= Proba
h
� � 1(1 � x) � k W k

i
since � is a strictly increasing function

= 1 � F� ( d)

�
� � 1(1 � x)

�
sincekW k � � (d) (25)

where F� ( d) denotes the CDF of the chi distribution with d degrees of freedom. For the left bound,
we haveFT ukey;Y sim � Y exp (0) = 0.
Hence the PDF can be deduced8x 2]0; 0:5]:

f T ukey;Y sim � Y exp (x) =
1

f N (0;1) [� � 1(1 � x)]
� f � ( d)

h
� � 1(1 � x)

i

with f � (d) the PDF of the chi distribution with d degrees of freedom andf N (0;1) the PDF of stan-
dardized Gaussian distribution. For the left bound, we havef T ukey;Y sim � Y exp (0) = 0 (and continuity
of the PDF). Note that for d = 1, we can easily show that the PDF obtained is that of the uniform
distribution.
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C link between the Tukey depth based on CDF trans-
formation and the likelihood-based criterion

We will demonstrate in the following that if the experimental distribution is Gaussian, the CDF-
transformed Tukey depth given Eq. (15) is strictly equivalent to the the criterion Cd (Eq. (6)) for
any given simulation vector z 2 Rd. So, assuming that Y exp � N d(� exp ; � exp) and denoting w =

� � 1=2
exp (z � � exp ), we �rst easily obtain as in Eq. (18) that:

Cd(zjPYexp ) = 1 � F� 2
( d)

h
w> w

i
since � � 1=2

exp (Y exp � � exp ) � � 2
(d) under the Gaussian assumption

= 1 � F� 2
( d)

h
kwk2

i
:

(26)
Secondly, under the same assumptions, the CDF-based transformed Tukey depth given by Eq. (15)

becomes
eDT ukey (zjPY exp ) = 1 � F� ( d)

�
� � 1(1 � DT ukey (zjPY exp ))

�
from Eq. (25)

= 1 � F� ( d)

�
� � 1(�( kwk))

�
from Eq. (23)

= 1 � F� ( d) (kwk) : (27)

Since, the standardized chi distribution with d degrees of freedom is the distribution followed by
the square root of a chi-squared random variable, we haveF� ( d) (x) = F� 2

( d)
(x2) 8x � 0 and therefore

the equality of the two criteria:

if Y exp � N d(� exp ; � exp); then Cd(zjPYexp ) = eDT ukey (zjPY exp ): (28)
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D Additional results on the application case
The results obtained for each of the 94 outputs for likelihood and two depth-based criteria are given
by Figures 5, 6 and 7.

(a)

(b)

(c)

Figure 5: Boxplots of one-dimensional criterionC (Eq. 1), computed from then = 200-size
sample ofM NuclMat simulations. Results are plotted for each output of the 3 groups of outputs:
Y 1 (a), Y 2 (b) and Y 3 (c). Empirical mean and median are indicated by a blue cross and a
red line, respectively.
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(a)

(b)

(c)

Figure 6: Boxplots of one-dimensional transformed Mahalanobis depth (Eq. 15 applied to
DMah ), computed from the n = 200-size sample ofM NuclMat simulations. Results are plotted
for each output of the 3 groups of outputs:Y 1 (a), Y 2 (b) and Y 3 (c). Empirical mean and
median are indicated by a blue cross and a red line, respectively.
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(a)

(b)

(c)

Figure 7: Boxplots of one-dimensional transformed spherical depth-based criteria (Eq. 15
applied to DSph), computed from the n = 200-size sample ofM NuclMat simulations. Results
are plotted for each output of the 3 groups of outputs:Y 1 (a), Y 2 (b) and Y 3 (c). Empirical
mean and median are indicated by a blue cross and a red line, respectively.
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