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Fusion reactions Ash pumping 

Keep core 

density

→ balancing 

outgoing flows

D

T

We need to fuel to compensate :

2

Introduction - Necessity of fuelling



Introduction - Different options for fuelling

easy to use

Fuel only the edge 
of the plasma

➔ Screening of 
neutrals in 
the SOL 

Gaz puff injection Neutral beam injection Pellet injection

Deep penetration

Efficient fuelling with no 
momentum or power 
injection

Deep penetration

- Power & Matter 
injection

- Not enough fueling 
for required power 
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Pellet 
injection

Core 
Fueling

Physics of 
fueling

Experiments & 
technology

Physics of fueling : Homogenization explanation

Ablation

Homogenization

Out of the scope of 
this presentation

Disruption 
mitigation & 
ELM pacing



Physic of ablation - Time story of a pellet immersed in 

plasma

5

Injection 

point

Pellet trajectory



Pellet 
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Physic of ablation - Time story of a pellet immersed in 

plasma

D  ~ 1 mm

T° ~ 15K

V  ~  200 m/s to a few km/s 

Injection 

point

Pellet trajectory



Plasma Heat 

flux

● By heating the pellet, 

5

k

Physic of ablation - Time story of a pellet immersed in 

plasma

ablation : Loss of a material caused by vaporization

Injection 

point

Pellet trajectory



Injection 

point

● By heating the pellet, 

⇒ Neutral ablation cloud

Neutral 

ablation cloud
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Physic of ablation - Time story of a pellet immersed in 

plasma

k

10-1 eV

Pellet trajectory

Plasma Heat 

flux



● By heating the pellet, 

⇒ Neutral ablation cloud

⇒ Ionized ablation cloud

Neutral 

ablation cloud

5

Ionised ablation 

cloud

Physic of ablation - Time story of a pellet immersed in 

plasma

k

10-1 eV a few eV

Injection 

point
Ablation cloud

Pellet trajectory

Plasma Heat 

flux



● By heating the pellet, 

⇒ Neutral ablation cloud

⇒ Ionised ablation cloud

● Ionised ablation cloud separate from neutral part 

(cloud + pellet),

Neutral 

ablation cloud

5

Ionised ablation 

cloud

Vp

Physic of ablation - Time story of a pellet immersed in 

plasma

k

10-1 eV a few eV

Injection 

point
Ablation cloud

Pellet trajectory

Plasma Heat 

flux



● By heating the pellet, 

⇒ Neutral ablation cloud

⇒ Ionised ablation cloud

● Ionised ablation cloud separate from neutral part 

(cloud + pellet),

⇒ Happens all along the pellet path 

Neutral 

ablation cloud

5

Ionised ablation 

cloud

Vp

Physic of ablation - Time story of a pellet immersed in 

plasma

k

10-1 eV a few eV

Injection 

point
Ablation clouds

Pellet trajectory

Plasma Heat 

flux



Pellet penetration (Lp) depends mainly on the plasma 

temperature

6

Pellet penetration length :

⇒ Temperature dependance is the more limiting for penetration

Plasma density / temperature

Pellet velocity / particle contents

⇒ Increase Vp more efficient than Np to increase Lp

2 conclusions :

Pellet Lp : from 20% to >50% plasma radius in present day tokamaks

Fast ions (ICRH,NBI) moderate ablation increase

Fast electrons (ECRH) significant ablation increase; (LHCD) pellet mass sublimation 
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Homogenization
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During homogenization phase deposed matter moves on 

the parallel and radial direction  

8

Injection 

point

Toroidal direction

Ablation clouds

Injection 

point

Radial direction

Pellet trajectory

Pellet trajectory

Homogenization : deposited matter leads 

to a new axisymmetric density and 

temperature profiles

Deposed matter displacement :

⇒ Parallel expansion

⇒ Radial drift (down ∇B direction)



Physic of Homogenization : Cloud immersed in magnetic 

field gradient 

B∞

R

Z

9



Physic of Homogenization : Polarization of the cloud 

- - - - - - - - -

+ + + + + + + + + 

v𝛁Be,i : Vertical e-, i+ drift
B∞

v𝛁Be

Rv𝛁Bi

Z
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Physic of Homogenization : Electric field induced 

v𝛁Be,i : Vertical e-, i+ drift
B∞

E(t)

v𝛁Be

Rv𝛁Bi

Z

9



Physic of Homogenization : Drift velocity appears

v𝛁Be,i : Vertical e-, i+ drift
B∞

E(t)

v𝛁Be

Rv𝛁Bi

Z

Vd

9

Vd = 
E x B

B2
∞

∞



Physic of Homogenization : Acceleration induced is 

depending on the pressure difference

v𝛁Be,i : Vertical e-, i+ drift

We can calculated the drift acceleration :  

B∞

E(t)

v𝛁Be

Rv𝛁Bi

Z

Vd

9

Vd = 
E x B

B2
∞

∞



Physic of Homogenization : simplification of the 

acceleration term

v𝛁Be,i : Vertical e-, i+ drift

We can calculated the drift acceleration :  

B∞

E(t)

v𝛁Be

Rv𝛁Bi

Z

Vd

9

Vd = 
E x B

B2
∞

∞



10

Physic of Homogenization - Cloud drags magnetic flux 

tube it intercepts 

Ideal MHD :

Cloud drags magnetic flux tube

Rotational transform, winding of the field line

⇒ Drift damping by 2 phenomena 



𝛅j𝛁B

Zc

𝛅j𝛁B

11

1st damping term from Internal Connection - Cloud long 

enough for field lines connecting charged part of the cloud

Critical length Zc reach 

→ drift current circuit is closed inside 

the cloud

[Rozhansky 2005]



𝛅j𝛁B

Zc

𝛅j𝛁B

1st damping term

→ Internal Connection

11

1st damping term from Internal Connection - Cloud long 

enough for field lines connecting charged part of the cloud

[Rozhansky 2005]



𝛅j𝛁B

Zc

𝛅j𝛁B

11

1st damping term

→ Internal Connection

1st damping term from Internal Connection - Cloud long 

enough for field lines connecting charged part of the cloud

[Rozhansky 2005]



j// j//

𝛅j𝛁B + +

- -

12

2nd damping term from External Connection - perturbed flux 

tube connects charged part of the cloud

Parallel currents flow along field lines 

→ closing drift current

[Pégourié 2009]



j// j//

𝛅j𝛁B + +

- -

2nd damping term

→ External Connection

12

2nd damping term from External Connection - perturbed flux 

tube connects charged part of the cloud

[Pégourié 2009]



j// j//

𝛅j𝛁B + +

- -

2nd damping term

→ External Connection

12

2nd damping term from External Connection - perturbed flux 

tube connects charged part of the cloud

[Pégourié 2009]



Damping of the cloud drift phase

13



Damping of the cloud drift phase

13

How DEC & DIC influence the deposition profile for different magnetic 

configuration ? (tokamak/Stellarator/RFP) 
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Competition between DEC & DIC - in a tokamak the external 

connection is the dominant effect

j// j//
𝛅j𝛁B+ +

- - 𝛅j𝛁B
𝛅j𝛁B

: efficient time 

More efficient close to a rational q
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Competition between DEC & DIC - in a tokamak; External 

Connection is dominant 

⇒ External Connection 

more efficient for tokamak

[Sakamoto 2013]
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Competition between DEC & DIC - in a stellarator; External 

Connection
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P = 5 periods P = 10 periods 

Competition between DEC & DIC - in a stellarator; Internal 

Connection
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Competition between DEC & DIC - in a stellarator; Internal 

Connection is dominant 

⇒ Internal Connection more 

efficient for stellarator

[Matsuyama 2012]



Drift stops faster in a stellarator than in tokamak 

19

&

We have :

Then :

Drift displacement is smaller in a stellarator than in tokamak

⇒
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φ

In an Reversed Field Pinch (RFP) the homogenization is very 

short and a transport barrier is generated at the reversal radius

B 𝜈

⇒

At the reversal radius :

⇒ Drift barrier 

⇒ Very short drift time: magnetic shear

[Canton 2000]

No experiments made yet
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Pellet 
injection

Core 
Fueling

Physics of 
fueling

Experiments & 
technology

Recent 
results

Futur devicesHere we are going to present main 

recent results 

⇒ Similar results on other machines 

also exist

Presentation of some results for fueled scenarios 

Disruption 
mitigation & 
ELM pacing



I - Better fueling from High field side in DIII-D due to the 

drift of the cloud

Matter deposition deeper than pellet penetration : 

⇒ Drift of the cloud

Penetration 

length

Deposition 

length

22

(ablation of the 

pellet)

(drift of the 

cloud)

[Baylor 2007]

Pellet injection



I - Better fueling from High field side in DIII-D due to the 

drift of the cloud

22

LFS

Matter deposition deeper than pellet penetration : 

⇒ Drift of the cloud

Test of different injection points :

LFS   : Deposition ~ penetration

Penetration length

Core

Edge Core

[Baylor 2007]

Penetration 

length

Deposition 

length

Pellet injection



I - Better fueling from High field side in DIII-D due to the 

drift of the cloud

22

LFS

Penetration lengthEdge

Core

V+1

Matter deposition deeper than pellet penetration : 

⇒ Drift of the cloud

Test of different injection points :

LFS   : Deposition ~ penetration
V+1   : Deposition ~ 2 x deeper than penetration 

Core

[Baylor 2007]

Penetration 

length

Deposition 

length

Pellet injection



I - Better fueling from High field side in DIII-D due to the 

drift of the cloud

22

Matter deposition deeper than pellet penetration : 

⇒ Drift of the cloud

Test of different injection points :

LFS

Penetration length

Core

V+1

Edge Core

LFS   : Deposition ~ penetration
V+1   : Deposition ~ 2 x deeper than penetration 
HFS  : Deposition ~ 4 x deeper than penetration 

HFS

[Baylor 2007]

Penetration 

length

Deposition 

length

Pellet injection



II- Pellet fueling allows RMP ELM suppression above 

Greenwald density in ASDEX-Upgrade

23

Tokamak

High density regime
(like H mode)

ELMs (self generated or pellet 
induced)

[Lang 2012]

Pellets

Resonant Magnetic Perturbation (RMP) + Pellet allowed 

a density > nGW without ELM



In stellarator, pellet used for density control and improve 

confinement, ex : LHD and W7-X

24

Pellet increases global energy confinement time

Stellarator

● High density regime 
● Large confinement time

● Hollow density profile

[Baldzuhn 2018]

reff [m]

Time [sec]

n
e

 [
E

1
9

 m
-3

]

Pellets

0 0.5 1 1.5 2 2.5 3 3.5

Pellet injection

[Bozhenkov 2020]

Pellet increases core density

Empirical law ISS04

Measured
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Pellet 
injection

Core 
Fueling

Presentation of some results for fueled scenarios 

⇒ 4 solutions are developed

- ITER

- JA-DEMO

- EU-DEMO 

- Heliotron

Disruption 
mitigation & 
ELM pacing

Physics of 
fueling

Experiments & 
technology

Recent 
results

Futur devices



Pellet speed limited by the guide tube curvature

26

Futur devices will be large

[Poeckl 2021]

→ Large drift

→ injection from HFS

→ Bended guide tube

→ Limited pellet speed Vp
Max

Rp (pellet radius) limited by plasma perturbation

Balance to find between Rp & Vp
Max

Futur machines take into account pellet injector position



Pellet injector in the future devices 

27

5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)



Pellet injector in the future devices 
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5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)



5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)

Pellet injector in the future devices 

27

JT-60SA ITER JA-DEMO EU-DEMO

Fueling rate ≤ 62mg/s ∈ [20,167]mg/s 50mg/s ∈ [42,58]mg/s 



Pellet injector in the future devices 

27

5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)

JT-60SA ITER JA-DEMO EU-DEMO

Fueling rate ≤ 62mg/s ∈ [20,167]mg/s 50mg/s ∈ [42,58]mg/s

Pellet Size ∈ [1,5]mg

∈ [2,3]mm
25mg

5mm

17mg

4mm

8mg

3.4mm



Injector design for JT-60SA and ITER

28

Front view

Inboard

Guiding 

tube

Vessel

1 m

From 
accelerator

[Lang 2019]

JT-60SA

HFS 

Guide 

Tubes

Divertor 

Port

LFS Guide 

Tube

Injection 

Points

[Combs 2012]

ITER

● Midplane or bottom injector
● strong tube bend
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JT-60SA ITER JA-DEMO EU-DEMO

Injector 

position

midplane midplane -

bottom

Injection 

lines

small Rc small Rc

5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)

Vp
Max 470 m/s 300 m/s

Injector 

type

centrifuge 1 stage 

pneumatic

Injector design for JT-60SA and ITER



29

Pellet 

transfert 

system

Pellet Source

Pellet 

Accelerator

Pellet Source

Pellet 

transfert 

system

Pellet 

Accelerator

JA-DEMO EU-DEMO

[Tokugana 2017]

[Poeckl 2021]

Injector design for JA-DEMO and EU-DEMO
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JT-60SA ITER JA-DEMO EU-DEMO

Injector 

position

midplane midplane 

- bottom

top top

Injection 

lines

small Rc small Rc Large Rc Large Rc

5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)

Vp
Max 470 m/s 300 m/s 2000m/s 1700m/s 3000m/s

Injector 

type

centrifuge 1 stage 

pneumatic

2 stage 

pneumatic 

centrifuge 

-

1 stage 

pneumatic

2 stage 

pneumatic

Injector design for JA-DEMO and EU-DEMO
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5 fueling system dimensioned :

2 under manufacturing : 

JT-60SA     (tokamak)

ITER          (tokamak)

2 as project :

JA-DEMO  (tokamak)

EU-DEMO (tokamak)

1 preliminary state : 

FFHR         (stellarator)

Pellet injector in the future devices 



Pellet injector in the future devices 
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JT-60SA ITER JA-DEMO EU-DEMO FFHR

Fueling rate ≤ 62mg/s ∈ [20,167]mg/s 50mg/s ∈ [42,58]mg/s 600 mg/s

Vp
Max 470 m/s 300 m/s 2000m/s 1700

m/s

3000

m/s

1200 m/s

Pellet Size ∈ [1,5]mg

∈ [2,3]mm
25mg

5mm

17mg

4mm

8mg

3.4mm

40-60mg

5.6mm

10 000 m/s 

Speed not possible to reach yet

200 mg/s



Pellet injector in the future devices 
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JT-60SA ITER JA-DEMO EU-DEMO FFHR

Fueling rate ≤ 62mg/s ∈ [20,125]mg/s 50mg/s ∈ [42,58]mg/s 600 mg/s

Vp
Max 470 m/s 300 m/s 2000m/s 1700

m/s

3000

m/s

1200 m/s

Pellet Size ∈ [1,5]mg

∈ [2,3]mm
25mg

5mm

17mg

4mm

8mg

3.4mm

40-60mg

5.6mm

Not possible to increase pellet size

⇒ unacceptable jumps in fusion power & heat loads of the divertor

40-60mg

5.6mm



Summary  

Understand Ablation and Homogenization physic let us understand 

differences for tokamak/stellarator/RFP

Fuelling using pellets allows high performance discharges

Pellet injection line to be considered from very early stage of the design of 

future devices. 

→ allows better fuelling efficiency 

→ reduced fuelled circulation

33

Tokamak Stellarator

● > ngw without 

ELMs

● 𝜏E ↗
● Peak density profil


