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Abstract. We have developed a Python code that aims at automatizing the analysis of generic 
micro-IBA data by associating statistical methods and machine learning algorithms. The code is 
organized in two parts: hyperspectral image analysis and composition prediction. In the first 
stage, main phases and local anomalies are detected separately using PCA and DWEST methods, 
respectively. In the prediction stage, we use the model generated by a trained artificial neural 
network. The network is fed with simulated particle and x-ray spectra generated from the 
SIMNRA and Gulys software codes. For particle spectra, we paid particular attention to the cross 
section selection that goes beyond already implemented SIMNRA functionalities. To limit the 
impact of the simulation time on the overall code performance, we make use of data 
augmentation. When using simulated data as input, we found that the trained neural network 
predicts stoichiometries and thicknesses with an excellent agreement, even for complex targets 
composed of several elements and layers. Regarding realistic experimental data, we still get 
reasonable predictions but remain dependant of cross section quality. The code can combine data 
from RBS, NRA, ERDA and PIXE and should pave the way for fully automatized micro-ion 
beam analysis. 

1. Introduction 

Ion Beam Analysis (IBA), and particularly micro-IBA, generates huge amounts of data that require 
careful processing to extract valuable information regarding examined samples, namely elemental 
concentrations and layer thicknesses. Usual IBA and micro-IBA data processing is performed using 
dedicated software programs relying on physical processes and models that aim at fitting collected 
spectra by adjusting compositions and thicknesses until a convergence criterion is reached. Since they 
are extremely specialized, most programs remain devoted to a particular technique or type of spectrum 
(charged particles, x-rays, -rays) and fail at looking for a coherence between various radiation sources 
coming from the interaction of the ion beam with samples. This limitation constrains the analyst to find 
by itself consistency and complementarity between them. This process is unsustainable when large 
amounts of samples are investigated and/or when microbeam mapping is used since a supplementary 
step of hyperspectral image analysis is required to group the pixels (and so the data) from the same 
elemental phases. 

Artificial Intelligence (AI) techniques, including statistical analysis and machine learning are 
increasingly present in our daily life and near generalized in data processing. In IBA field, it is worth to 
remind pioneering works of Barradas and Vieira [1] and Demeulemeester et al [2] who demonstrated 
the usefulness of these techniques. With the improvement of computing capacity, progresses were made 
with more complex samples [3]. However, coupled techniques processing, which constitute one of the 
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main strength of IBA, remains poorly investigated [4]. In this work, we aimed at developing a fully 
automated micro-IBA processing based on AI techniques starting from raw acquired data from multiple 
and simultaneous IBA techniques to elemental compositions and layer thicknesses results. 

2. Methods 

The codes were written within Python environment using Scikit-Learn libraries [5]. Parallelized 
execution was performed on an Intel Core i9 processor. 

2.1. Hyperspectral image processing 

Hyperspectral data is composed of m × n × p spectra, m, n being lateral pixel dimensions (image scan 
size) and p the number of used techniques during the analysis. Each spectrum contains here 1024 
channels. For main features, we apply principal component analysis (PCA) on the (m × n) flattened map 
containing concatenated p-spectra arrays. The first PCA component matrix data is clustered using k-
means regrouping pixels with similar spectrum profiles. 

Small objects that cannot be identified by the PCA process are found using the dual window-based 
Eigen separation transform (DWEST) method [6], which oppositely to the PCA highlights the 
particularities of the data. This method consists of comparing for each pixel the spectral differences 
between pixels in two different spatial windows centred on the considered pixel and affecting it a -
value that measures the contrast with its local neighbouring. A last clustering step allows identification 
of the small features. 

Spectra from all ADCs from each spatial region are then extracted to be used as inputs for the trained 
predictor (next section). 

The code also compares normalized spectra from the different identified main features and detects 
Regions of Interest (ROIs) that produces the highest chemical image contrasts. 

2.2. Stoichiometry and thickness prediction 

Stoichiometry and thickness are calculated after training an Artificial Neural Network (ANN). This step 
is fundamental and requires preparing a learning set generally composed of either experimental data, 
simulated data, or a mix. Here we made the choice to produce learning sets from simulated data since 
no universal experimental IBA spectra database is available. Given a set of layers and chemical 
elements, the code generates targets with regular meshing before producing simulated spectra. 

SIMNRA program [7] is used to simulate particle spectra (RBS, NRA, ERDA) and allows convenient 

code controlling thanks to OLE automation. Moreover, it offers a semi-automatic cross section selection 

as far as SigmaCalc cross sections are available. However, numerous important interactions are not 

evaluated by SigmaCalc or have a reduced energy range that does not fit the used experimental 

configuration. In classical data processing, this can be solved by selecting manually in the software 

missing cross sections and adjusting energy limits. The code we designed selects automatically the most 

important supplementary cross sections (from more than 130) and also adjust the energy limits of all 

required cross sections. 

X-ray spectra are produced by using Gulys, an extension of Gupix software [8]. This DOS program, 

ran here through DOSBox emulator [9], evaluates x-ray lines intensities given the considered elements 

and the matrix composition. Detector response, including filter absorption, is produced using xraylib 

library [10] by extracting detector data from detector parameter file. Escape peaks are modelled using 

ref [11]. 

Additionally, all simulated spectra undergo an auto convolution to take into account the pile-up 

process and Poisson noise is added in a final step. 

One important feature implemented in the code is data augmentation. Frequently used in AI image 

processing, it finds also applications in spectroscopy [12]. This technique allows increasing at a minimal 

calculation cost the learning set size, and thus the quality of prediction. It allows also to take into account 

the small calibration and charge measurement discrepancies that might occur in real experiments. 

Starting from simulated spectra, we induce small alterations by applying random variations in 
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calibration parameters and spectrum intensities. Tests showed that learning sets containing up to 95 % 

augmented data lead to reliable results. 

The ANN implemented in the code is a multilayer perceptron regressor with adaptive 
hyperparameters. In the first tests, the input layer was initially formed from the concatenation of the p 
spectra, thus having p × 1024 nodes. We found however that applying PCA decomposition to the 
concatened p spectra from the learning set leads to a significant reduction of the input layer size (up to 
10-fold), even when retaining the n first components required to reconstruct original spectra with a 
coefficient of determination R2 such as 1 - R2 ≤ 1e-7. The ANN hyperparameters are chosen between 6 
arrangements (table 1) and 3 regularization terms (0.0001, 0.001 and 0.01) during a parallelized 
optimization and cross validation step performed on a fraction of the training set. 

 
Table 1. ANN geometries 

Hidden layer topology 

(n, n) 
(2n, 2n) 

(n, n/2, n) 
(n, n, n) 

(2n, n, 2n) 
(2n, 2n, 2n) 

3. Results 

3.1. Image processing 

The figure 1 shows results of the image processing from 2 micro-IBA experiments associating particle 
and x-ray spectra performed on (a) a copper grid mounted on an aluminium background (b) a multiphasic 
system composed of 3 phases, mineral, metallic and carboneous ones. The code identifies and separates 
efficiently the different phases. As shown from the anomaly map and confirmed by the extracted PIXE 
spectrum, the code is also able to isolate a small mineral dust on the copper grid. The overall process 
takes about 2 min. 

 

 
Figure 1. Hyperspectral data processing from (a) a copper gird (b) a 

multiphasic sample. Anomaly map (a, bottom) highlights a mineral dust. 
Chemical maps from the multiphasic sample are shown on the right. 
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3.2. Predictions from simulated data 

To optimize the ANN and evaluate global performances of the code, we started prediction calculations 
using simulated data not used during the learning and test processes. We present in figure 2 results from 
two different configurations where learning sets contains spectra from 10 000 targets. The first system 
is a multilayer sample probed with protons (CrO2/Fe2O3/NiO layers with 6000, 9000 and 3000 1015 
at.cm-2 respective thicknesses on a Si substrate). For this sample gathering data from both RBS and 
PIXE is mandatory since none of these techniques ran solely is able to give a full interpretation of the 
sample. The second system is a mineral sample containing 2.5 at. % of hydrogen probed with grazing 
-particles resulting in RBS, PIXE and ERDA spectra. 

In both cases, we observe the excellent agreements between unknown samples spectra and simulated 
spectra from the predictions, confirming the ANN performance in various analytical configurations. 

 

 
Figure 2. Unknown and predicted spectra of (a) metal oxides 

multilayer on silicon substrate and (b) hydrated silicate 
 

Efficiency of data augmentation process is demonstrated in figure 3. Here we consider the TiC0.5O0.5 
compound covered by a thin Au layer, probed with deuterons and collecting NRA and PIXE data. With 
dense meshing (6114 generated targets, figure 3.a), simulation and learning computing times are 50 min 
and 4 min, respectively. Reducing drastically mesh density (126 generated targets) prediction turns 
wrong as shown in figure 3.b. By using 14-fold data augmentation on this low density meshing (figure 
3.c), we recover the excellent agreement between unknown and predicted spectra while simulation and 
learning computing times fell respectively to 1 min and 30’. 
 

 
Figure 3. Unknown and predicted NRA and PIXE spectra of TiC0.5O0.5 compound with (a) high 

density meshing (b) low density meshing (c) low density meshing + data augmentation 
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3.3. Predictions from experimental data 

A set of various compounds was probed using protons at 2.5 MeV with RBS and PIXE. In order to 
improve the process efficiency and to evaluate also the discrimination capacity of the ANN, we prepared 
a single learning set containing all the chemical elements of the examined compounds here, namely Ga, 
N, P, Fe and S. We also made use of data augmentation, limiting the simulations to 858 targets and 
increasing the size by 10-fold. We can observe from the figure 4 that predicted targets spectra are in 
good agreement with experimental data. Composition predictions are close to nominal ones when 
applying data augmentation and the ANN performs much better with learning set enriched with data 
augmentation compared to learning set limited to effectively simulated targets as reported in table 2. 

 

 
Figure 4. Experimental and predicted RBS and PIXE spectra for (a) FeS2, (b) GaN (c) GaP from an 

ANN trained with Ga, N, P, Fe and S 
 

Table 2. Nominal and predicted compositions from the ANN. 

Sample Nominal composition Predicted composition with 
data augmentation 

Predicted composition 
without data augmentation 

(a) FeS2 Fe1.29S2Ga0N0P0 Fe1.14S2Ga0.16N0.70P0 
(b) GaN GaN0.82P0Fe0S0.09 GaN32P28Fe0S0 
(c) GaP GaP0.58N0.03Fe0S0.13 GaP19N10Fe0.12S0 

 
Reasonable performances can also be achieved with only 256 simulated targets to which we add 14-

fold data augmentation, as shown in figure 5. For this example, data was collected on CaSiO3 and TiO2 
targets using deuteron beam at 1.9 MeV with a 50 m Mylar absorber in front of the particle detector to 
stop backscattered particles. Here also a single learning set was used for both targets. Because of this 
experimental setup, information about Ca and Ti can be extracted solely from the PIXE spectra, 
evidencing that the ANN takes effectively into account the whole input layer data. Predicted 
compositions (Ca0.82Si0.76O3 and Ti1.06O2) are found close to nominal ones. It should be pointed here that 
the NRA region [175:300] remains unfitted because the low energy limits of the available 28Si(d,p3-4)29Si 
cross sections are close to the deuteron beam energy and that the carbon metallisation layer (channel 
185) was not included in the simulations. 
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Figure 5. Experimental and predicted NRA and PIXE spectra for (a) 

CaSiO3, (b) TiO2 

Data extracted from figure 1b was also processed, the results are summarized in figure 6. The 

experiment was performed with deuterons at 1.5 MeV and PIXE and NRA data were collected. The 

learning set was prepared with targets organized in 2 layers and 8 different chemical elements (C, O, 

Al, Mg, Si, K, Ca, Fe) producing 4752 targets augmented 4-fold. Reasonable agreement is found, 

although predictions might be even better with the use of enlarged energy window cross sections. 

 

 
Figure 6. Unknown and predicted NRA and PIXE spectra for the 3 identified regions from 

Fig1b. Neural network hyperparameters are indicated for each phase. 

 

4. Conclusions 

We have developed a Python code that can process the raw micro-IBA data to automatically get 
compositions and layer arrangements from potentially any sample and for any analytical conditions. The 
code is able to isolate the different phases and extract the associated spectra, which are used as input for 
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a trained adaptive ANN. This last can be efficiently trained using data augmentation technique and 
results show that predicted compositions are in good agreement with experimental data for various 
samples and IBA setups. 
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