Skip to Main content Skip to Navigation
New interface
Conference papers

Image quantization towards data reduction: robustness analysis for SLAM methods on embedded platforms

Quentin Picard 1, 2, * Stephane Chevobbe 3 Mehdi Darouich 1 Jean-Yves Didier 2 
* Corresponding author
1 LIAE - Laboratoire Intelligence Artificielle Embarquée
Université Paris-Saclay, DSCIN - Département Systèmes et Circuits Intégrés Numériques : DRT/LIST/DSCIN
Abstract : Embedded simultaneous localization and mapping (SLAM) aims at providing real-time performances with restrictive hardware resources of advanced perception functions. Localization methods based on visible cameras include image processing functions that require frame memory management. This work reduces the dynamic range of input frame and evaluates the accuracy and robustness of real-time SLAM algorithms with quantified frames. We show that the input data can be reduced up to 62% and 75% while maintaining a similar trajectory error lower than 0.15m compared to full precision input images.
Document type :
Conference papers
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/cea-03858795
Contributor : Contributeur MAP CEA Connect in order to contact the contributor
Submitted on : Thursday, November 17, 2022 - 7:30:08 PM
Last modification on : Monday, November 28, 2022 - 11:08:28 AM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2023-11-17

Please log in to resquest access to the document

Identifiers

Citation

Quentin Picard, Stephane Chevobbe, Mehdi Darouich, Jean-Yves Didier. Image quantization towards data reduction: robustness analysis for SLAM methods on embedded platforms. ICIP 2022 - The 29th IEEE International Conference on Image Processing, Oct 2022, Bordeaux, France. pp.4158-4162, ⟨10.1109/ICIP46576.2022.9897315⟩. ⟨cea-03858795⟩

Share

Metrics

Record views

0