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ABSTRACT. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity. First we ex-
plicit the stability constants with respect to the shape regularity parameter
for order 1 in 2 or 3 dimension, and order 2 in 2 dimension. In this last case,
we improve the result of the original Crouzeix-Raviart paper. Second, we il-
lustrate the importance of using a divergence-free velocity reconstruction on
some numerical experiments.
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1. INTRODUCTION

The Stokes problem describes the steady state of incompressible Newtonian
flows. They are derived from the Navier-Stokes equations [1]. With regard to
numerical analysis, the study of Stokes problem helps to build an appropriate ap-
proximation of the Navier—Stokes equations. We consider here a discretization with
nonconforming finite elements [2, 3]. We propose to state the discrete inf-sup condi-
tion in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and
[7] for the neutron diffusion equation), which allows to estimate the discrete error
constant. In Section 2, we recall the T-coercivity theory [4], which is known to be
an equivalent reformulation of the Banach—Nec¢as—Babuska Theorem. In Section 3
we apply it to the continuous Stokes Problem. We give details on the triangulation
in Section 4, and we apply the T-coercivity to the discretization of Stokes problem
with nonconforming mixed finite elements in Section 5. For the Stokes problem,
in the discrete case, this amounts to finding a Fortin operator. In Section 6 (resp.
7), we precise the proof of the well-posedness in the case of order 1 (resp. order 2)
nonconforming mixed finite elements. In Section 8, we illustrate the importance of
using a divergence-free velocity on some numerical experiments.
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2. T-COERCIVITY

We recall here the T-coercivity theory as written in [4]. Consider first the vari-
ational problem, where V and W are two Hilbert spaces and f € V':

(2.1) Find u € V such that Vo € W, a(u,v) = (f,v)v.

Classically, we know that Problem (2.1) is well-posed if a(-,-) satisfies the stabil-
ity and the solvability conditions of the so-called Banach-Necas—Babuska (BNB)
Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see
[5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(-,-) be a continuous and
bilinear form over V.x W. It is T-coercive if

(2.2) 3T € L(V,W), bijective, Ia > 0, Yo € V, |a(v, Tv)| > ajv||}.
If in addition a(-,-) is symmetric, it is T-coercive if
(2.3) IT € L(V,V), Ja >0, Vo € V, |a(v, Tv)| > a|jv|?.

When the bilinear form a(-,-) is symmetric, the requirement that the operator
T is bijective can be dropped. It is proved in [4] that the T-coercivity condition is
equivalent to the stability and solvability conditions of the BNB Theorem. Whereas
the BNB theorem relies on an abstract inf-sup condition, T-coercivity uses explicit
inf-sup operators, both at the continuous and discrete levels.

Theorem 1. (well-posedness) Let a(-,-) be a continuous and bilinear form. Suppose
that the form a(-,-) is T-coercive. Then Problem (2.1) is well-posed.

3. STOKES PROBLEM

Let Q be a connected bounded domain of RY, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary 92. We consider Stokes problem:

—vAu+gradp = f,

(3.1) Find (u,p) such that { diva = 0.

with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

u =0 on 99, /p:O.
Q

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. Thus,
the SI unit of the components of u is m - s~! and the SI unit of p is m? - s72).
The first equation of (3.1) corresponds to the momentum balance equation and the
second one corresponds to the conservation of the mass. The constant parameter
v > 0 is the kinematic viscosity of the fluid, its SI umit is m? - s~'. The vector
field f € H~1(Q) represents a body forces divided by the fluid density, its SI unit
is m-s72.

Before stating the variational formulation of Problem (3.1), we provide some
definition and reminders. Let us set L%(Q) = (L%(Q))¢, H(Q) = (HL(Q))4,
H Q) = (H () its dual space and L2, (Q) = {q¢ € L*(Q)| [,q = 0}.

zZmov
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We recall that H(div; Q) = {v € L?(Q)|divv € L?(Q)}. Let us first recall
Poincaré-Steklov inequality:

(32) ACps > 0|VU S Hé(Q), ||UHL2(Q) < CpsH gI‘adUHLZ(Q)‘

The SI unit of Cpg is m.

Thanks to this result, in H}(Q), the semi-norm is equivalent to the natural norm,
so that the scalar product reads (v, w)Hé(Q) = (grad v, grad w)y,> (o) and the norm
is [[vl|gi) = |lgradvlLe(q). Let v, w € H{(Q). We denote by (v;)%, (resp.
(w;i){,) the components of v (resp. w), and we set Grad v = (9;v;)¢,_; € L*(Q),
where L2(Q) = [L%(Q)]9*. We have:

d
(Gradv, Grad w)i2(o) = (va)Hé(Q) = Z(thi)Hé(Q)
i=1
and:
1/2
|V||H1 Q) = Z ||UJHH1(Q) = || Grad v||L2(q)-

Let us set V = {v € H{(Q)| divv = 0}. The space V is a closed subset of H}(f2).
We denote by V= the orthogonal of V in H}(2). Let v, > 0 be a kinematic
viscosity. We recall that [1, cor. 1.2.4]:

Proposition 1. The operator div : Hy(Q) — L%(Q) is an isomorphism of V=
onto L2, (). We call Cqiy the constant such that:

(3.3) Vpe L

zmv(

Q), v e V| divy =p and VIl @) < Caivllpllz2()-

The constant Cy;, depends only on the domain 2. Notice that we have: Cg;, =
1/B8(Q) where () is the inf-sup condition (or Ladyzhenskaya—Babuska—Brezzi
condition):

. (q7 le V)L2(SZ)
inf u
q€L2,,,(V\{0} veni@)\{o} allr2@) (VI 1@

(3.4) B(Q) =

Generally, the value of 3(€?) is not known explicitly. In [9], Bernardi et al established
results on the discrete approximation of () using conforming finite elements.
Recently, Gallistl proposed in [10] a numerical scheme with adaptive meshes for
computing approximations to 5(£2). In the case of d = 2, Costabel and Dauge [11]
established the following bound:

Theorem 2. Let ) C R? be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius p. Then

-\ 172
p p

1+4/1- 2 > L
ﬂﬁ( + R2> “9R

Let us detail the bound for some remarkable domains. If  is a ball, 5(Q2) > %
and if 2 is a square, 3(2) > 5 f Suppose now that €2 is stretched in some direction
by a factor k, then 8(2) > s=. Finally, if Q is L-shaped (resp. cross-shaped) such
that L = kI, where L is the largest length and [ is the smallest length of an edge,

then 3(Q) > 2\} (resp. B() > 7).

(3-5) p(Q)
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The variational formulation of Problem (3.1) reads:
Find (u,p) € H} () x L2, () such that

zZmuv

(3.6) v(w, Vg — (0, divv)e) = (£ v)mi) YV e Hy(Q);
' (q,div u)Lz(Q) = 0 Vq € L? (Q)

zZmuv

Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov in-
equality (3.2) and Prop. 1. Check for instance the proof of [1, Thm. 1.5.1].

Let us set X = H}(Q) x L2,,,(Q) which is a Hilbert space which we endow with
the following norm:

(3.7 00l = (Vg + v Nalegey)
We consider now the following bilinear symmetric and continuous form:
(3.8){ laerxX — R/ o o
(W', p) x (v.q) = v, v)myq — (¢, divv)rzo) — (¢, divu’)rz(g)
We can write Problem (3.1) in an equivalent way as follows:
(3.9) Find (u,p) € A such that as ((u,p),(v,q)) = £, V)m (o) V(v.q) €X.
Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.

Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such
that:

i L
3.10 vE e H 1(Q ) { ||U||H0(Q) - @):
( ) ( ) HpHLz(Q) < Cliv ||f||H71(Q)

Proof. We follow here the proof given in [12, 13]. Let us consider (u’,p’) € X and
let us build (v*,¢*) = T(u/,p’) € X satistying (2.3) (with V' = X’). We need three
main steps.

1. According to Prop. 1, there exists v,y € H}(Q) such that: divv, = p
in @ and [[Vy [lep) < Caiv [[P/llr2). Let us set vy = v~1v, so that
divv, =v 'p' and
(3.11) IV Iz ) < v Caiv 1P 220
Let us set (v*,¢*) := (yu' — vy, —yp’), with v > 0. We obtain:
(3.12) as ((W,p), (v*,¢")) =vy ||u/||%13)(9) + v P 1220y — v (0 Vi ) @)-

2. In order to bound the last term of (3.12), we use Young inequality and then
inequality (3.11) so that for all n > 0:

-1 2
n n C'div
313 g < 2Ty + T (S5 19

3. Using the bound (3.13) in (3.12) and choosing 1 = v, we get:
Y 2 2 77! 2 2
/ / I — /
o (00), (0%,07) 2 0 (3 10y 07 (1 T Con ) 1) -
Consider now v = (Cgiy)?. We obtain:

1
as ((W,p), (v*,4")) = v Couin [ (W, 1) I3 where Conins = 5 min( (Caiv)*,1).
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The operator T such that T(u’,p’) = (v*, ¢*) is linear and continuous:
1T, )R = IVIE ) + v 2 01720
< 4 ||u’\|%1(1)(9) + ||VP/H?—I(1)(Q) + 2 D 1720
< PRIy + (Can)2 )02 P22 e,

< (Cmax)2 ||(u/ap/)H?Y’

where Chax = Caiv (1 + (Caiv)?)/2.

! The symmetric and continuous bilinear form a(-,-) is then T-coercive and ac-
cording to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.10). Con-
sider (u,p) the unique solution of Problem (3.9). Choosing v = 0, we obtain
that Vg € L2,,,(Q), (¢,divu)2@q) = 0, so that u € V. Now, choosing v =
u and using Cauchy-Schwarz inequality, we have: Z/Hu||%11(Q = (f, 0 <

0 0

[£lla-1(0) [[allaz @), so that: [[ufgq < v ||f]lg-1(q)- Next, we choose in (3.9)
v = v, € V*, where divv, = —v~!p (see Prop. 1). Noticing that u € V and
v, € V4 it holds®: (u, Vp)ui () = 0. This gives:

—(p, diVVp)L2(Q) = v! Hp||2L2(Q) = <faVP>Hé(Q)’
< |flla-1@ IVpllay @) < Caiv v HIfla-10) [Pll220)
so that: ||p||L2(Q) < Cdiv||f||H*1(Q)~ ([l

Remark 1. We recover the first Banach—Necéas—Babuska condition [8, Thm. 25.9,
(BNB1)]:

as (0, p'), (v*,4")) 2 v Cunin (Cinax) " 10, p) |2 [|(v*, 07 [ -

Let us call Cyap, = v Ciin (Cmax) ~! the stability constant. With the choice of
our parameters, Cyiap iS such that:

v Cdiv .
- f0< Cgiy < 1,
2 (T+ (Ca)i? 0=
Cstab = 1
(Caiv) if 1 < Cyiy.

2 (14 (Caw)?))1/2

Thus, the T-coercivity approach allows to give an estimate of the stability constant.
In our computations, it depends on the choice of the parameters n and ~, so that
it could be optimized.

If we were using a conforming discretization to solve Problem (3.9) (a.e. Taylor-
Hood finite elements [14]), we would use the bilinear form ag(-,-) to state the
discrete variational formulation. Let us call the discrete spaces X, , C H}(Q2) and
Qen C L2,,,(22). Then to prove the discrete T-coercivity, we would need to state

IRemark that (v*,¢*) = (0,0) < (u/,p’) = (0,0): the operator T' € L(X, X) is bijective.
2According to [1, Cor. 1.2.3], since v, € VL, 3p € L2, (Q)|Av, = gradq in H-1(Q).
Integrating by parts twice, we have: (uvvp)H})(Q) = —(gradgq, u>H6(Q) = (g, div u)Lg(Q) =0.
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the discrete counterpart to Proposition 1. To do so, we can build a linear operator
II. : X — X}, known as Fortin operator, such that (see a.e. [15, §8.4.1]):

(3.14) 3C.|vveH'(Q) | Gradll.v|iz) < Ce|| Grad vl|i2(o),
(3.15) Vv € Hl(Q) (diV II.v, Qh)L"’(Q) = (diV Vv, Qh)LQ(Q); Van € Qc,h~

Using a nonconforming discretization, we will not use the bilinear form ag(-,-) to
exhibit the discrete variational formulation, but we will need a similar operator to
(3.14)-(3.15) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. DISCRETIZATION

We call (O, (z4)%_,) the Cartesian coordinates system, of orthonormal basis
(eq)4_,. Consider (7)s a simplicial triangulation sequence of Q. For a triangu-
lation 7j, we use the following index sets:

e Tx denotes the index set of the elements, such that 7; := U K, is the

LeTK
set of elements.

e T; denotes the index set of the facets®, such that Fj, := U Fy is the set

fe€ZIr
of facets.

Let Zr = T4, UZY%, where Vf € T4, Fy € Q and Vf € %, Fy € 0.
e Zg denotes the index set of the vertices, such that (S;);jez, is the set of
vertices.
Let Zg = T} UIg, where Vj € Z§, S; € Q and Vj € Ig, S; € 00.
We also define the following index subsets:
o Ve T, IF,Z = {f EIF|Ff S Kg}, IS,Z = {j GIs|Sj € Kg}
e VjeTg, IK’J' = {ﬁ IS | Sj € Ke}7 Nj = card(IK,j).
For all ¢ € Tk, we call hy and p; the diameters of K, and its inscribed sphere
respectively, and we let: oy = %. When the (73)p, is a shape-regular triangulation
sequence (see a.e. [16, def. 11.2]), there exists a constant o > 1, called the shape
regularity parameter, such that for all h, for all £ € Tk, oy < o. For all f € Zp,
My denotes the barycentre of Fy, and by ny its unit normal (outward oriented if
Fr € 0). For all j € Tg, for all £ € Tk ;, Aj ¢ denotes the barycentric coordinate
of S; in Ky; F}, denotes the face opposite to vertex S; in element Ky, and x;,
denotes its barycentre. We call S; ¢ the outward normal vector of F} , and of norm
|Sj.el = [Fjel-
Let introduce spaces of piecewise regular elements:
We set Py H! = {v € L*(Q); Vle€ Ik, vk, € H (Ky)}, endowed with the scalar
product :

(v,w)p = Z (grad v, grad w)r2(x,)  ||vll7; = Z | grad vl 2 s,)-
Lelk eTK

We set P,H! = [P, H']?, endowed with the scalar product :

(v, w)p, := Z (Gradv,Grad w)i2(r,) V| = Z I Gradv||]%2(K£).
el el

3The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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Let f € I}, such that Fy = 0K, N OKg and ny is outward K, oriented.

The jump (resp. average) of a function v € P, H?' across the facet F is defined as
follows: [v]F, := vk, — VK, (resp. {v}p, == (VK +VK,))- For f € L%, we set:
[v]F; = vp, and {v}F, := v,

We set PyH(div) = {veL*Q); V€I, vk, €H(div; K;)}, and we define
the operator divy, such that:

Vv € P H(div), Vg € L*(Q), (div,v,q) = Z (divv,q)r2(k,)-
LeET K

We recall classical finite elements estimates [16]. Let K be the reference simplex
and F' be the reference facet. For ¢ € Ty (vesp. f € Ir), we denote by Ty : K> K,
(resp. Ty : F - F}) the geometric mapping such that vx € K, Xk, = To(X) =
Bex + by (vesp. x;p, = Ty(X) = ByX + by), and we set J, = det(B,) (resp.
Jy = det(By)). There holds:

he _ hy
(4.1) |Jel = d! [ Kol ||Bel = o B, = p*[;, [Tyl = (d = D)t Fy.

K

For v € L*(K,), we set 9y = v o Ty. For v € v?(Fy), we set: 9y = v oTy. Changing
the variable, we get:

(42 NolBagy = el 19el20 gy and [ol3acry) = 171 19125 -

Let v € P,H'. By changing the variable, grad VK, = (B, 1T grad, 9y, and it
holds:

wy @ leadeliag < BT K grady ol
' <

L2(K)’
(i) |l grads dellf, &, Bl Kol || grad v|fa -

We recall the Poincaré-Steklov inequality in cells [16, Lemma 12.11]:
for all £ € Tyx (K is a convex set), Vv € H(K,):

le v

(4.4) lvellLe(r,y < 7T71hg|| gradvl|r2(k,), where v, = vk, — K

For all D C R? and k € N*, we call P*(D) the set of order k polynomials on D,
Pk(D) = (P*(D))?, and we consider the broken polynomial space:

Pcllczsc(ﬁ) = {q € LQ(Q)7 NS IK; q|Kz S Pk(KZ)}v P];zsc(ﬁl) = (P(Zsc(ﬂl))d

We let PY(T},) be the space of piecewise constant functions on 7j,.

5. THE NONCONFORMING MIXED FINITE ELEMENT METHOD FOR STOKES

The nonconforming finite element method was introduced by Crouzeix and Raviart
in [2] to solve Stokes Problem (3.1). We approximate the vector space H' () com-
ponent by component by piecewise polynomials of order k& € N*. Let us consider X},
(resp. Xo.), the space of nonconforming approximation of H*() (resp. HE(Q))
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of order k:

Xp = {Uh € P(écisc(,];t); Ve Iﬁ’? Van € Pkil(Ff)v / [Uh] dn = O} )
Fy
(5.1)

Xo,n = {vh € Xp; VfeTh, Vg, € PFI(EY), / Uh qn = 0} -
Fy

The condition on the jumps of v;, on the inner facets is often called the patch-test
condition.

Proposition 2. The broken norm v, — ||vg||n is a norm over Xg .

Proof. Let vy € Xo,5 such that [|vg[|, = 0. Then for all £ € Tk, vp|k, is a constant.
For all f € T}, the jump [v]p, vanishes, so that vy, is a constant over 2. We deduce
from the discrete boundary condition that v, = 0. g

The space of nonconforming approximation of H(Q) (resp. H(Q)) of order k
is Xy = (Xh)d (resp. Xo,n = (X(]’h)d). We set X), 1= X5 X Qpn where Q) =
PE1(Ty) N L2, (9). We deduce from Proposition 2 the

disc zZmu

Proposition 3. The broken norm defined below is a norm on Xj:

X, — R
52 6 ] 112
R T I A Rl P ey

Thus, the product space &}, endowed with the broken norm || - || x, is a Hilbert
space.

Proposition 4. The following discrete Poincaré-Steklov inequality holds: there
exists a constant CpSG independent of Ty, such that

(5.3) Vi € Xon,  [IVallLze) < CB5 Ivalln,
where C3% is independent of Ty, and is proportional to the diameter of 2.

Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for ¥ = 1, but one can check
that the proof holds true for higher-order, thanks to the patch-test condition. An
alternative proof is given in [17, Theorem C.1]. O

We consider the discrete continuous bilinear form ag (-, -) such that :
{ a57h:Xh><Xh — R
(u?mp;y,) X (Vha Qh) — V(u;mvh)h - (dth Vh,p%) - (divh u;—” Qh)
Let 4¢ € L(X,R) be such that :
(f, Vh)LQ(Q) iffe LQ(Q)
v X 12 = .
(Viyqn) € Xny Le ((Vi,aqn)) { <fth(Vh)>H[1)(Q) iff ¢ LZ(Q) )

where 7y, : Xo.5, — Yo, with Yo 5, = {Vh S H(l) Q); Ve € Tk, VhiKk, € Pk(Kg)},
is the averaging operator described in [16, §22.4.1]. There exists a constant Cze>0
independent of 7j such that :

(5.4) 1Zovnlla @) < O [IVallh:  Vvi € Xop.



STABILITY ESTIMATES FOR FORTIN-SOULIE FE 9

The nonconforming discretization of Problem (3.9) reads:
Find (up, pp) € A}, such that

(5.5) as,h ((@n,pn)s (Vs an)) = Lle ((Vhiqn))  V(Vhiqn) € X
Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.

Theorem 4. Suppose that there exists a Fortin operator I,,. : HY(Q) — X, such
that

(5.6) 3Che |Vv € HY(Q)  |IL,ev|[h < Crel Grad v||iz(o),
(5.7) vv e H(Q) (divy Iev,qn) = (div v, qn)2(). Vg € Qn,

where the constant Cy. does not depend on h. Then Problem (5.5) is well-posed.
Moreover, it admits one and only one solution (up,pp) such that:

unlln < CEGv ' [IfllL2 (o

if f € L2(Q) : ’
Iprllzz) < 205 Cgf [[fllLz (o)
(5.8)
Junlln < CPCvt|flli-1(a)
if £ ¢ L2() : |
Ipnllzz) < 202°CH |If]la-1(0)

where CYS, = Caiv Che

Proof. Let us consider (u},,p},) € & and let us build (v}, ¢}) € & satisfying (2.3)
(with V' = A},). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists Vpi € V+ such that div Vp, = Pl
in Q and [V [[H1) < Caivllp)llz20)- Let us set v, = vV, so that
divv, = v~1p), and [V, [[H3(0) < v Caiy Hp'h||%2(m. Consider vy, =
evy, , for all g, € Qp, we have: (divy, Vhp, qn) =v ! (Ph»an)L2(0) and

(5.9) [Vhpy I < vt CE DLl L2 ) where Cl, = Che Caiy.-
Let us set (v}, qr) := (Yneu), — Vi, —Yne Pj,)s With v, > 0. We obtain:
(5.10)  asn (W, p4), (Vi dr)) = v eIl + v DLl 72 ) — (W Vg -

2. In order to bound the last term of (5.10), we use Young inequality and then
inequality (5.9) so that for all 7, > 0:

—1 ne \ 2
Mne Nne Civ
CR I CRATES S LR o A e

3. Using the bound (5.11) in (5.10) and choosing 7,. = Yne, we get:

—1
v - g
o (whorh), va)) = v (v il +72 (14 28 €302 ) I o )

Consider now v,,. = (C7<)?. We obtain:

v
asp ((Wh,ph), (Vs ) = 5O [l (i, P21,
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1
where C™¢ = 3 min( (Cgiv)?,1).

min

The operator T}, such that T, (u},,p},) = (vi,p}) is linear and continuous:
T3 (s, )%, = VAR + 172 a5 2 ) < (Chad)? 1, 7)1,

is then Tj-coercive and according to Theorem 1, Problem (5.5) is well posed. Con-
sider (uy,pp) the unique solution of Problem (5.5). Choosing v, = 0, we obtain
that div,up = 0. Now, choosing v, = uy, in (5.5) and using Cauchy-Schwarz
inequality, we get that:

lunlln < v OBs Ifllez)  if £ € L3(Q), using (5.3) ;

where C7¢ = C%¢ (14+(C7¢)?) /2. 4 The discrete continuous bilinear form as j, (-, -)

(5.12)

N

laplln < vt CE Iflle-10) iff¢ L2(Q), using (5.4).

Consider (vi,qn) = (Vh,p,,0) in (5.5), where v, p, = Il,,cvyp, is built as vy, in
point 1, setting p}, = ps. Suppose that f € L?(Q2). Using the triangular inequal-
ity, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and
estimate (5.12), we have:

IPrlZ2) = v (h, Vi )n = (£, Vip)r2)
< vk Ve, lln + [£llLz@) [[Vap, 2@
< 2035 flluz@) [Vapnlln < 2035 Cne [IfllL2(a) | Grad vy, (|12 (q)
< 2035 O Ifllez ) llpnll L2 )-

Applying the same reasoning when f € H=1(Q), we get that:
205 O, [Elaey  if £ € L(), using (5.3) ;

IN

lpnllz2 (o)
(5.13)

A

Iprllzz) < 207° Chelflla-1) if £ € L*(Q), using (5.4).
O

Corollary 1. Under the assumption of Theorem 4, suppose that (u,p) € Htk () x
H¥(Q), we then have the estimate:

(5.14) u—up L2y < Co® W (Julger o) + v [plaeq)) »

where the constant C > 0 is independent of h, o is the shape regularity parameter
and the exponent { € N* depends on k.

Proof. The a priori error estimate corresponds to [2, Theorem 4]. (I

Remark 2. Again, we recover the first Banach—Necas—Babuska condition [8, Thm.
25.9, (BNB1)]:

as,n ((u;wp;z)7 (V;;Q}t)) >V rrrlﬁn (C;rll;x)_l ||(u;L7p?L)||Xh H(V27q}t)||Xh'

4Note that (vi,qr) = (0,0) & (u),,p},) = (0,0), so that the operator Ty, € L(X},X}) is
bijective.
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Let us call C"¢, = v CS (Cne )~! the stability constant. With the choice of

min max
our parameters, C5¢, is such that:
nc

v di .

s iF0 <O <1,

2 (L (Cge)p) 2 70T
e = e

v (Cai) if 1< Cne.

2 (1+(Cgo)2) 2
The main issue with nonconforming mixed finite elements is the construction the
basis functions. In a recent paper, Sauter explains such a construction in two

dimensions [17, Corollary 2.4], and gives a bound to the discrete counterpart 87 (£2)
of 5(€2) defined in (3.4):

. (divy, vi, qn) -
5.15 Br(Q) =  inf sup @ ———— > k@
(5.15) @ 0 €Qu\{0} v, eX, p\{0} 1anllz2(0) VR lln

This bound is in ¢ k™%, where the parameter « is explicit and depends on k and
on the mesh topology; and the constant ¢y depends only on the shape-regularity
of the mesh.

6. NONCONFORMING CROUZEIX-RAVIART MIXED FINITE ELEMENTS

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements
[2]. Let us consider Xcr (resp. Xo,cr), the space of nonconforming approximation
of H(Q) (resp. H}(Q)) of order 1:

Xcr = {Uh € Piioe(Th); Vf 61%7/ (U] 20} ;
Fy
(6.1)

XO,CR = {Uh EXCR; VfEI%, / UhO}.
Fy

The space of nonconforming approximation of of H*(2) (resp. H}(Q2)) of order 1
is XCR = (XCR)d (I‘CSp. XO,CR = (X07CR)d). We set XCR = .-X.O,CR X QCR where
Qcr = PO(Th) N L2,,,().
We can endow X¢g with the basis (¢¢) rez, such that: V¢ € Tk,

N 1—d>\i7g lff EIR@,
VriKe = 0 otherwise,

where S; is the vertex opposite to Ff in K,. We then have ¢y p, = 1, so that
[flp, =0if f € Th (ie. FreQ), and Vf' # f, fFf/ Yp=0.

We have: X¢cgr = vect ((wf)felp) and Xo cr = vect ((wf)fteg)'
The Crouzeix-Raviart interpolation operator m¢ g for scalar functions is defined by:
H! (Q) — Xcr 1
TCR : v TV , where mpv = —— .
2 vy 751 Jr,
fE€LR
Notice that Vf € Zp, |, ; TORV = i} r, V- Moreover, the Crouzeix-Raviart interpo-

lation operator preserves the constants, so that mcrvg = v, where vy = [, v/[Q].
We recall the following result [18, Lemma 2)):
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Lemma 1. The Crouzeiz-Raviart interpolation operator mcg is such that:

(6.2) VYo € H'(Q), |rcro|n < | gradvl|pzq).
Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:
gradﬂ(;RmKﬁ = |Kg|_1/ gI’adﬂ'CR’U:|Kg|_l Z / TCRU N,
Ke f€Tp’ Fr
= |Kg|_1 Z / vny = |Kg|_1/ gradv,
fe€Tp” Fr Ke
|grad mcrv|k,| < |K4|71/2 ||2gradv\|L2(Ke)
= llgradmcrvliag,) < llgradollis(x,).

Summing these local estimates over ¢ € g, we obtain (6.2). O

For a vector v € H'(2) of components (vg)%,_,, the Crouzeix-Raviart interpo-
lation operator is such that: Ilcrv = (WCRvd/)Z,:l. Let us set ITyv = (wfvdf)g,zl.

Lemma 2. The Crouzeix-Raviart interpolation operator llcg can play the role of
the Fortin operator:

(63) W eH'(Q)  env]n < || Grad vz,
(6.4) vv e HY(Q) (divy Oorv,qn) = (div V,qn)r2@),  Vq € Qn,
Moreover, for all v.e PY(Q), Hgrv = v.

Proof. We obtain (6.3) applying Lemma (1) component by component. By inte-
grating by parts, we have Vv € HY(Q), ¥/ € Tk

diVHCRV = Z / HCRV-Ile Z / HfV-Ilf7
Fy Fy

Ke fE€TIR. fE€ZLre

vV-ny = divv,
fezpe s Ke

so that (6.4) is satisfied. O

We can apply the T-coercivity theory to show the next following result:

Theorem 5. Let X}, = Xcr. Then the continuous bilinear form agp(-,-) is Tp-
coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4. O

Since the constant of the interpolation operator Ilgog is equal to 1, we have
C’SHI-":”L = Cin and CgaRx = Cinae: the stability constant of the nonconforming
Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the
case for higher-order (see [19, Theorem 2.2]).

For higher-order, we cannot built the interpolation operator component by compo-
nent, since higher-order divergence moments must be preserved. Thus, for k£ > 1,

we must build IT,,. so that for all v.€ H*(Q), for all £ € T, for all ¢ € P*~1(K,):

/ q divIl,.v :/ q divv.
Ky Ky
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We recall that by integration by parts, we have:
(6.5) / q divIl,.v + / gradq - II,.v = / g,V -mgg, .

Ky K 0K

Hence, to obtain a local estimate of || Grad I1,,.v||y(x,), we will need the following
Lemma:

ngv

Lemma 3. Let v € HY(Q) and ¢ € P*"Y(K,). We set v, := vy — K,
¢

, where

vy = Vg, We have:

< K" || Grad ve||La(x,)

(6.6) ’/ qVy - MoK,
K,

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:

/ qVy - Ny S‘/ q divv, +’/ gradq - v,
aKg Kg Kl

< llgllz2(x,) I| Grad v [lL2 (k) + || grad qllLz(x,) [1VellLe (x,)

)

< |Ko|*?| Grad vl i) + 1Kol * 02 vy llz ),

< |Ko|*?|| Grad ve||2(x,) using (4.4).

7. FORTIN-SOULIE MIXED FINITE ELEMENTS

We consider here the case d = 2 and we study Fortin-Soulie mixed finite elements
[3]. We consider a shape-regular triangulation sequence (75 )p.
Let us consider Xpg (resp. Xy rs), the space of nonconforming approximation of
HY(Q) (resp. H()) of order 2:

Xps = {'Uh € P (Th); VfE€Ip, Vg, € P'(Fy), / [vn] qn = 0} ;
Fy
(7.1)

XO’FS:{UhEXps; VfEI%,thE.Pl(Ff),/ UhthO}.
Fy

The space of nonconforming approximation of H(Q) (resp. H}(2)) of order 2 is
Xpg = (XF5)2 (resp. Xo,Frs = (XQFS)Q). We set Xpg = Xo rg X Qrs where
QFS = Pa%zsc(,];b) N Lzmv(Q)

The building of a basis for Xy pg is more involved than for X cr since we cannot
use two points per facet as degrees of freedom. Indeed, for all £ € K, there exists
a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary OK,. Let f € Tr. The barycentric coordinates of the two Gauss-Legendre
points (p4,f,p—,¢) on Fy are such that:

pyf=(crc ), p_y=(c_,cy), where cx = (14+1/v3)/2.
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These points can be used to integrate exactly order three polynomials:

F

v P, [ o= 0twen) + 9o,
¥

For all ¢ € Ik, we define the quadratic function ¢x, that vanishes on the six

Gauss-Legendre points of the facets of K, (see Fig. 1):

(72) ¢x,:=2-3 > A, suchthat Vf€Zpy, Vqe P'(F), b, q=0.
i€ls,e Fy

FIGURE 1. The six Gauss-Legendre points of an element K, and
the elliptic function ¢,.

We also define the spaces of P?-Lagrange functions:
X = {’UhGHl(Q); VKGIK,’UMKZ €P2(Kg)},
Xore = {vn€ X wvhoo=0}.
The Proposition below proved in [3, Prop. 1] allows to build a basis for Xy rg:

Proposition 5. We have the following decomposition: Xps = Xpg + ®p with
dim(Xpe N®y) = 1. Any function of Xps can be written as the sum of a function
of Xrc and a function of ®5,. This representation can be made unique by specifying
one degree of freedom.

Notice that ®, N Xyg = vect(vs), where for all £ € Tx, vg|x, = ¢r,. Then,
counting the degrees of freedom, one can show that dim(Xpgs) = dim(Xpq) +
dim(®,) + 1. For problems involving Dirichlet boundary conditions we can prove
thus that for Xy pg the representation is unique and Xo rs = Xo,rc & Pn. We
have X1q = vect ((¢s,)iezs, (¢F,) fez,) where the basis functions are such that:

Vi,j € ZIs,Vf,g € Ip:
#s,(55) = 6ij, ¢s5,(My) =0, O, (My) = 04, a1, (S:) = 0.

For all £ € Tk, we will denote by ((bg,j)?:l the local nodal basis such that:

(D0)3-1 = (dsy k. )iezs, and  (d;)5—4 = (Pry K, ) feTp,-
The spaces Xpg and Xo pg are such that:
Xps = vect ((¢s,)iezs, (0F;) rezr: (9K, )iezx )

(7.3)
Xors = vect ((¢Si)i€Ig7 (0ry) pezis (Pr,)eets ) :
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We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [3]. Let us first recall the Scott-Zhang interpolation operator [20, 21]. For
all i € Zg, we choose some ¢; € Tk ;, and we build the L?(K, )-dual basis (&ghj)?:l
of the local nodal basis such that:

vy, 5 e {1,---,6}, B Ge,.j Pe,jr = 0j0-
25

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

Hl(Q) — XFS

RS : v Fu4 Z VK, PK,
(7.4) €Tk
with #v = Z vs, Ps, + Z UF; QF,-
i€ls f€Ir

e The coefficients (vs,);c7, are fixed so that: Vi € Zg, vs, = / v bu, s
Ky

where j; is the index such that Qzei,j,; ¢s, 1Kk, = L.
Ky, ¢

e The coefficients (ﬁpf)fezp are fixed so that: Vf € Tp, / U :/ .
Fy Fy

For all ¢ € Tk, the coeflicient vk, is fixed so that: / TESU = / .
Ky Ky
The definition (7.4) is more general than the one given in [3], which holds for
v e H?(Q).
We set vs, := (7v1(S;), 7v2(S;))" and Vp, == (Fv1(Ff), 7va(Fy))"
We can define two different Fortin-Soulie interpolation operators for vector func-

tions. First, let
o H'(Q) — Xps
S v = (rrs(V)1,mrs(v)2)T.

We remind that the coefficients (Vg,)eez, are such that:

(7.5) Ve € Tk, /ﬁpsv:/ V.
K[ K[

The interpolation operator Il g preserves the local averages, but it doesn’t preserve
the divergence. We then define a second interpolation operator which preserves the
divergence in a weak sense:
Hl(Q) — XFS
Ips : vV = Z Vs, Ps;, + Z {’Ff(ﬁpf + Z VK, DK,

i€lg fE€TR LeETK

For all £ € Tg, the vector coefficient v, € R? is now fixed so that condition (5.7)
is satisfied. We can impose for example that the projection Ilpgv satisfies:

(7.6) /K [ T, (x) divIlpgv = / T, ' (x) divv.

K,

Notice that due to (7.2), the patch-test condition is still satisfied.



16 STABILITY ESTIMATES FOR FORTIN-SOULIE FE

Proposition 6. Let op > 0. The Fortin-Soulie interpolation operator llpg is such
forallve (] H"(Q) we have:

0<s<op
(7.7)Vs €]0,0p|, Y € Ik, || Grad(IIpsv — V) |lL2(k,) S (00)% (he)® |V]145. 5,
(78) Vs E]O,JD[, HCFS = 0(0'2), ||HF5V — VHh < CFS h? ‘V|1+S’Q.

Remark 3. Albeit we are inspired by the proof of [2, Lemma 4], we changed the
transition from equation (4.27) to (4.29) there by using only the properties related to
the normal component of the velocity, cf (6.6). As a matter of fact, in the original
proof, one ends up with either Cpg = O(03) with the help of the multiple trace
inequality or with Crg = O(c?) at the cost of imposing a stronger assumption on
the regularity of v (namely, op > 1/2). Finally, because we do not split the integral
over the boundaries of elements into the sum of d + 1 integrals over the facets, we
obtain purely local estimates, which appear to be new for the Fortin-Soulie element
in the case of low-reqularity fields v.

Proof. Let v € H'(Q). By construction, we have:
(7.9) / (Mlpsv —v) = 0 and for all f € Zp,, / (IIpsv — )k, = 0.
Ky Fy
We have:
|| Grad (Hpsv — V)H]LQ(Kz) S || Grad (HF5V — ﬁFSV)hLZ(Kz)
(7.10) )
+H Grad (Hpsv — V)H]L"’(Kg)~

Notice that for all £ € Tk, (Hpsv — ﬁFSV)|Kg = (VKZ — {’Ke) (sz-
Using (4.3)-(7), we obtain that:
| Grad (IIpsv — psv)llL2k,) S Vi, - Vi, | llgrad ér, [lL2(x,)
(7.11) S BT K2 v, — Vi,
S oelvi, — Vi,

Let us estimate |vk, — Vk,|. On the one hand, we have:

/(Hpsv—ﬁpsv) = /(Hpsv—v) from (75),
Ky Ky

x(Ipsv —v) -nppg, by IBP,
K,

x (IFsv — v) - njgx, from (7.2).
oK,

Hence, using (7.9), we obtain:

(7.12) ’/m (Ilpsv — Mpsv)

On the other hand, it holds:

§ |Kg| || Grad(f[FSv — V)H]LZ(K[).

i i K i
(7.13) / (psv —psv) = (Vk, = Vk,) | K, = % (Vk, = VK,)-
Kg KZ

Hence, combining (7.12) and (7.13), we have:

|er - \~/’Ke| S 4 || Grad(l:ngv — V)”]LZ(Kz)
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We deduce from (7.10) that for all v € HY(Q), for all £ € Zxc we have:
(714) H Grad(HFSv - V)”K[ ,S gy || Grad(ﬁpsv — V)||H_,2(K2)'

For all v € P%(K;) we have ﬁpg(v) = v and (ﬁpsv)g = Ilpgv,. Hence, using
Bramble-Hilbert/Deny-Lions Lemma [16, Lemma 11.9], we have:

Vv € Hl(Q) I Grad(ﬁpsv — v)||]L2(K£) Soe vk,
vv e HX(Q) | Grad(Ilpsv —v)|i2(x,) S 0che V]2, -
We deduce that:
(7.15) vv e HY(Q) || Grad(Ilpsv — V)2, S (00)% V)1 K,

(7.16) Vv € H(Q) | Grad(Ilpsv — Lz, S (00)? he V]2 k, -
Using interpolation property [22, Lemma 22.2], we obtain (7.8). O
We recall that the discrete Poincaré—Steklov inequality (5.3) holds.

Theorem 6. Let X}, = Xps. Then the continuous bilinear form agsp(-,-) is Tp-
coercive and Problem (5.5) is well-posed.

Proof. According to Proposition 6, the Fortin-Soulie interpolation operator Ilgg
satisfies (5.6)-(5.7), so that we can apply the proof of Theorem 4. O

Notice that in the recent paper [23], the inf-sup condition of the mixed Fortin-

Soulie finite element is proven directly on a triangle and then using the macro-
element technique [24], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[25] for k > 4, k even, [26] for k = 3 and [19] for k& > 5, k odd. In [27], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [14]
for d = 3 which could be used to prove the T-coercivity.

8. NUMERICAL RESULTS

Consider Problem (3.1) with data f = — grad ¢, where ¢ € H'(Q) N L2, ().

The unique solution is then (u,p) := (0,¢). By integrating by parts, the source
term in (3.6) reads:

(8.1) vv € H(Q), /Qf-v:/ﬂ(bdivv.

Recall that the nonconforming space X, defined in (5.1) is a subset of P, H!: using
a nonconforming finite element method, the integration by parts must be done on
each element of the triangulation, and we have:
[ wenge
Fy

(8.2) vv € P, H, / f-v=_(divpv,¢)+ Z
@ fE€IR
When we apply this result to the right-hand-side of (5.5), we notice that the term
with the jumps acts as a numerical source, which numerical influence is proportional
to 1/v. Thus, we cannot obtain exactly u, = 0 (see also (5.14)). Linke proposed
in [28] to project the test function v € X, on a discrete subspace of H(div; ),
like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [29, 30], or the
monograph [15]). Let Haiy : Xo,n — Pk, (Th) N Ho(div; Q) be some interpolation
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operator built so that for all v;, € Xq p, for all £ € T, (divIlaivvn)|x, = div vy g, -
Integrating by parts, we have for all v, € Xg j:

[fnav = [ odviav =Y [ odviaw,
Q Q

rek, ” Ke

Z ¢ divvy, = (divy, vp, @).

rek,  Ke

The projection Ilg;, allows to eliminate the terms of the integrals of the jumps in
(8.2).

Let us write Problem (5.5) as:

Find (up, pp) € A, such that

(8.3) as,n ((Un,on)s (Vi,an)) = le ((Daiwva,qn))  Y(Vh,qn) € X.

In the case of X}, = Xcg and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u,p) € H?(Q2) x H*(Q):

(8.4) Hu — UhHLZ(Q) < éh2 ‘u‘H2(Q)7

where the constant C' if independent of h. The proof is detailed in [31] for shape-
regular meshes and [32] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the v parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.

For all ¢ € Ir, we let Pk (K;) be the set of homogeneous polynomials of order k
on K@.

For k € N*, the space of Raviart-Thomas finite elements can be defined as:

XRTk = {V € H(div; Q)7 Vvl € Ty, ViK, = a +ng| (ag,bg) S Pk(Kg)d X PIk{(Kg)}

Let k < 1.
The Raviart-Thomas interpolation operator Ilgr, : HY(Q)UX), — X gy, is defined
by: Vv € HY(Q) U Xy,

Vfelp, /HRTkv~nfq:/ v-nygq, VqEPk(Ff)
(8.5) Ey Ey

for k=1,Vl e Ik, /HRT1V=/ v
K, K,

Note that the Raviart—Thomas interpolation operator preserves the constants. Let
v, € Xp. In order to compute the left-hand-side of (8.2), we must evaluate
(OgrT,vn)|k, for all £ € Zg. Calculations are performed using the proposition
below, which corresponds to [33, Lemma 3.11]:

Proposition 7. Let k < 1. Let gy, : H'(K) — P*(K) be the Raviart-Thomas
interpolation operator restricted to the reference element, so that: Vv € HY(K),

Vﬁeaf(, /AﬁRTk‘A"nﬁdz/

(8.6) A :
for k:L HRTk\A’:/ v
K K

V-npq, ViePrE)
F
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We then have: ¥l € Tk,
8.7) (Hgrp, V) ik, (x) =B (f[RTkIEBg_lw) o T, H(x) where vy = v o Ty(X).

The proof is based on the equality of the £ and K-moments of (Op7,v) |k, 0Te(X)
and By (ﬂRTkIBg_lw) (%). For k =0, setting for d" € {1,--- ,d}: ¥ 4 := Vs ea,
we obtain that:

(88) Ve Ti, Vf €Tre, (Man;a)x, = (d|Kd)™ (x - O*Sf,,g) Sie-ea,

where St is the vertex opposite to Fy in K.
For k = 1, the vector (Ilrr, v1) |k, is described by eight unknowns:

(Orr, Vi) k, = Aex 4+ (b - x)x +dg, where Ay € R2*2 b, € R?, d, € R%

We compute only once the inverse of the matrix of the linear system (8.6), in R8>8,
In the Table 1 (resp. Tables 2 and 3), we call go(u) = [Jup||L2q) (resp. [[u —
w2 o) /l[ullL2()) the velocity error in L?(Q)-norm, where uy, is the solution
to Problem (5.5) (columns X¢gr and Xpg) or (8.3) (columns Xeog + Hgp, and
Xps + prp ) and h is the mesh step.

We first consider Stokes Problem (3.1) in 2 = (0,1)? with u =0, p = (z1)>+(22)>—
0.5, f = gradp = 3 ((21)?, (22)%)". We report in Table 1 go(u) for h = 5.00¢ — 2
and for different values of v.

v Xer  Xep+Upr,  Xps  Xps+1gpn
1.00e+0 3.19e—4 134e—18 3.53e—7 9.09e—-19
1.00e -3 3.19e—1 134e—15 353e—4 9.09e—16
1.00e—4 3.19e+0 134e—-14 3.53e—3 9.09e—-15

TABLE 1. Values of g9(u) for h = 5.00e — 2

When there is no projection, the error is inversely proportional to the v parameter,
whereas using the projection, we obtain u; = 0 up to machine precision.
We now consider Stokes Problem (3.1) in Q = (0,1)? with:

~ ((1—cos(2mxy)) sin(2 7w x2) p = sin(2wxy) sin(27 x2),
~ \(cos(2mag) —1) sin(2mway) )’ f = —vAu+gradp.

We report in Table 2 (resp. 3) the values of gg(u) in the case v = 1.00e — 3
(resp. v = 1.00e — 4) for different level of mesh refinement. When there is no
projection, £o(u) is inversely proportional to v, whereas using the projection, € (u)
is independent of v.

h Xcr  Xep+lpn  Xps  Xpg+ Hgp
5.00e —2 5.66e—1 1.13e—2 235e—3 2.06e—4
2.50e—2 133e—-1 2.89e -3 3.21e—4 2.59e—-5
1.25e—2 3.88e—2 5.40e — 4 4.20e -5 3.40e -6
6.25e—3 840e—3 1.79e —4 5.04e —6 4.15e -7

Rate 5,2:05 },2:07 1,2:96 5,2:98
TABLE 2. Values of gy(u) for v = 1.00e — 3
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h Xcr  Xcr +1lgr, Xrs  Xps+1lgrn
5.00e —2 5.66e—0 1.13e -2 2.35e—2 2.06e —4
250e—2 1.33e—-0 2.89e -3 3.20e -3 2.59e -5
1.25¢e—2 3.38e—1 540e—4 4.20e—4 3.40e—6
6.25e—3 840e—2 1.79e -4 5.0de —5 4.15e—17

Rate h2.05 h2.07 h2.96 h2.98
TABLE 3. Values of g¢(u) for v = 1.00e — 4
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FIGURE 2. Values of (ups—upsyirm ). Left: x1-component, right:
xo-component.

Let ups (resp. ups+rr,) the solution to Problem (5.5) (resp. (8.3)) computed
with Fortin-Soulie finite elements. We represent on Figure 2 the values of the
Lagrange projection of (ups — upsyrr,) in the case where h = 2.50e — 2 and
v = 1.00e — 4. We observe local oscillations, of order the mesh step, which are
caused by the numerical source exhibited in (8.2).

In order to enhance the numerical results, one can also use a posteriori error esti-
mators to adapt the mesh (see [34, 35] for order 1 and [36] for order 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [37]. Notice that using con-
forming finite elements, the Scott-Vogelius finite elements [38, 39] produce velocity
approximations that are exactly divergence free.

The code used to get the numerical results can be downloaded on GitHub [40].

In principle, one can also obtain results with low-regularity velocity field.

9. CONCLUSION

We analysed the discretization of Stokes problem with nonconforming finite el-
ements in light of the T-coercivity theory, we computed stability coefficients for
order 1 in 2 or 3 dimension without mesh regularity assumption; and for order
1 in 2 dimension in the case of a shape-regular triangulation sequence. We then
provided numerical results to illustrate the importance of using H(div)-conforming
projection. Further, we intend to extend the study to other mixed finite element
methods.
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