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Abstract. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity. First we ex-

plicit the stability constants with respect to the shape regularity parameter

for order 1 in 2 or 3 dimension, and order 2 in 2 dimension. In this last case,
we improve the result of the original Crouzeix-Raviart paper. Second, we il-

lustrate the importance of using a divergence-free velocity reconstruction on

some numerical experiments.
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1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian
flows. They are derived from the Navier–Stokes equations [1]. With regard to
numerical analysis, the study of Stokes problem helps to build an appropriate ap-
proximation of the Navier–Stokes equations. We consider here a discretization with
nonconforming finite elements [2, 3]. We propose to state the discrete inf-sup condi-
tion in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and
[7] for the neutron diffusion equation), which allows to estimate the discrete error
constant. In Section 2, we recall the T-coercivity theory [4], which is known to be
an equivalent reformulation of the Banach–Nečas–Babuška Theorem. In Section 3
we apply it to the continuous Stokes Problem. We give details on the triangulation
in Section 4, and we apply the T-coercivity to the discretization of Stokes problem
with nonconforming mixed finite elements in Section 5. For the Stokes problem,
in the discrete case, this amounts to finding a Fortin operator. In Section 6 (resp.
7), we precise the proof of the well-posedness in the case of order 1 (resp. order 2)
nonconforming mixed finite elements. In Section 8, we illustrate the importance of
using a divergence-free velocity on some numerical experiments.
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2. T-coercivity

We recall here the T-coercivity theory as written in [4]. Consider first the vari-
ational problem, where V and W are two Hilbert spaces and f ∈ V ′:

(2.1) Find u ∈ V such that ∀v ∈W , a(u, v) = ⟨f, v⟩V .

Classically, we know that Problem (2.1) is well-posed if a(·, ·) satisfies the stabil-
ity and the solvability conditions of the so-called Banach–Nečas–Babuška (BNB)
Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see
[5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(·, ·) be a continuous and
bilinear form over V ×W . It is T -coercive if

(2.2) ∃T ∈ L(V,W ), bijective, ∃α > 0, ∀v ∈ V , |a(v, Tv)| ≥ α∥v∥2V .

If in addition a(·, ·) is symmetric, it is T -coercive if

(2.3) ∃T ∈ L(V, V ), ∃α > 0, ∀v ∈ V , |a(v, Tv)| ≥ α∥v∥2V .

When the bilinear form a(·, ·) is symmetric, the requirement that the operator
T is bijective can be dropped. It is proved in [4] that the T-coercivity condition is
equivalent to the stability and solvability conditions of the BNB Theorem. Whereas
the BNB theorem relies on an abstract inf–sup condition, T-coercivity uses explicit
inf–sup operators, both at the continuous and discrete levels.

Theorem 1. (well-posedness) Let a(·, ·) be a continuous and bilinear form. Suppose
that the form a(·, ·) is T -coercive. Then Problem (2.1) is well-posed.

3. Stokes problem

Let Ω be a connected bounded domain of Rd, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary ∂Ω. We consider Stokes problem:

(3.1) Find (u, p) such that

{
−ν∆u+ grad p = f ,

divu = 0.

with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

u = 0 on ∂Ω,

∫
Ω

p = 0.

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. Thus,
the SI unit of the components of u is m · s−1 and the SI unit of p is m2 · s−2).
The first equation of (3.1) corresponds to the momentum balance equation and the
second one corresponds to the conservation of the mass. The constant parameter
ν > 0 is the kinematic viscosity of the fluid, its SI unit is m2 · s−1. The vector
field f ∈ H−1(Ω) represents a body forces divided by the fluid density, its SI unit
is m · s−2.

Before stating the variational formulation of Problem (3.1), we provide some
definition and reminders. Let us set L2(Ω) = (L2(Ω))d, H1

0(Ω) = (H1
0 (Ω))

d,
H−1(Ω) = (H−1(Ω))d its dual space and L2

zmv(Ω) = {q ∈ L2(Ω) |
∫
Ω
q = 0}.
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We recall that H(div; Ω) = {v ∈ L2(Ω) | divv ∈ L2(Ω)}. Let us first recall
Poincaré-Steklov inequality:

(3.2) ∃CPS > 0 | ∀v ∈ H1
0 (Ω), ∥v∥L2(Ω) ≤ CPS∥grad v∥L2(Ω).

The SI unit of CPS is m.
Thanks to this result, in H1

0 (Ω), the semi-norm is equivalent to the natural norm,
so that the scalar product reads (v, w)H1

0 (Ω) = (grad v,gradw)L2(Ω) and the norm

is ∥v∥H1
0 (Ω) = ∥grad v∥L2(Ω). Let v, w ∈ H1

0(Ω). We denote by (vi)
d
i=1 (resp.

(wi)
d
i=1) the components of v (resp. w), and we set Gradv = (∂jvi)

d
i,j=1 ∈ L2(Ω),

where L2(Ω) = [L2(Ω)]d×d. We have:

(Gradv,Gradw)L2(Ω) = (v,w)H1
0(Ω) =

d∑
i=1

(vi, wi)H1
0 (Ω)

and:

∥v∥H1
0(Ω) =

 d∑
j=1

∥vj∥2H1
0 (Ω)

1/2

= ∥Gradv∥L2(Ω).

Let us set V =
{
v ∈ H1

0(Ω) | divv = 0
}
. The space V is a closed subset of H1

0(Ω).

We denote by V⊥ the orthogonal of V in H1
0(Ω). Let νp > 0 be a kinematic

viscosity. We recall that [1, cor. I.2.4]:

Proposition 1. The operator div : H1
0(Ω) → L2(Ω) is an isomorphism of V⊥

onto L2
zmv(Ω). We call Cdiv the constant such that:

(3.3) ∀p ∈ L2
zmv(Ω), ∃!v ∈ V⊥ | divv = p and ∥v∥H1

0(Ω) ≤ Cdiv∥p∥L2(Ω).

The constant Cdiv depends only on the domain Ω. Notice that we have: Cdiv =
1/β(Ω) where β(Ω) is the inf-sup condition (or Ladyzhenskaya–Babuška–Brezzi
condition):

(3.4) β(Ω) = inf
q∈L2

zmv(Ω)\{0}
sup

v∈H1
0(Ω)\{0}

(q,divv)L2(Ω)

∥q∥L2(Ω) ∥v∥H1
0(Ω)

.

Generally, the value of β(Ω) is not known explicitly. In [9], Bernardi et al established
results on the discrete approximation of β(Ω) using conforming finite elements.
Recently, Gallistl proposed in [10] a numerical scheme with adaptive meshes for
computing approximations to β(Ω). In the case of d = 2, Costabel and Dauge [11]
established the following bound:

Theorem 2. Let Ω ⊂ R2 be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius ρ. Then

(3.5) β(Ω) ≥ ρ√
2R

(
1 +

√
1− ρ2

R2

)−1/2

≥ ρ

2R
.

Let us detail the bound for some remarkable domains. If Ω is a ball, β(Ω) ≥ 1
2

and if Ω is a square, β(Ω) ≥ 1
2
√
2
. Suppose now that Ω is stretched in some direction

by a factor k, then β(Ω) ≥ 1
2 k . Finally, if Ω is L-shaped (resp. cross-shaped) such

that L = k l, where L is the largest length and l is the smallest length of an edge,
then β(Ω) ≥ 1

2
√
2 k

(resp. β(Ω) ≥ 1
4 k ).
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The variational formulation of Problem (3.1) reads:
Find (u, p) ∈ H1

0(Ω)× L2
zmv(Ω) such that

(3.6)

{
ν(u,v)H1

0(Ω) − (p, divv)L2(Ω) = ⟨f ,v⟩H1
0(Ω) ∀v ∈ H1

0(Ω) ;

(q,divu)L2(Ω) = 0 ∀q ∈ L2
zmv(Ω).

Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov in-
equality (3.2) and Prop. 1. Check for instance the proof of [1, Thm. I.5.1].

Let us set X = H1
0(Ω)×L2

zmv(Ω) which is a Hilbert space which we endow with
the following norm:

(3.7) ∥(v, q)∥X =
(
∥v∥2H1

0(Ω) + ν−2 ∥q∥2L2(Ω)

)1/2
.

We consider now the following bilinear symmetric and continuous form:

(3.8)

{
aS : X × X → R

(u′, p′)× (v, q) 7→ ν(u′,v)H1
0(Ω) − (p′,divv)L2(Ω) − (q,divu′)L2(Ω)

.

We can write Problem (3.1) in an equivalent way as follows:

(3.9) Find (u, p) ∈ X such that aS ((u, p), (v, q)) = ⟨f ,v⟩H1
0(Ω) ∀(v, q) ∈ X .

Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.

Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such
that:

(3.10) ∀f ∈ H−1(Ω),

{
∥u∥H1

0(Ω) ≤ ν−1 ∥f∥H−1(Ω),

∥p∥L2(Ω) ≤ Cdiv ∥f∥H−1(Ω).

Proof. We follow here the proof given in [12, 13]. Let us consider (u′, p′) ∈ X and
let us build (v⋆, q⋆) = T (u′, p′) ∈ X satisfying (2.3) (with V = X ). We need three
main steps.

1. According to Prop. 1, there exists ṽp′ ∈ H1
0(Ω) such that: div ṽp′ = p′

in Ω and ∥ṽp′∥H1
0(Ω) ≤ Cdiv ∥p′∥L2(Ω). Let us set vp′ = ν−1ṽp′ so that

divvp′ = ν−1 p′ and

(3.11) ∥vp′∥H1
0(Ω) ≤ ν−1 Cdiv ∥p′∥L2(Ω).

Let us set (v⋆, q⋆) := (γ u′ − vp′ ,−γ p′), with γ > 0. We obtain:

(3.12) aS ( (u′, p′), (v⋆, q⋆) ) = ν γ ∥u′∥2H1
0(Ω) + ν−1 ∥p′∥2L2(Ω) − ν (u′,vp′)H1

0(Ω).

2. In order to bound the last term of (3.12), we use Young inequality and then
inequality (3.11) so that for all η > 0:

(3.13) (u′,vp′)H1
0(Ω) ≤

η

2
∥u′∥2H1

0(Ω) +
η−1

2

(
Cdiv

ν

)2

∥p′∥2L2(Ω).

3. Using the bound (3.13) in (3.12) and choosing η = γ, we get:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν

(
γ

2
∥u′∥2H1

0(Ω) + ν−2

(
1 +

γ−1

2
(Cdiv)

2

)
∥p′∥2L2(Ω)

)
.

Consider now γ = (Cdiv)
2. We obtain:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν Cmin ∥(u′, p′)∥2X where Cmin =
1

2
min( (Cdiv)

2, 1 ).
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The operator T such that T (u′, p′) = (v⋆, q⋆) is linear and continuous:

∥T (u′, p′)∥2X := ∥v⋆∥2H1
0(Ω) + ν−2 ∥q⋆∥2L2(Ω)

≤ γ2 ∥u′∥2H1
0(Ω) + ∥vp′∥2H1

0(Ω) + γ2 ν−2 ∥p′∥2L2(Ω),

≤ γ2 ∥u′∥2H1
0(Ω) + ( (Cdiv)

2 + γ) ν−2 ∥p′∥2L2(Ω),

≤ (Cmax)
2 ∥(u′, p′)∥2X ,

where Cmax = Cdiv (1 + (Cdiv)
2)1/2.

1 The symmetric and continuous bilinear form a(·, ·) is then T -coercive and ac-
cording to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.10). Con-
sider (u, p) the unique solution of Problem (3.9). Choosing v = 0, we obtain
that ∀q ∈ L2

zmv(Ω), (q,divu)L2(Ω) = 0, so that u ∈ V. Now, choosing v =

u and using Cauchy-Schwarz inequality, we have: ν ∥u∥2
H1

0(Ω
= ⟨f ,u⟩H1

0(Ω) ≤
∥f∥H−1(Ω) ∥u∥H1

0(Ω), so that: ∥u∥H1
0(Ω

≤ ν−1 ∥f∥H−1(Ω). Next, we choose in (3.9)

v = vp ∈ V⊥, where divvp = −ν−1 p (see Prop. 1). Noticing that u ∈ V and
vp ∈ V⊥, it holds2: (u,vp)H1

0(Ω) = 0. This gives:

−(p, divvp)L2(Ω) = ν−1 ∥p∥2L2(Ω) = ⟨f ,vp⟩H1
0(Ω),

≤ ∥f∥H−1(Ω) ∥vp∥H1
0(Ω) ≤ Cdiv ν

−1∥f∥H−1(Ω) ∥p∥L2(Ω),

so that: ∥p∥L2(Ω) ≤ Cdiv∥f∥H−1(Ω). □

Remark 1. We recover the first Banach–Nečas–Babuška condition [8, Thm. 25.9,
(BNB1)]:

aS ( (u′, p′), (v⋆, q⋆) ) ≥ ν Cmin (Cmax)
−1 ∥(u′, p′)∥X ∥(v⋆, q⋆)∥X .

Let us call Cstab = ν Cmin (Cmax)
−1 the stability constant. With the choice of

our parameters, Cstab is such that:

Cstab =


ν

2

Cdiv

(1 + (Cdiv)2))1/2
if 0 < Cdiv ≤ 1,

ν

2

(Cdiv)
−1

(1 + (Cdiv)2))1/2
if 1 ≤ Cdiv.

Thus, the T-coercivity approach allows to give an estimate of the stability constant.
In our computations, it depends on the choice of the parameters η and γ, so that
it could be optimized.
If we were using a conforming discretization to solve Problem (3.9) (a.e. Taylor-
Hood finite elements [14]), we would use the bilinear form aS(·, ·) to state the
discrete variational formulation. Let us call the discrete spaces Xc,h ⊂ H1

0(Ω) and
Qc,h ⊂ L2

zmv(Ω). Then to prove the discrete T-coercivity, we would need to state

1Remark that (v⋆, q⋆) = (0, 0) ⇔ (u′, p′) = (0, 0): the operator T ∈ L(X ,X ) is bijective.
2According to [1, Cor. I.2.3], since vp ∈ V⊥, ∃p ∈ L2

zmv(Ω) |∆vp = grad q in H−1(Ω).

Integrating by parts twice, we have: (u,vp)H1
0(Ω) = −⟨grad q,u⟩H1

0(Ω) = (q,divu)L2(Ω) = 0.
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the discrete counterpart to Proposition 1. To do so, we can build a linear operator
Πc : X → Xh, known as Fortin operator, such that (see a.e. [15, §8.4.1]):

∃Cc | ∀v ∈ H1(Ω) ∥GradΠcv∥L2(Ω) ≤ Cc∥Gradv∥L2(Ω),(3.14)

∀v ∈ H1(Ω) (div Πcv, qh)L2(Ω) = (divv, qh)L2(Ω), ∀qh ∈ Qc,h.(3.15)

Using a nonconforming discretization, we will not use the bilinear form aS(·, ·) to
exhibit the discrete variational formulation, but we will need a similar operator to
(3.14)-(3.15) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. Discretization

We call (O, (xd′)dd′=1) the Cartesian coordinates system, of orthonormal basis
(ed′)dd′=1. Consider (Th)h a simplicial triangulation sequence of Ω. For a triangu-
lation Th, we use the following index sets:

• IK denotes the index set of the elements, such that Th :=
⋃

ℓ∈IK

Kℓ is the

set of elements.
• IF denotes the index set of the facets3, such that Fh :=

⋃
f∈IF

Ff is the set

of facets.
Let IF = Ii

F ∪ Ib
F , where ∀f ∈ Ii

F , Ff ∈ Ω and ∀f ∈ Ib
F , Ff ∈ ∂Ω.

• IS denotes the index set of the vertices, such that (Sj)j∈IS
is the set of

vertices.
Let IS = Ii

S ∪ Ib
S , where ∀j ∈ Ii

S , Sj ∈ Ω and ∀j ∈ Ib
S , Sj ∈ ∂Ω.

We also define the following index subsets:

• ∀ℓ ∈ IK , IF,ℓ = {f ∈ IF |Ff ∈ Kℓ}, IS,ℓ = {j ∈ IS |Sj ∈ Kℓ}.
• ∀j ∈ IS , IK,j = {ℓ ∈ IK |Sj ∈ Kℓ}, Nj := card(IK,j).

For all ℓ ∈ IK , we call hℓ and ρℓ the diameters of Kℓ and its inscribed sphere
respectively, and we let: σℓ =

hℓ

ρℓ
. When the (Th)h is a shape-regular triangulation

sequence (see a.e. [16, def. 11.2]), there exists a constant σ > 1, called the shape
regularity parameter, such that for all h, for all ℓ ∈ IK , σℓ ≤ σ. For all f ∈ IF ,
Mf denotes the barycentre of Ff , and by nf its unit normal (outward oriented if
Ff ∈ ∂Ω). For all j ∈ IS , for all ℓ ∈ IK,j , λj,ℓ denotes the barycentric coordinate
of Sj in Kℓ; Fj,ℓ denotes the face opposite to vertex Sj in element Kℓ, and xj,ℓ

denotes its barycentre. We call Sj,ℓ the outward normal vector of Fj,ℓ and of norm
|Sj,ℓ| = |Fj,ℓ|.

Let introduce spaces of piecewise regular elements:
We set PhH

1 =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H1(Kℓ)
}
, endowed with the scalar

product :

(v, w)h :=
∑
ℓ∈IK

(grad v,gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥grad v∥2L2(Kℓ)
.

We set PhH
1 = [PhH

1]d, endowed with the scalar product :

(v,w)h :=
∑
ℓ∈IK

(Gradv,Gradw)L2(Kℓ) ∥v∥2h =
∑
ℓ∈IK

∥Gradv∥2L2(Kℓ)
.

3The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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Let f ∈ Ii
F such that Ff = ∂KL ∩ ∂KR and nf is outward KL oriented.

The jump (resp. average) of a function v ∈ PhH
1 across the facet Ff is defined as

follows: [v]Ff
:= v|KL

− v|KR
(resp. {v}Ff

:= 1
2 (v|KL

+ v|KR
) ). For f ∈ Ib

F , we set:
[v]Ff

:= v|Ff
and {v}Ff

:= v|Ff
.

We set PhH(div) =
{
v ∈ L2(Ω) ; ∀ℓ ∈ IK , v|Kℓ

∈ H(div; Kℓ)
}
, and we define

the operator divh such that:

∀v ∈ PhH(div), ∀q ∈ L2(Ω), (divh v, q) =
∑
ℓ∈IK

(divv, q)L2(Kℓ).

We recall classical finite elements estimates [16]. Let K̂ be the reference simplex

and F̂ be the reference facet. For ℓ ∈ IK (resp. f ∈ IF ), we denote by Tℓ : K̂ → Kℓ

(resp. Tf : F̂ → Ff ) the geometric mapping such that ∀x̂ ∈ K̂, x|Kℓ
= Tℓ(x̂) =

Bℓx̂ + bℓ (resp. x|Ff
= Tf (x̂) = Bf x̂ + bf ), and we set Jℓ = det(Bℓ) (resp.

Jf = det(Bf )). There holds:

(4.1) |Jℓ| = d! |Kℓ|, ∥Bℓ∥ =
hℓ
ρK̂

, ∥Bℓ
−1∥ =

hK̂
ρℓ
, |Jf | = (d− 1)! |Ff |.

For v ∈ L2(Kℓ), we set v̂ℓ = v ◦ Tℓ. For v ∈ v2(Ff ), we set: v̂f = v ◦ Tf . Changing
the variable, we get:

(4.2) ∥v∥2L2(Kℓ)
= |Jℓ| ∥v̂ℓ∥2L2(K̂)

, and ∥v∥2L2(Ff )
= |Jf | ∥v̂f∥2L2(F̂ )

.

Let v ∈ PhH
1. By changing the variable, grad v|Kℓ

= (Bℓ
−1)T gradx̂ v̂ℓ, and it

holds:

(4.3)
(i) ∥grad v∥2L2(Kℓ)

≤ ∥Bℓ
−1∥2 |Kℓ| ∥gradx̂ v̂ℓ∥2L2(K̂)

,

(ii) ∥gradx̂ v̂ℓ∥2L2(K̂)
≤ ∥Bℓ∥2 |Kℓ|−1 ∥grad v∥2L2(Kℓ)

.

We recall the Poincaré-Steklov inequality in cells [16, Lemma 12.11]:
for all ℓ ∈ IK (Kℓ is a convex set), ∀v ∈ H1(Kℓ):

(4.4) ∥vℓ∥L2(Kℓ) ≤ π−1hℓ∥grad v∥L2(Kℓ), where vℓ = v|Kℓ
−
∫
Kℓ
v

|Kℓ|
.

For all D ⊂ Rd, and k ∈ N∗, we call P k(D) the set of order k polynomials on D,
Pk(D) = (P k(D))d, and we consider the broken polynomial space:

P k
disc(Th) =

{
q ∈ L2(Ω); ∀ℓ ∈ IK , q|Kℓ

∈ P k(Kℓ)
}
, Pk

disc(Th) := (P k
disc(Th))d.

We let P 0(Th) be the space of piecewise constant functions on Th.

5. The nonconforming mixed finite element method for Stokes

The nonconforming finite element method was introduced by Crouzeix and Raviart
in [2] to solve Stokes Problem (3.1). We approximate the vector space H1(Ω) com-
ponent by component by piecewise polynomials of order k ∈ N⋆. Let us consider Xh

(resp. X0,h), the space of nonconforming approximation of H1(Ω) (resp. H1
0 (Ω))
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of order k:

(5.1)

Xh =

{
vh ∈ P k

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P k−1(Ff ),

∫
Ff

[vh] qh = 0

}
;

X0,h =

{
vh ∈ Xh ; ∀f ∈ Ib

F , ∀qh ∈ P k−1(Ff ),

∫
Ff

vh qh = 0

}
.

The condition on the jumps of vh on the inner facets is often called the patch-test
condition.

Proposition 2. The broken norm vh → ∥vh∥h is a norm over X0,h.

Proof. Let vh ∈ X0,h such that ∥vh∥h = 0. Then for all ℓ ∈ IK , vh|Kℓ
is a constant.

For all f ∈ Ii
F the jump [vh]Ff

vanishes, so that vh is a constant over Ω. We deduce
from the discrete boundary condition that vh = 0. □

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order k

is Xh = (Xh)
d (resp. X0,h = (X0,h)

d). We set Xh := X0,h × Qh where Qh =

P k−1
disc (Th) ∩ L2

zmv(Ω). We deduce from Proposition 2 the

Proposition 3. The broken norm defined below is a norm on Xh:

(5.2) ∥(·, ·)∥Xh
:

{ Xh 7→ R

(vh, qh) →
(
∥vh∥2h + ν−2 ∥qh∥2L2(Ω)

)1/2 .

Thus, the product space Xh endowed with the broken norm ∥ · ∥Xh
is a Hilbert

space.

Proposition 4. The following discrete Poincaré–Steklov inequality holds: there
exists a constant Cnc

PS independent of Th such that

(5.3) ∀vh ∈ X0,h, ∥vh∥L2(Ω) ≤ Cnc
PS ∥vh∥h,

where Cnc
PS is independent of Th and is proportional to the diameter of Ω.

Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for k = 1, but one can check
that the proof holds true for higher-order, thanks to the patch-test condition. An
alternative proof is given in [17, Theorem C.1]. □

We consider the discrete continuous bilinear form aS,h(·, ·) such that :{
aS,h : Xh ×Xh → R

(u′
h, p

′
h)× (vh, qh) 7→ ν(u′

h,vh)h − (divh vh, p
′
h)− (divh u

′
h, qh)

.

Let ℓf ∈ L(Xh,R) be such that :

∀(vh, qh) ∈ Xh, ℓf ( (vh, qh) ) =

{
(f ,vh)L2(Ω) if f ∈ L2(Ω)

⟨f , Ih(vh)⟩H1
0(Ω) if f ̸∈ L2(Ω)

,

where Ih : X0,h → Y0,h, with Y0,h = {vh ∈ H1
0(Ω) ; ∀ℓ ∈ IK , vh|Kℓ

∈ Pk(Kℓ)},
is the averaging operator described in [16, §22.4.1]. There exists a constant Cnc

Ih
> 0

independent of Th such that :

(5.4) ∥Ihvh∥H1
0(Ω) ≤ Cnc

Ih
∥vh∥h, ∀vh ∈ X0,h.
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The nonconforming discretization of Problem (3.9) reads:
Find (uh, ph) ∈ Xh such that

(5.5) aS,h ((uh, ph), (vh, qh)) = ℓf ( (vh, qh) ) ∀(vh, qh) ∈ Xh.

Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.

Theorem 4. Suppose that there exists a Fortin operator Πnc : H
1(Ω) → Xh such

that

∃Cnc | ∀v ∈ H1(Ω) ∥Πncv∥h ≤ Cnc∥Gradv∥L2(Ω),(5.6)

∀v ∈ H1(Ω) (divh Πncv, qh) = (divv, qh)L2(Ω), ∀q ∈ Qh,(5.7)

where the constant Cnc does not depend on h. Then Problem (5.5) is well-posed.
Moreover, it admits one and only one solution (uh, ph) such that:

(5.8)

if f ∈ L2(Ω) :

 ∥uh∥h ≤ Cnc
PS ν

−1 ∥f∥L2(Ω)

∥ph∥L2(Ω) ≤ 2Cnc
PS C

nc
div ∥f∥L2(Ω)

,

if f ̸∈ L2(Ω) :


∥uh∥h ≤ Cnc

Ih
ν−1 ∥f∥H−1(Ω)

∥ph∥L2(Ω) ≤ 2Cnc
Ih
Cnc

div ∥f∥H−1(Ω)

,

where Cnc
div = Cdiv Cnc.

Proof. Let us consider (u′
h, p

′
h) ∈ Xh and let us build (v⋆

h, q
⋆
h) ∈ Xh satisfying (2.3)

(with V = Xh). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists ṽp′
h
∈ V⊥ such that div ṽp′

h
= p′h

in Ω and ∥ṽp′
h
∥H1

0(Ω) ≤ Cdiv∥p′h∥L2(Ω). Let us set vp′
h
= ν−1ṽp′

h
so that

divvp′
h
= ν−1p′h and ∥vp′

h
∥H1

0(Ω) ≤ ν−1 Cdiv ∥p′h∥2L2(Ω). Consider vh,p′
h
=

Πncvp′
h
, for all qh ∈ Qh, we have: (divh vh,p′

h
, qh) = ν−1 (p′h, qh)L2(Ω) and

(5.9) ∥vh,p′
h
∥h ≤ ν−1 Cnc

divν ∥p′h∥L2(Ω) where C
nc
div = Cnc Cdiv.

Let us set (v⋆
h, q

⋆
h) := (γncu

′
h − vh,p′

h
,−γnc p′h), with γnc > 0. We obtain:

(5.10) aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) = ν γnc∥u′

h∥2h + ν−1∥p′h∥2L2(Ω) − ν(u′
h,vh,p′

h
)h.

2. In order to bound the last term of (5.10), we use Young inequality and then
inequality (5.9) so that for all ηnc > 0:

(5.11) (u′
h,vh,p′

h
)h ≤ ηnc

2
∥u′

h∥2h +
η−1
nc

2

(
Cnc

div

ν

)2

∥p′h∥2L2(Ω).

3. Using the bound (5.11) in (5.10) and choosing ηnc = γnc, we get:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ ν

(
γnc
2
ν ∥u′

h∥2h + ν−2

(
1 +

(γnc)
−1

2
(Cnc

div)
2

)
∥p′h∥2L2(Ω)

)
.

Consider now γnc = (Cnc
div)

2. We obtain:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥

ν

2
Cnc

min ∥(u′
h, p

′
h)∥2Xh

,
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where Cnc
min =

1

2
min( (Cdiv)

2, 1 ).

The operator Th such that Th(u
′
h, p

′
h) = (v⋆

h, p
⋆
h) is linear and continuous:

∥Th(u′
h, p

′
h)∥2Xh

= ∥v⋆
h∥2h + ν−2 ∥q⋆h∥L2(Ω) ≤ (Cnc

max)
2 ∥(u′

h, p
′
h)∥2Xh

where Cnc
max = Cnc

div (1+(Cnc
div)

2)1/2. 4 The discrete continuous bilinear form aS,h(·, ·)
is then Th-coercive and according to Theorem 1, Problem (5.5) is well posed. Con-
sider (uh, ph) the unique solution of Problem (5.5). Choosing vh = 0, we obtain
that divh uh = 0. Now, choosing vh = uh in (5.5) and using Cauchy-Schwarz
inequality, we get that:

(5.12)


∥uh∥h ≤ ν−1 Cnc

PS ∥f∥L2(Ω) if f ∈ L2(Ω), using (5.3) ;

∥uh∥h ≤ ν−1 Cnc
Ih

∥f∥H−1(Ω) if f ̸∈ L2(Ω), using (5.4).

Consider (vh, qh) = (vh,ph
, 0) in (5.5), where vh,ph

= Πncvph
is built as vh,p′

h
in

point 1, setting p′h = ph. Suppose that f ∈ L2(Ω). Using the triangular inequal-
ity, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and
estimate (5.12), we have:

∥ph∥2L2(Ω) = ν (uh,vh,ph
)h − (f ,vh,ph

)L2(Ω) ,

≤ ν ∥uh∥h ∥vh,ph
∥h + ∥f∥L2(Ω) ∥vh,ph

∥L2(Ω)

≤ 2Cnc
PS ∥f∥L2(Ω) ∥vh,ph

∥h ≤ 2Cnc
PS Cnc ∥f∥L2(Ω) ∥Gradvph

∥L2(Ω) ,

≤ 2Cnc
PS C

nc
div ∥f∥L2(Ω) ∥ph∥L2(Ω).

Applying the same reasoning when f ∈ H−1(Ω), we get that:

(5.13)


∥ph∥L2(Ω) ≤ 2Cnc

PS C
nc
div ∥f∥L2(Ω) if f ∈ L2(Ω), using (5.3) ;

∥ph∥L2(Ω) ≤ 2Cnc
Ih

Cnc
div∥f∥H−1(Ω) if f ̸∈ L2(Ω), using (5.4).

□

Corollary 1. Under the assumption of Theorem 4, suppose that (u, p) ∈ H1+k(Ω)×
Hk(Ω), we then have the estimate:

(5.14) ∥u− uh∥L2(Ω) ≤ Cσℓ hk+1
(
|u|Hk+1(Ω) + ν−1 |p|Hk(Ω)

)
,

where the constant C > 0 is independent of h, σ is the shape regularity parameter
and the exponent ℓ ∈ N⋆ depends on k.

Proof. The a priori error estimate corresponds to [2, Theorem 4]. □

Remark 2. Again, we recover the first Banach–Nečas–Babuška condition [8, Thm.
25.9, (BNB1)]:

aS,h ( (u′
h, p

′
h), (v

⋆
h, q

⋆
h) ) ≥ ν Cnc

min (C
nc
max)

−1 ∥(u′
h, p

′
h)∥Xh

∥(v⋆
h, q

⋆
h)∥Xh

.

4Note that (v⋆
h, q

⋆
h) = (0, 0) ⇔ (u′

h, p
′
h) = (0, 0), so that the operator Th ∈ L(Xh,Xh) is

bijective.
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Let us call Cnc
stab = ν Cnc

min (C
nc
max)

−1 the stability constant. With the choice of
our parameters, Cnc

stab is such that:

Cnc
stab =


ν

2

Cnc
div

(1 + (Cnc
div)

2)1/2
if 0 < Cnc

div ≤ 1,

ν

2

(Cnc
div)

−1

(1 + (Cnc
div)

2)1/2
if 1 ≤ Cnc

div.

The main issue with nonconforming mixed finite elements is the construction the
basis functions. In a recent paper, Sauter explains such a construction in two
dimensions [17, Corollary 2.4], and gives a bound to the discrete counterpart βT (Ω)
of β(Ω) defined in (3.4):

(5.15) βT (Ω) = inf
qh∈Qh\{0}

sup
vh∈X0,h\{0}

(divh vh, qh)

∥qh∥L2(Ω) ∥vh∥h
≥ cT k

−α.

This bound is in cT k
−α, where the parameter α is explicit and depends on k and

on the mesh topology; and the constant cT depends only on the shape-regularity
of the mesh.

6. Nonconforming Crouzeix-Raviart mixed finite elements

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements
[2]. Let us consider XCR (resp. X0,CR), the space of nonconforming approximation
of H1(Ω) (resp. H1

0 (Ω)) of order 1:

(6.1)

XCR =

{
vh ∈ P 1

disc(Th) ; ∀f ∈ Ii
F ,

∫
Ff

[vh] = 0

}
;

X0,CR =

{
vh ∈ XCR ; ∀f ∈ Ib

F ,

∫
Ff

vh = 0

}
.

The space of nonconforming approximation of of H1(Ω) (resp. H1
0(Ω)) of order 1

is XCR = (XCR)
d (resp. X0,CR = (X0,CR)

d). We set XCR := X0,CR ×QCR where
QCR = P 0(Th) ∩ L2

zmv(Ω).
We can endow XCR with the basis (ψf )f∈IF

such that: ∀ℓ ∈ IK ,

ψf |Kℓ
=

{
1− dλi,ℓ if f ∈ IF,ℓ,

0 otherwise,

where Si is the vertex opposite to Ff in Kℓ. We then have ψf |Ff
= 1, so that

[ψf ]Ff
= 0 if f ∈ Ii

F (i.e. Ff ∈
◦
Ω), and ∀f ′ ̸= f ,

∫
Ff′

ψf = 0.

We have: XCR = vect ((ψf )f∈IF
) and X0,CR = vect

(
(ψf )f∈Ii

F

)
.

The Crouzeix-Raviart interpolation operator πCR for scalar functions is defined by:

πCR :


H1(Ω) → XCR

v 7→
∑
f∈IF

πfv ψf , where πfv =
1

|Ff |

∫
Ff

v.

Notice that ∀f ∈ IF ,
∫
Ff
πCRv =

∫
Ff
v. Moreover, the Crouzeix-Raviart interpo-

lation operator preserves the constants, so that πCRvΩ = vΩ where vΩ =
∫
Ω
v/|Ω|.

We recall the following result [18, Lemma 2]):
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Lemma 1. The Crouzeix-Raviart interpolation operator πCR is such that:

(6.2) ∀v ∈ H1(Ω), ∥πCRv∥h ≤ ∥grad v∥L2(Ω).

Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:

gradπCRv|Kℓ
= |Kℓ|−1

∫
Kℓ

gradπCRv = |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

πCRv nf ,

= |Kℓ|−1
∑

f∈IF,ℓ

∫
Ff

v nf = |Kℓ|−1

∫
Kℓ

grad v,

|gradπCRv|Kℓ
| ≤ |Kℓ|−1/2 ∥grad v∥L2(Kℓ)

⇒ ∥gradπCRv∥2L2(Kℓ)
≤ ∥grad v∥2L2(Kℓ)

.

Summing these local estimates over ℓ ∈ IK , we obtain (6.2). □

For a vector v ∈ H1(Ω) of components (vd′)dd′=1, the Crouzeix-Raviart interpo-

lation operator is such that: ΠCRv = (πCRvd′)
d
d′=1. Let us set Πfv = (πfvd′)

d
d′=1.

Lemma 2. The Crouzeix-Raviart interpolation operator ΠCR can play the role of
the Fortin operator:

∀v ∈ H1(Ω) ∥ΠCRv∥h ≤ ∥Gradv∥L2(Ω),(6.3)

∀v ∈ H1(Ω) (divh ΠCRv, qh) = (divv, qh)L2(Ω), ∀q ∈ Qh,(6.4)

Moreover, for all v ∈ P1(Ω), ΠCRv = v.

Proof. We obtain (6.3) applying Lemma (1) component by component. By inte-
grating by parts, we have ∀v ∈ H1(Ω), ∀ℓ ∈ IK :∫

Kℓ

divΠCRv =
∑

f∈IF,ℓ

∫
Ff

ΠCRv · nf =
∑

f∈IF,ℓ

∫
Ff

Πfv · nf ,

=
∑

f∈IF,ℓ

∫
Ff

v · nf =

∫
Kℓ

divv,

so that (6.4) is satisfied. □

We can apply the T-coercivity theory to show the next following result:

Theorem 5. Let Xh = XCR. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4. □

Since the constant of the interpolation operator ΠCR is equal to 1, we have
CCR

min = Cmin and CCR
max = Cmax: the stability constant of the nonconforming

Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the
case for higher-order (see [19, Theorem 2.2]).
For higher-order, we cannot built the interpolation operator component by compo-
nent, since higher-order divergence moments must be preserved. Thus, for k > 1,
we must build Πnc so that for all v ∈ H1(Ω), for all ℓ ∈ IK , for all q ∈ P k−1(Kℓ):∫

Kℓ

q divΠncv =

∫
Kℓ

q divv.
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We recall that by integration by parts, we have:

(6.5)

∫
Kℓ

q divΠncv +

∫
Kℓ

grad q ·Πncv =

∫
∂Kℓ

qΠncv · n|∂Kℓ
.

Hence, to obtain a local estimate of ∥GradΠncv∥L(Kℓ), we will need the following
Lemma:

Lemma 3. Let v ∈ H1(Ω) and q ∈ P k−1(Kℓ). We set vℓ := vℓ −
∫
Kℓ

v

|Kℓ|
, where

vℓ = v|Kℓ
. We have:

(6.6)

∣∣∣∣∫
∂Kℓ

q vℓ · n|∂Kℓ

∣∣∣∣ ≤ |Kℓ|k/2 ∥Gradvℓ∥L2(Kℓ)

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:∣∣∣∣∫
∂Kℓ

q vℓ · nf

∣∣∣∣ ≤ ∣∣∣∣∫
Kℓ

q divvℓ

∣∣∣∣+ ∣∣∣∣∫
Kℓ

grad q · vℓ

∣∣∣∣ ,
≤ ∥q∥L2(Kℓ) ∥Gradvℓ∥L2(Kℓ) + ∥grad q∥L2(Kℓ) ∥vℓ∥L2(Kℓ),

≤ |Kℓ|k/2∥Gradvℓ∥L2(Kℓ) + |Kℓ|(k−1)/2 ∥vℓ∥L2(Kℓ),

≲ |Kℓ|k/2∥Gradvℓ∥L2(Kℓ) using (4.4).

□

7. Fortin-Soulie mixed finite elements

We consider here the case d = 2 and we study Fortin-Soulie mixed finite elements
[3]. We consider a shape-regular triangulation sequence (Th)h.
Let us consider XFS (resp. X0,FS), the space of nonconforming approximation of
H1(Ω) (resp. H1

0 (Ω)) of order 2:

(7.1)

XFS =

{
vh ∈ P 2

disc(Th) ; ∀f ∈ Ii
F , ∀qh ∈ P 1(Ff ),

∫
Ff

[vh] qh = 0

}
;

X0,FS =

{
vh ∈ XFS ; ∀f ∈ Ib

F , ∀qh ∈ P 1(Ff ),

∫
Ff

vh qh = 0

}
.

The space of nonconforming approximation of H1(Ω) (resp. H1
0(Ω)) of order 2 is

XFS = (XFS)
2 (resp. X0,FS = (X0,FS)

2). We set XFS = X0,FS × QFS where
QFS := P 1

disc(Th) ∩ L2
zmv(Ω).

The building of a basis for X0,FS is more involved than for X0,CR since we cannot
use two points per facet as degrees of freedom. Indeed, for all ℓ ∈ Kℓ, there exists
a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary ∂Kℓ. Let f ∈ IF . The barycentric coordinates of the two Gauss-Legendre
points (p+,f , p−,f ) on Ff are such that:

p+,f = (c+, c−), p−,f = (c−, c+), where c± = (1± 1/
√
3)/2.
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These points can be used to integrate exactly order three polynomials:

∀g ∈ P 3(Ff ),

∫
Ff

g =
|Ff |
2

(g(p+,f ) + g(p−,f )) .

For all ℓ ∈ IK , we define the quadratic function ϕKℓ
that vanishes on the six

Gauss-Legendre points of the facets of Kℓ (see Fig. 1):

(7.2) ϕKℓ
:= 2− 3

∑
i∈IS,ℓ

λ2i,ℓ such that ∀f ∈ IF,ℓ, ∀q ∈ P 1(F ),

∫
Ff

ϕKℓ
q = 0.

p1 p2

p3

p4

p5

p6

Figure 1. The six Gauss-Legendre points of an element Kℓ and
the elliptic function ϕKℓ

.

We also define the spaces of P 2-Lagrange functions:

XLG :=
{
vh ∈ H1(Ω); ∀ℓ ∈ IK , vh|Kℓ

∈ P 2(Kℓ)
}
,

X0,LG :=
{
vh ∈ XLG; vh|∂Ω = 0

}
.

The Proposition below proved in [3, Prop. 1] allows to build a basis for X0,FS :

Proposition 5. We have the following decomposition: XFS = XLG + Φh with
dim(XLG ∩Φh) = 1. Any function of XFS can be written as the sum of a function
of XLG and a function of Φh. This representation can be made unique by specifying
one degree of freedom.

Notice that Φh ∩ XLG = vect(vΦ), where for all ℓ ∈ IK , vΦ|Kℓ
= ϕKℓ

. Then,
counting the degrees of freedom, one can show that dim(XFS) = dim(XLG) +
dim(Φh) + 1. For problems involving Dirichlet boundary conditions we can prove
thus that for X0,FS the representation is unique and X0,FS = X0,LG ⊕ Φh. We
have XLG = vect

(
(ϕSi)i∈IS

, (ϕFf
)f∈IF

)
where the basis functions are such that:

∀i, j ∈ IS , ∀f, g ∈ IF :
ϕSi

(Sj) = δij , ϕSi
(Mf ) = 0, ϕMf

(Mg) = δfg, ϕMf
(Si) = 0.

For all ℓ ∈ IK , we will denote by (ϕℓ,j)
6
j=1 the local nodal basis such that:

(ϕℓ,j)
3
j=1 = (ϕSi|Kℓ

)i∈IS,ℓ
and (ϕℓ,j)

6
j=4 = (ϕFf |Kℓ

)f∈IF,ℓ
.

The spaces XFS and X0,FS are such that:

(7.3)

XFS = vect
(
(ϕSi)i∈IS

, (ϕFf
)f∈IF

, (ϕKℓ
)ℓ∈IK

)
,

X0,FS = vect
(
(ϕSi)i∈Ii

S
, (ϕFf

)f∈Ii
F
, (ϕKℓ

)ℓ∈IK

)
.
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We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [3]. Let us first recall the Scott-Zhang interpolation operator [20, 21]. For

all i ∈ IS , we choose some ℓi ∈ IK,i, and we build the L2(Kℓi)-dual basis (ϕ̃ℓi,j)
6
j=1

of the local nodal basis such that:

∀j, j′ ∈ {1, · · · , 6},
∫
Kℓi

ϕ̃ℓi,j ϕℓi,j′ = δj,j′ .

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

(7.4)
πFS :


H1(Ω) → XFS

v 7→ π̃v +
∑
ℓ∈IK

vKℓ
ϕKℓ

,

with π̃v =
∑
i∈IS

vSiϕSi +
∑
f∈IF

ṽFf
ϕFf

.

• The coefficients (vSi)i∈IS
are fixed so that: ∀i ∈ IS , vSi =

∫
Kℓ,i

v ϕ̃ℓi,ji ,

where ji is the index such that

∫
Kℓi

ϕ̃ℓi,ji ϕSi|Kℓi
= 1.

• The coefficients
(
ṽFf

)
f∈IF

are fixed so that: ∀f ∈ IF ,
∫
Ff

π̃ṽ =

∫
Ff

v.

For all ℓ ∈ IK , the coefficient vKℓ
is fixed so that:

∫
Kℓ

πFSv =

∫
Kℓ

v.

The definition (7.4) is more general than the one given in [3], which holds for
v ∈ H2(Ω).

We set vSi
:= ( π̃v1(Si), π̃v2(Si))

T
and ṽFf

:= ( π̃v1(Ff ), π̃v2(Ff ) )
T
.

We can define two different Fortin-Soulie interpolation operators for vector func-
tions. First, let

Π̃FS :

{
H1(Ω) → XFS

v 7→ (πFS(v)1, πFS(v)2)
T .

We remind that the coefficients (ṽKℓ
)ℓ∈IK

are such that:

(7.5) ∀ℓ ∈ IK ,
∫
Kℓ

Π̃FSv =

∫
Kℓ

v.

The interpolation operator Π̃FS preserves the local averages, but it doesn’t preserve
the divergence. We then define a second interpolation operator which preserves the
divergence in a weak sense:

ΠFS :


H1(Ω) → XFS

v 7→
∑
i∈IS

vSi
ϕSi

+
∑
f∈IF

ṽFf
ϕFf

+
∑
ℓ∈IK

vKℓ
ϕKℓ

.

For all ℓ ∈ IK , the vector coefficient vKℓ
∈ R2 is now fixed so that condition (5.7)

is satisfied. We can impose for example that the projection ΠFSv satisfies:

(7.6)

∫
Kℓ

T−1
ℓ (x) div ΠFSv =

∫
Kℓ

T−1
ℓ (x) divv.

Notice that due to (7.2), the patch-test condition is still satisfied.
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Proposition 6. Let σD > 0. The Fortin-Soulie interpolation operator ΠFS is such

for all v ∈
⋂

0<s<σD

H1+s(Ω) we have:

∀ s ∈]0, σD[, ∀ℓ ∈ IK , ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 (hℓ)

s |v|1+s,Kℓ
,(7.7)

∀ s ∈]0, σD[, ∃CFS = O(σ2), ∥ΠFSv − v∥h ≤ CFS h
s |v|1+s,Ω.(7.8)

Remark 3. Albeit we are inspired by the proof of [2, Lemma 4], we changed the
transition from equation (4.27) to (4.29) there by using only the properties related to
the normal component of the velocity, cf (6.6). As a matter of fact, in the original
proof, one ends up with either CFS = O(σ3) with the help of the multiple trace
inequality or with CFS = O(σ2) at the cost of imposing a stronger assumption on
the regularity of v (namely, σD > 1/2). Finally, because we do not split the integral
over the boundaries of elements into the sum of d+ 1 integrals over the facets, we
obtain purely local estimates, which appear to be new for the Fortin-Soulie element
in the case of low-regularity fields v.

Proof. Let v ∈ H1(Ω). By construction, we have:

(7.9)

∫
Kℓ

(Π̃FSv − v) = 0 and for all f ∈ IF,ℓ,

∫
Ff

(Π̃FSv − v)|Kℓ
= 0.

We have:

(7.10)
∥Grad (ΠFSv − v)∥L2(Kℓ) ≤ ∥Grad (ΠFSv − Π̃FSv)|L2(Kℓ)

+∥Grad (Π̃FSv − v)∥L2(Kℓ).

Notice that for all ℓ ∈ IK , (ΠFSv − Π̃FSv)|Kℓ
= (vKℓ

− ṽKℓ
)ϕKℓ

.
Using (4.3)-(i), we obtain that:

(7.11)
∥Grad (ΠFSv − Π̃FSv)∥L2(Kℓ) ≲ |vKℓ

− ṽKℓ
| ∥grad ϕKℓ

∥L2(Kℓ),

≲ ∥Bℓ
−1∥ |Kℓ|1/2 |vKℓ

− ṽKℓ
|,

≲ σℓ |vKℓ
− ṽKℓ

|.
Let us estimate |vKℓ

− ṽKℓ
|. On the one hand, we have:∫

Kℓ

(ΠFSv − Π̃FSv) =

∫
Kℓ

(ΠFSv − v) from (7.5),

=

∫
∂Kℓ

x (ΠFSv − v) · n|∂Kℓ
by IBP,

=

∫
∂Kℓ

x (Π̃FSv − v) · n|∂Kℓ
from (7.2).

Hence, using (7.9), we obtain:

(7.12)

∣∣∣∣∫
Kℓ

(ΠFSv − Π̃FSv)

∣∣∣∣ ≤ |Kℓ| ∥Grad(Π̃FSv − v)∥L2(Kℓ).

On the other hand, it holds:

(7.13)

∫
Kℓ

(ΠFSv − Π̃FSv) = (vKℓ
− ṽKℓ

)

∫
Kℓ

ϕKℓ
=

|Kℓ|
4

(vKℓ
− ṽKℓ

).

Hence, combining (7.12) and (7.13), we have:

|vKℓ
− ṽKℓ

| ≤ 4 ∥Grad(Π̃FSv − v)∥L2(Kℓ)
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We deduce from (7.10) that for all v ∈ H1(Ω), for all ℓ ∈ IK we have:

(7.14) ∥Grad(ΠFSv − v)∥Kℓ
≲ σℓ ∥Grad(Π̃FSv − v)∥L2(Kℓ).

For all v ∈ P2(Kℓ) we have Π̃FS(v) = v and ̂(Π̃FSv)ℓ = ̂̃ΠFSv̂ℓ. Hence, using
Bramble-Hilbert/Deny-Lions Lemma [16, Lemma 11.9], we have:

∀v ∈ H1(Ω) ∥Grad(Π̃FSv − v)∥L2(Kℓ) ≲ σℓ |v|1,Kℓ
,

∀v ∈ H2(Ω) ∥Grad(Π̃FSv − v)∥L2(Kℓ) ≲ σℓ hℓ |v|2,Kℓ
.

We deduce that:

∀v ∈ H1(Ω) ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 |v|1,Kℓ

,(7.15)

∀v ∈ H2(Ω) ∥Grad(ΠFSv − v)∥L2(Kℓ) ≲ (σℓ)
2 hℓ |v|2,Kℓ

.(7.16)

Using interpolation property [22, Lemma 22.2], we obtain (7.8). □

We recall that the discrete Poincaré–Steklov inequality (5.3) holds.

Theorem 6. Let Xh = XFS. Then the continuous bilinear form aS,h(·, ·) is Th-
coercive and Problem (5.5) is well-posed.

Proof. According to Proposition 6, the Fortin-Soulie interpolation operator ΠFS

satisfies (5.6)-(5.7), so that we can apply the proof of Theorem 4. □

Notice that in the recent paper [23], the inf-sup condition of the mixed Fortin-
Soulie finite element is proven directly on a triangle and then using the macro-
element technique [24], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[25] for k ≥ 4, k even, [26] for k = 3 and [19] for k ≥ 5, k odd. In [27], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [14]
for d = 3 which could be used to prove the T-coercivity.

8. Numerical results

Consider Problem (3.1) with data f = −gradϕ, where ϕ ∈ H1(Ω) ∩ L2
zmv(Ω).

The unique solution is then (u, p) := (0, ϕ). By integrating by parts, the source
term in (3.6) reads:

(8.1) ∀v ∈ H1
0(Ω),

∫
Ω

f · v =

∫
Ω

ϕ divv.

Recall that the nonconforming space Xh defined in (5.1) is a subset of PhH
1: using

a nonconforming finite element method, the integration by parts must be done on
each element of the triangulation, and we have:

(8.2) ∀v ∈ PhH
1,

∫
Ω

f · v = (divh v, ϕ) +
∑
f∈IF

∫
Ff

[v · nf ]ϕ.

When we apply this result to the right-hand-side of (5.5), we notice that the term
with the jumps acts as a numerical source, which numerical influence is proportional
to 1/ν. Thus, we cannot obtain exactly uh = 0 (see also (5.14)). Linke proposed
in [28] to project the test function vh ∈ Xh on a discrete subspace of H(div; Ω),
like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [29, 30], or the
monograph [15]). Let Πdiv : X0,h → P k

disc(Th) ∩H0(div; Ω) be some interpolation
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operator built so that for all vh ∈ X0,h, for all ℓ ∈ IK , (div Πdivvh)|Kℓ
= divvh|Kℓ

.
Integrating by parts, we have for all vh ∈ X0,h:∫

Ω

f ·Πdivvh =

∫
Ω

ϕ divΠdivvh =
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divΠdivvh,

=
∑
ℓ∈Kℓ

∫
Kℓ

ϕ divvh = (divh vh, ϕ).

The projection Πdiv allows to eliminate the terms of the integrals of the jumps in
(8.2).
Let us write Problem (5.5) as:
Find (uh, ph) ∈ Xh such that

(8.3) aS,h ((uh, ph), (vh, qh)) = ℓf ( (Πdivvh, qh) ) ∀(vh, qh) ∈ Xh.

In the case of Xh = XCR and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u, p) ∈ H2(Ω)×H1(Ω):

(8.4) ∥u− uh∥L2(Ω) ≤ C̃ h2 |u|H2(Ω),

where the constant C̃ if independent of h. The proof is detailed in [31] for shape-
regular meshes and [32] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the ν parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.
For all ℓ ∈ IK , we let P k

H(Kℓ) be the set of homogeneous polynomials of order k
on Kℓ.
For k ∈ N⋆, the space of Raviart-Thomas finite elements can be defined as:

XRTk
:=
{
v ∈ H(div; Ω); ∀ℓ ∈ Ik, v|Kℓ

= aℓ + bℓx | (aℓ, bℓ) ∈ P k(Kℓ)
d × P k

H(Kℓ)
}
.

Let k ≤ 1.
The Raviart–Thomas interpolation operator ΠRTk

: H1(Ω)∪Xh → XRTk
is defined

by: ∀v ∈ H1(Ω) ∪Xh,

(8.5)


∀f ∈ IF ,

∫
Ff

ΠRTk
v · nf q =

∫
Ff

v · nf q, ∀q ∈ P k(Ff )

for k = 1, ∀ℓ ∈ IK ,
∫
Kℓ

ΠRT1
v =

∫
Kℓ

v
.

Note that the Raviart–Thomas interpolation operator preserves the constants. Let
vh ∈ Xh. In order to compute the left-hand-side of (8.2), we must evaluate
(ΠRTk

vh)|Kℓ
for all ℓ ∈ IK . Calculations are performed using the proposition

below, which corresponds to [33, Lemma 3.11]:

Proposition 7. Let k ≤ 1. Let Π̂RTk
: H1(K̂) → Pk(K̂) be the Raviart–Thomas

interpolation operator restricted to the reference element, so that: ∀v̂ ∈ H1(K̂),

(8.6)


∀F̂ ∈ ∂K̂,

∫
F̂

Π̂RTk
v̂ · nF̂ q̂ =

∫
F̂

v̂ · nF̂ q̂, ∀q̂ ∈ P k(F̂ )

for k = 1,

∫
K̂

Π̂RTk
v̂ =

∫
K̂

v̂
.
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We then have: ∀ℓ ∈ IK ,

(8.7) (ΠRTk
v)|Kℓ

(x) = Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
◦ Tℓ−1(x) where v̂ℓ = v ◦ Tℓ(x̂).

The proof is based on the equality of the F̂ and K̂-moments of (ΠRTk
v)|Kℓ

◦Tℓ(x̂)
and Bℓ

(
Π̂RTk

Bℓ
−1v̂ℓ

)
(x̂). For k = 0, setting for d′ ∈ {1, · · · , d}: ψf,d′ := ψf ed′ ,

we obtain that:

(8.8) ∀ℓ ∈ IK , ∀f ∈ IF,ℓ , (ΠRT0
ψf,d′)|Kℓ

= (d |Kℓ|)−1
(
x− O⃗Sf,ℓ

)
Sf,ℓ · ed′ ,

where Sf,ℓ is the vertex opposite to Ff in Kℓ.
For k = 1, the vector (ΠRT1

vh)|Kℓ
is described by eight unknowns:

(ΠRT1vh)|Kℓ
= Aℓ x+ (bℓ · x)x+ dℓ, where Aℓ ∈ R2×2, bℓ ∈ R2, dℓ ∈ R2.

We compute only once the inverse of the matrix of the linear system (8.6), in R8×8.
In the Table 1 (resp. Tables 2 and 3), we call ε0(u) = ∥uh∥L2(Ω) (resp. ∥u −
uh∥L2(Ω)/∥u∥L2(Ω)) the velocity error in L2(Ω)-norm, where uh is the solution
to Problem (5.5) (columns XCR and XFS) or (8.3) (columns XCR + ΠRT0

and
XFS +ΠRT1

) and h is the mesh step.
We first consider Stokes Problem (3.1) in Ω = (0, 1)2 with u = 0, p = (x1)

3+(x2)
3−

0.5, f = grad p = 3
(
(x1)

2, (x2)
2
)T

. We report in Table 1 ε0(u) for h = 5.00 e− 2
and for different values of ν.

ν XCR XCR +ΠRT0 XFS XFS +ΠRT1

1.00 e+ 0 3.19 e− 4 1.34 e− 18 3.53 e− 7 9.09 e− 19
1.00 e− 3 3.19 e− 1 1.34 e− 15 3.53 e− 4 9.09 e− 16
1.00 e− 4 3.19 e+ 0 1.34 e− 14 3.53 e− 3 9.09 e− 15

Table 1. Values of ε0(u) for h = 5.00 e− 2

When there is no projection, the error is inversely proportional to the ν parameter,
whereas using the projection, we obtain uh = 0 up to machine precision.
We now consider Stokes Problem (3.1) in Ω = (0, 1)2 with:

u =

(
(1− cos(2π x1)) sin(2π x2)
(cos(2π x2)− 1) sin(2π x1)

)
,

{
p = sin(2π x1) sin(2π x2),
f = −ν∆u+ grad p.

We report in Table 2 (resp. 3) the values of ε0(u) in the case ν = 1.00 e − 3
(resp. ν = 1.00 e − 4) for different level of mesh refinement. When there is no
projection, ε0(u) is inversely proportional to ν, whereas using the projection, ε0(u)
is independent of ν.

h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 5.66 e− 1 1.13 e− 2 2.35 e− 3 2.06 e− 4
2.50 e− 2 1.33 e− 1 2.89 e− 3 3.21 e− 4 2.59 e− 5
1.25 e− 2 3.88 e− 2 5.40 e− 4 4.20 e− 5 3.40 e− 6
6.25 e− 3 8.40 e− 3 1.79 e− 4 5.04 e− 6 4.15 e− 7

Rate h2.05 h2.07 h2.96 h2.98

Table 2. Values of ε0(u) for ν = 1.00 e− 3
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h XCR XCR +ΠRT0
XFS XFS +ΠRT1

5.00 e− 2 5.66 e− 0 1.13 e− 2 2.35 e− 2 2.06 e− 4
2.50 e− 2 1.33 e− 0 2.89 e− 3 3.20 e− 3 2.59 e− 5
1.25 e− 2 3.38 e− 1 5.40 e− 4 4.20 e− 4 3.40 e− 6
6.25 e− 3 8.40 e− 2 1.79 e− 4 5.04 e− 5 4.15 e− 7

Rate h2.05 h2.07 h2.96 h2.98

Table 3. Values of ε0(u) for ν = 1.00 e− 4

Figure 2. Values of (uFS−uFS+RT1
). Left: x1-component, right:

x2-component.

Let uFS (resp. uFS+RT1
) the solution to Problem (5.5) (resp. (8.3)) computed

with Fortin-Soulie finite elements. We represent on Figure 2 the values of the
Lagrange projection of (uFS − uFS+RT1) in the case where h = 2.50 e − 2 and
ν = 1.00 e − 4. We observe local oscillations, of order the mesh step, which are
caused by the numerical source exhibited in (8.2).
In order to enhance the numerical results, one can also use a posteriori error esti-
mators to adapt the mesh (see [34, 35] for order 1 and [36] for order 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [37]. Notice that using con-
forming finite elements, the Scott-Vogelius finite elements [38, 39] produce velocity
approximations that are exactly divergence free.
The code used to get the numerical results can be downloaded on GitHub [40].
In principle, one can also obtain results with low-regularity velocity field.

9. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite el-
ements in light of the T-coercivity theory, we computed stability coefficients for
order 1 in 2 or 3 dimension without mesh regularity assumption; and for order
1 in 2 dimension in the case of a shape-regular triangulation sequence. We then
provided numerical results to illustrate the importance of using H(div)-conforming
projection. Further, we intend to extend the study to other mixed finite element
methods.
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[18] T. Apel, S. Nicaise, and J. Schöberl. Crouzeix-Raviart type finite elements on anisotropic
meshes. Numerische Mathematik, 89(2):193–223, 2001.

[19] C. Carstensen and S. Sauter. Critical functions and inf-sup stability of Crouzeix-Raviart

elements. Computers and Mathematics with Applications, 108:12–23, 2022.
[20] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying

boundary conditions. Math. Comp., 54:483–493, 1990.

[21] P. Ciarlet Jr. Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces.
J. Numer. Math., 21(3):173—-180, 2013.

[22] L. Tartar. An introduction to sobolev spaces and interpolation spaces, volume 3 of Lecture
Notes of the Unione Matematica Italiana. Springer, 2007.

[23] S. Sauter and C. Torres. On the Inf-Sup Stabillity of Crouzeix-Raviart Stokes Elements in
3D, 2022.

[24] R. Stenberg. Error analysis of some finite element methods for the stokes problem. Math.
Comp., 54:495–508, 1990.
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