IMPROVED STABILITY ESTIMATES FOR SOLVING STOKES PROBLEM WITH FORTIN-SOULIE FINITE ELEMENTS

ERELL JAMELOT

Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides, 91191 Gif-sur-Yvette, France

Abstract

We propose to analyse the discretization of the Stokes problem with nonconforming finite elements in light of the T-coercivity. First we explicit the stability constants with respect to the shape regularity parameter for order 1 in 2 or 3 dimension, and order 2 in 2 dimension. In this last case, we improve the result of the original Crouzeix-Raviart paper. Second, we illustrate the importance of using a divergence-free velocity reconstruction on some numerical experiments. Keywords. Stokes problem, T-coercitivity, Fortin-Soulie finite elements, Fortin operator

2020 Mathematics Subject Classification. 65N30, 35J57, 76D07
Funding. CEA SIMU/SITHY project

1. Introduction

The Stokes problem describes the steady state of incompressible Newtonian flows. They are derived from the Navier-Stokes equations [1]. With regard to numerical analysis, the study of Stokes problem helps to build an appropriate approximation of the Navier-Stokes equations. We consider here a discretization with nonconforming finite elements $[2,3]$. We propose to state the discrete inf-sup condition in light of the T-coercivity (cf. [4] for Helmholtz-like problems, see [5], [6] and [7] for the neutron diffusion equation), which allows to estimate the discrete error constant. In Section 2, we recall the T-coercivity theory [4], which is known to be an equivalent reformulation of the Banach-Nečas-Babuška Theorem. In Section 3 we apply it to the continuous Stokes Problem. We give details on the triangulation in Section 4, and we apply the T-coercivity to the discretization of Stokes problem with nonconforming mixed finite elements in Section 5. For the Stokes problem, in the discrete case, this amounts to finding a Fortin operator. In Section 6 (resp. 7), we precise the proof of the well-posedness in the case of order 1 (resp. order 2) nonconforming mixed finite elements. In Section 8, we illustrate the importance of using a divergence-free velocity on some numerical experiments.

E-mail address: erell.jamelot@cea.fr.
Date: March 8, 2023.

2. T-coercivity

We recall here the T-coercivity theory as written in [4]. Consider first the variational problem, where V and W are two Hilbert spaces and $f \in V^{\prime}$:

$$
\begin{equation*}
\text { Find } u \in V \text { such that } \forall v \in W, a(u, v)=\langle f, v\rangle_{V} \tag{2.1}
\end{equation*}
$$

Classically, we know that Problem (2.1) is well-posed if $a(\cdot, \cdot)$ satisfies the stability and the solvability conditions of the so-called Banach-Nečas-Babuška (BNB) Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the wellposedness using the T-coercivity theory (cf. [4] for Helmholtz-like problems, see [5], [6] and [7] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and $a(\cdot, \cdot)$ be a continuous and bilinear form over $V \times W$. It is T-coercive if

$$
\begin{equation*}
\exists T \in \mathcal{L}(V, W), \text { bijective, } \exists \alpha>0, \forall v \in V,|a(v, T v)| \geq \alpha\|v\|_{V}^{2} \tag{2.2}
\end{equation*}
$$

If in addition $a(\cdot, \cdot)$ is symmetric, it is T-coercive if

$$
\begin{equation*}
\exists T \in \mathcal{L}(V, V), \exists \alpha>0, \forall v \in V,|a(v, T v)| \geq \alpha\|v\|_{V}^{2} \tag{2.3}
\end{equation*}
$$

When the bilinear form $a(\cdot, \cdot)$ is symmetric, the requirement that the operator T is bijective can be dropped. It is proved in [4] that the T-coercivity condition is equivalent to the stability and solvability conditions of the BNB Theorem. Whereas the BNB theorem relies on an abstract inf-sup condition, T-coercivity uses explicit inf-sup operators, both at the continuous and discrete levels.

Theorem 1. (well-posedness) Let $a(\cdot, \cdot)$ be a continuous and bilinear form. Suppose that the form $a(\cdot, \cdot)$ is T-coercive. Then Problem (2.1) is well-posed.

3. Stokes problem

Let Ω be a connected bounded domain of $\mathbb{R}^{d}, d=2$, 3 , with a polygonal $(d=2)$ or Lipschitz polyhedral $(d=3)$ boundary $\partial \Omega$. We consider Stokes problem:

$$
\text { Find }(\mathbf{u}, p) \text { such that }\left\{\begin{align*}
-\nu \Delta \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \tag{3.1}\\
\operatorname{div} \mathbf{u} & =0
\end{align*}\right.
$$

with Dirichlet boundary conditions for the velocity \mathbf{u} and a normalization condition for the pressure p :

$$
\mathbf{u}=0 \text { on } \partial \Omega, \quad \int_{\Omega} p=0 .
$$

The vector field \mathbf{u} represents the velocity of the fluid and the scalar field p represents its pressure divided by the fluid density which is supposed to be constant. Thus, the SI unit of the components of \mathbf{u} is $m \cdot s^{-1}$ and the SI unit of p is $m^{2} \cdot s^{-2}$). The first equation of (3.1) corresponds to the momentum balance equation and the second one corresponds to the conservation of the mass. The constant parameter $\nu>0$ is the kinematic viscosity of the fluid, its SI unit is $m^{2} \cdot s^{-1}$. The vector field $\mathbf{f} \in \mathbf{H}^{-1}(\Omega)$ represents a body forces divided by the fluid density, its SI unit is $m \cdot s^{-2}$.

Before stating the variational formulation of Problem (3.1), we provide some definition and reminders. Let us set $\mathbf{L}^{2}(\Omega)=\left(L^{2}(\Omega)\right)^{d}, \mathbf{H}_{0}^{1}(\Omega)=\left(H_{0}^{1}(\Omega)\right)^{d}$, $\mathbf{H}^{-1}(\Omega)=\left(H^{-1}(\Omega)\right)^{d}$ its dual space and $L_{z m v}^{2}(\Omega)=\left\{q \in L^{2}(\Omega) \mid \int_{\Omega} q=0\right\}$.

We recall that $\mathbf{H}(\operatorname{div} ; \Omega)=\left\{\mathbf{v} \in \mathbf{L}^{2}(\Omega) \mid \operatorname{div} \mathbf{v} \in L^{2}(\Omega)\right\}$. Let us first recall Poincaré-Steklov inequality:

$$
\begin{equation*}
\exists C_{P S}>0 \mid \forall v \in H_{0}^{1}(\Omega), \quad\|v\|_{L^{2}(\Omega)} \leq C_{P S}\|\operatorname{grad} v\|_{\mathbf{L}^{2}(\Omega)} \tag{3.2}
\end{equation*}
$$

The SI unit of $C_{P S}$ is m.
Thanks to this result, in $H_{0}^{1}(\Omega)$, the semi-norm is equivalent to the natural norm, so that the scalar product reads $(v, w)_{H_{0}^{1}(\Omega)}=(\operatorname{grad} v, \operatorname{grad} w)_{\mathbf{L}^{2}(\Omega)}$ and the norm is $\|v\|_{H_{0}^{1}(\Omega)}=\|\operatorname{grad} v\|_{\mathbf{L}^{2}(\Omega)}$. Let $\mathbf{v}, \mathbf{w} \in \mathbf{H}_{0}^{1}(\Omega)$. We denote by $\left(v_{i}\right)_{i=1}^{d}$ (resp. $\left.\left(w_{i}\right)_{i=1}^{d}\right)$ the components of \mathbf{v} (resp. $\left.\mathbf{w}\right)$, and we set $\mathbf{G r a d} \mathbf{v}=\left(\partial_{j} v_{i}\right)_{i, j=1}^{d} \in \mathbb{L}^{2}(\Omega)$, where $\mathbb{L}^{2}(\Omega)=\left[L^{2}(\Omega)\right]^{d \times d}$. We have:

$$
(\mathbf{G r a d} \mathbf{v}, \operatorname{Grad} \mathbf{w})_{\mathbb{L}^{2}(\Omega)}=(\mathbf{v}, \mathbf{w})_{\mathbf{H}_{0}^{1}(\Omega)}=\sum_{i=1}^{d}\left(v_{i}, w_{i}\right)_{H_{0}^{1}(\Omega)}
$$

and:

$$
\|\mathbf{v}\|_{\mathbf{H}_{0}^{1}(\Omega)}=\left(\sum_{j=1}^{d}\left\|v_{j}\right\|_{H_{0}^{1}(\Omega)}^{2}\right)^{1 / 2}=\|\operatorname{Grad} \mathbf{v}\|_{\mathbb{L}^{2}(\Omega)}
$$

Let us set $\mathbf{V}=\left\{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \mid \operatorname{div} \mathbf{v}=0\right\}$. The space \mathbf{V} is a closed subset of $\mathbf{H}_{0}^{1}(\Omega)$. We denote by \mathbf{V}^{\perp} the orthogonal of \mathbf{V} in $\mathbf{H}_{0}^{1}(\Omega)$. Let $\nu_{p}>0$ be a kinematic viscosity. We recall that [1, cor. I.2.4]:
Proposition 1. The operator div : $\mathbf{H}_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$ is an isomorphism of \mathbf{V}^{\perp} onto $L_{z m v}^{2}(\Omega)$. We call $C_{\text {div }}$ the constant such that:

$$
\begin{equation*}
\forall p \in L_{z m v}^{2}(\Omega), \exists!\mathbf{v} \in \mathbf{V}^{\perp} \mid \operatorname{div} \mathbf{v}=p \text { and }\|\mathbf{v}\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\mathrm{div}}\|p\|_{L^{2}(\Omega)} \tag{3.3}
\end{equation*}
$$

The constant $C_{\text {div }}$ depends only on the domain Ω. Notice that we have: $C_{\text {div }}=$ $1 / \beta(\Omega)$ where $\beta(\Omega)$ is the inf-sup condition (or Ladyzhenskaya-Babuška-Brezzi condition):

$$
\begin{equation*}
\beta(\Omega)=\inf _{q \in L_{z m v}^{2}(\Omega) \backslash\{0\}} \sup _{\mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) \backslash\{0\}} \frac{(q, \operatorname{div} \mathbf{v})_{L^{2}(\Omega)}}{\|q\|_{L^{2}(\Omega)}\|\mathbf{v}\|_{\mathbf{H}_{0}^{1}(\Omega)}} \tag{3.4}
\end{equation*}
$$

Generally, the value of $\beta(\Omega)$ is not known explicitly. In [9], Bernardi et al established results on the discrete approximation of $\beta(\Omega)$ using conforming finite elements. Recently, Gallistl proposed in [10] a numerical scheme with adaptive meshes for computing approximations to $\beta(\Omega)$. In the case of $d=2$, Costabel and Dauge [11] established the following bound:
Theorem 2. Let $\Omega \subset \mathbb{R}^{2}$ be a domain contained in a ball of radius R, star-shaped with respect to a concentric ball of radius ρ. Then

$$
\begin{equation*}
\beta(\Omega) \geq \frac{\rho}{\sqrt{2 R}}\left(1+\sqrt{1-\frac{\rho^{2}}{R^{2}}}\right)^{-1 / 2} \geq \frac{\rho}{2 R} \tag{3.5}
\end{equation*}
$$

Let us detail the bound for some remarkable domains. If Ω is a ball, $\beta(\Omega) \geq \frac{1}{2}$ and if Ω is a square, $\beta(\Omega) \geq \frac{1}{2 \sqrt{2}}$. Suppose now that Ω is stretched in some direction by a factor k, then $\beta(\Omega) \geq \frac{1}{2 k}$. Finally, if Ω is L-shaped (resp. cross-shaped) such that $L=k l$, where L is the largest length and l is the smallest length of an edge, then $\beta(\Omega) \geq \frac{1}{2 \sqrt{2} k}\left(\right.$ resp. $\left.\beta(\Omega) \geq \frac{1}{4 k}\right)$.

The variational formulation of Problem (3.1) reads:
Find $(\mathbf{u}, p) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$ such that

$$
\left\{\begin{align*}
\nu(\mathbf{u}, \mathbf{v})_{\mathbf{H}_{0}^{1}(\Omega)}-(p, \operatorname{div} \mathbf{v})_{L^{2}(\Omega)} & =\langle\mathbf{f}, \mathbf{v}\rangle_{\mathbf{H}_{0}^{1}(\Omega)} & & \forall \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega) ; \tag{3.6}\\
(q, \operatorname{div} \mathbf{u})_{L^{2}(\Omega)} & =0 & & \forall q \in L_{z m v}^{2}(\Omega)
\end{align*}\right.
$$

Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov inequality (3.2) and Prop. 1. Check for instance the proof of [1, Thm. I.5.1].

Let us set $\mathcal{X}=\mathbf{H}_{0}^{1}(\Omega) \times L_{z m v}^{2}(\Omega)$ which is a Hilbert space which we endow with the following norm:

$$
\begin{equation*}
\|(\mathbf{v}, q)\|_{\mathcal{X}}=\left(\|\mathbf{v}\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\nu^{-2}\|q\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} \tag{3.7}
\end{equation*}
$$

We consider now the following bilinear symmetric and continuous form:

$$
\left\{\begin{array}{rl}
a_{S}: \mathcal{X} \times \mathcal{X} & \rightarrow \mathbb{R} \tag{3.8}\\
\left(\mathbf{u}^{\prime}, p^{\prime}\right) \times(\mathbf{v}, q) & \mapsto
\end{array} \nu^{\prime}\left(\mathbf{u}^{\prime}, \mathbf{v}\right)_{\mathbf{H}_{0}^{1}(\Omega)}-\left(p^{\prime}, \operatorname{div} \mathbf{v}\right)_{L^{2}(\Omega)}-\left(q, \operatorname{div} \mathbf{u}^{\prime}\right)_{L^{2}(\Omega)} .\right.
$$

We can write Problem (3.1) in an equivalent way as follows:

$$
\begin{equation*}
\text { Find }(\mathbf{u}, p) \in \mathcal{X} \text { such that } \quad a_{S}((\mathbf{u}, p),(\mathbf{v}, q))=\langle\mathbf{f}, \mathbf{v}\rangle_{\mathbf{H}_{0}^{1}(\Omega)} \quad \forall(\mathbf{v}, q) \in \mathcal{X} \tag{3.9}
\end{equation*}
$$

Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.
Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such that:

$$
\forall \mathbf{f} \in \mathbf{H}^{-1}(\Omega), \quad\left\{\begin{array}{l}
\|\mathbf{u}\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq \nu^{-1}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)} \tag{3.10}\\
\|p\|_{L^{2}(\Omega)} \leq C_{\mathrm{div}}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}
\end{array}\right.
$$

Proof. We follow here the proof given in $[12,13]$. Let us consider $\left(\mathbf{u}^{\prime}, p^{\prime}\right) \in \mathcal{X}$ and let us build $\left(\mathbf{v}^{\star}, q^{\star}\right)=T\left(\mathbf{u}^{\prime}, p^{\prime}\right) \in \mathcal{X}$ satisfying (2.3) (with $V=\mathcal{X}$). We need three main steps.

1. According to Prop. 1, there exists $\tilde{\mathbf{v}}_{p^{\prime}} \in \mathbf{H}_{0}^{1}(\Omega)$ such that: $\operatorname{div} \tilde{\mathbf{v}}_{p^{\prime}}=p^{\prime}$ in Ω and $\left\|\tilde{\mathbf{v}}_{p^{\prime}}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\text {div }}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}$. Let us set $\mathbf{v}_{p^{\prime}}=\nu^{-1} \tilde{\mathbf{v}}_{p^{\prime}}$ so that $\operatorname{div} \mathbf{v}_{p^{\prime}}=\nu^{-1} p^{\prime}$ and

$$
\left\|\mathbf{v}_{p^{\prime}}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq \nu^{-1} C_{\mathrm{div}}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}
$$

Let us set $\left(\mathbf{v}^{\star}, q^{\star}\right):=\left(\gamma \mathbf{u}^{\prime}-\mathbf{v}_{p^{\prime}},-\gamma p^{\prime}\right)$, with $\gamma>0$. We obtain:

$$
\begin{equation*}
a_{S}\left(\left(\mathbf{u}^{\prime}, p^{\prime}\right),\left(\mathbf{v}^{\star}, q^{\star}\right)\right)=\nu \gamma\left\|\mathbf{u}^{\prime}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\nu^{-1}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}^{2}-\nu\left(\mathbf{u}^{\prime}, \mathbf{v}_{p^{\prime}}\right)_{\mathbf{H}_{0}^{1}(\Omega)} . \tag{3.12}
\end{equation*}
$$

2. In order to bound the last term of (3.12), we use Young inequality and then inequality (3.11) so that for all $\eta>0$:

$$
\begin{equation*}
\left(\mathbf{u}^{\prime}, \mathbf{v}_{p^{\prime}}\right)_{\mathbf{H}_{0}^{1}(\Omega)} \leq \frac{\eta}{2}\left\|\mathbf{u}^{\prime}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\frac{\eta^{-1}}{2}\left(\frac{C_{\mathrm{div}}}{\nu}\right)^{2}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}^{2} \tag{3.13}
\end{equation*}
$$

3. Using the bound (3.13) in (3.12) and choosing $\eta=\gamma$, we get:

$$
a_{S}\left(\left(\mathbf{u}^{\prime}, p^{\prime}\right),\left(\mathbf{v}^{\star}, q^{\star}\right)\right) \geq \nu\left(\frac{\gamma}{2}\left\|\mathbf{u}^{\prime}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\nu^{-2}\left(1+\frac{\gamma^{-1}}{2}\left(C_{\text {div }}\right)^{2}\right)\left\|p^{\prime}\right\|_{L^{2}(\Omega)}^{2}\right) .
$$

Consider now $\gamma=\left(C_{\text {div }}\right)^{2}$. We obtain:
$a_{S}\left(\left(\mathbf{u}^{\prime}, p^{\prime}\right),\left(\mathbf{v}^{\star}, q^{\star}\right)\right) \geq \nu C_{\min }\left\|\left(\mathbf{u}^{\prime}, p^{\prime}\right)\right\|_{\mathcal{X}}^{2}$ where $C_{\min }=\frac{1}{2} \min \left(\left(C_{\text {div }}\right)^{2}, 1\right)$.

The operator T such that $T\left(\mathbf{u}^{\prime}, p^{\prime}\right)=\left(\mathbf{v}^{\star}, q^{\star}\right)$ is linear and continuous:

$$
\begin{aligned}
\left\|T\left(\mathbf{u}^{\prime}, p^{\prime}\right)\right\|_{\mathcal{X}}^{2} & :=\left\|\mathbf{v}^{\star}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\nu^{-2}\left\|q^{\star}\right\|_{L^{2}(\Omega)}^{2} \\
& \leq \gamma^{2}\left\|\mathbf{u}^{\prime}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\left\|\mathbf{v}_{p^{\prime}}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\gamma^{2} \nu^{-2}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}^{2} \\
& \leq \gamma^{2}\left\|\mathbf{u}^{\prime}\right\|_{\mathbf{H}_{0}^{1}(\Omega)}^{2}+\left(\left(C_{\text {div }}\right)^{2}+\gamma\right) \nu^{-2}\left\|p^{\prime}\right\|_{L^{2}(\Omega)}^{2} \\
& \leq\left(C_{\max }\right)^{2}\left\|\left(\mathbf{u}^{\prime}, p^{\prime}\right)\right\|_{\mathcal{X}}^{2}
\end{aligned}
$$

where $C_{\max }=C_{\text {div }}\left(1+\left(C_{\text {div }}\right)^{2}\right)^{1 / 2}$.
1 The symmetric and continuous bilinear form $a(\cdot, \cdot)$ is then T-coercive and according to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.10). Consider (\mathbf{u}, p) the unique solution of Problem (3.9). Choosing $\mathbf{v}=0$, we obtain that $\forall q \in L_{z m v}^{2}(\Omega),(q, \operatorname{div} \mathbf{u})_{L^{2}(\Omega)}=0$, so that $\mathbf{u} \in \mathbf{V}$. Now, choosing $\mathbf{v}=$ \mathbf{u} and using Cauchy-Schwarz inequality, we have: $\nu\|\mathbf{u}\|_{\mathbf{H}_{0}^{1}(\Omega}^{2}=\langle\mathbf{f}, \mathbf{u}\rangle_{\mathbf{H}_{0}^{1}(\Omega)} \leq$ $\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}\|\mathbf{u}\|_{\mathbf{H}_{0}^{1}(\Omega)}$, so that: $\|\mathbf{u}\|_{\mathbf{H}_{0}^{1}(\Omega} \leq \nu^{-1}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}$. Next, we choose in (3.9) $\mathbf{v}=\mathbf{v}_{p} \in \mathbf{V}^{\perp}$, where $\operatorname{div} \mathbf{v}_{p}=-\nu^{-1} p$ (see Prop. 1). Noticing that $\mathbf{u} \in \mathbf{V}$ and $\mathbf{v}_{p} \in \mathbf{V}^{\perp}$, it holds ${ }^{2}:\left(\mathbf{u}, \mathbf{v}_{p}\right)_{\mathbf{H}_{0}^{1}(\Omega)}=0$. This gives:

$$
\begin{aligned}
-\left(p, \operatorname{div} \mathbf{v}_{p}\right)_{L^{2}(\Omega)} & =\nu^{-1}\|p\|_{L^{2}(\Omega)}^{2}=\left\langle\mathbf{f}, \mathbf{v}_{p}\right\rangle_{\mathbf{H}_{0}^{1}(\Omega)} \\
& \leq\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}\left\|\mathbf{v}_{p}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\mathrm{div}} \nu^{-1}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}\|p\|_{L^{2}(\Omega)},
\end{aligned}
$$

so that: $\|p\|_{L^{2}(\Omega)} \leq C_{\mathrm{div}}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}$.
Remark 1. We recover the first Banach-Nečas-Babuška condition [8, Thm. 25.9, (BNB1)]:

$$
a_{S}\left(\left(\mathbf{u}^{\prime}, p^{\prime}\right),\left(\mathbf{v}^{\star}, q^{\star}\right)\right) \geq \nu C_{\min }\left(C_{\max }\right)^{-1}\left\|\left(\mathbf{u}^{\prime}, p^{\prime}\right)\right\|_{\mathcal{X}}\left\|\left(\mathbf{v}^{\star}, q^{\star}\right)\right\|_{\mathcal{X}}
$$

Let us call $C_{\text {stab }}=\nu C_{\min }\left(C_{\max }\right)^{-1}$ the stability constant. With the choice of our parameters, $C_{\text {stab }}$ is such that:

$$
C_{\text {stab }}= \begin{cases}\frac{\nu}{2} \frac{C_{\text {div }}}{\left.\left(1+\left(C_{\text {div }}\right)^{2}\right)\right)^{1 / 2}} & \text { if } 0<C_{\text {div }} \leq 1 \\ \frac{\nu}{2} \frac{\left(C_{\text {div }}\right)^{-1}}{\left.\left(1+\left(C_{\text {div }}\right)^{2}\right)\right)^{1 / 2}} & \text { if } 1 \leq C_{\text {div }}\end{cases}
$$

Thus, the T-coercivity approach allows to give an estimate of the stability constant. In our computations, it depends on the choice of the parameters η and γ, so that it could be optimized.
If we were using a conforming discretization to solve Problem (3.9) (a.e. TaylorHood finite elements [14]), we would use the bilinear form $a_{S}(\cdot, \cdot)$ to state the discrete variational formulation. Let us call the discrete spaces $\mathbf{X}_{c, h} \subset \mathbf{H}_{0}^{1}(\Omega)$ and $Q_{c, h} \subset L_{z m v}^{2}(\Omega)$. Then to prove the discrete T-coercivity, we would need to state

[^0]the discrete counterpart to Proposition 1. To do so, we can build a linear operator $\Pi_{c}: \mathbf{X} \rightarrow \mathbf{X}_{h}$, known as Fortin operator, such that (see a.e. [15, §8.4.1]):
\[

$$
\begin{align*}
\exists C_{c} \mid \forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left\|\mathbf{G r a d} \Pi_{c} \mathbf{v}\right\|_{\mathbb{L}^{2}(\Omega)} & \leq C_{c}\|\mathbf{G r a d} \mathbf{v}\|_{\mathbb{L}^{2}(\Omega)}, \tag{3.14}\\
\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) & \left(\operatorname{div} \Pi_{c} \mathbf{v}, q_{h}\right)_{L^{2}(\Omega)} \tag{3.15}
\end{align*}
$$=\left(\operatorname{div} \mathbf{v}, q_{h}\right)_{L^{2}(\Omega)}, \quad \forall q_{h} \in Q_{c, h} .
\]

Using a nonconforming discretization, we will not use the bilinear form $a_{S}(\cdot, \cdot)$ to exhibit the discrete variational formulation, but we will need a similar operator to (3.14)-(3.15) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. Discretization

We call $\left(O,\left(x_{d^{\prime}}\right) d_{d^{\prime}=1}^{d}\right)$ the Cartesian coordinates system, of orthonormal basis $\left(\mathbf{e}_{d^{\prime}}\right)_{d^{\prime}=1}^{d}$. Consider $\left(\mathcal{T}_{h}\right)_{h}$ a simplicial triangulation sequence of Ω. For a triangulation \mathcal{T}_{h}, we use the following index sets:

- \mathcal{I}_{K} denotes the index set of the elements, such that $\mathcal{T}_{h}:=\bigcup_{\ell \in \mathcal{I}_{K}} K_{\ell}$ is the set of elements.
- \mathcal{I}_{F} denotes the index set of the facets ${ }^{3}$, such that $\mathcal{F}_{h}:=\bigcup_{f \in \mathcal{I}_{F}} F_{f}$ is the set of facets.
Let $\mathcal{I}_{F}=\mathcal{I}_{F}^{i} \cup \mathcal{I}_{F}^{b}$, where $\forall f \in \mathcal{I}_{F}^{i}, F_{f} \in \Omega$ and $\forall f \in \mathcal{I}_{F}^{b}, F_{f} \in \partial \Omega$.
- \mathcal{I}_{S} denotes the index set of the vertices, such that $\left(S_{j}\right)_{j \in \mathcal{I}_{S}}$ is the set of vertices.
Let $\mathcal{I}_{S}=\mathcal{I}_{S}^{i} \cup \mathcal{I}_{S}^{b}$, where $\forall j \in \mathcal{I}_{S}^{i}, S_{j} \in \Omega$ and $\forall j \in \mathcal{I}_{S}^{b}, S_{j} \in \partial \Omega$.
We also define the following index subsets:
- $\forall \ell \in \mathcal{I}_{K}, \mathcal{I}_{F, \ell}=\left\{f \in \mathcal{I}_{F} \mid F_{f} \in K_{\ell}\right\}, \quad \mathcal{I}_{S, \ell}=\left\{j \in \mathcal{I}_{S} \mid S_{j} \in K_{\ell}\right\}$.
- $\forall j \in \mathcal{I}_{S}, \mathcal{I}_{K, j}=\left\{\ell \in \mathcal{I}_{K} \mid S_{j} \in K_{\ell}\right\}, \quad N_{j}:=\operatorname{card}\left(\mathcal{I}_{K, j}\right)$.

For all $\ell \in \mathcal{I}_{K}$, we call h_{ℓ} and ρ_{ℓ} the diameters of K_{ℓ} and its inscribed sphere respectively, and we let: $\sigma_{\ell}=\frac{h_{\ell}}{\rho_{\ell}}$. When the $\left(\mathcal{T}_{h}\right)_{h}$ is a shape-regular triangulation sequence (see a.e. [16, def. 11.2]), there exists a constant $\sigma>1$, called the shape regularity parameter, such that for all h, for all $\ell \in \mathcal{I}_{K}, \sigma_{\ell} \leq \sigma$. For all $f \in \mathcal{I}_{F}$, M_{f} denotes the barycentre of F_{f}, and by \mathbf{n}_{f} its unit normal (outward oriented if $\left.F_{f} \in \partial \Omega\right)$. For all $j \in \mathcal{I}_{S}$, for all $\ell \in \mathcal{I}_{K, j}, \lambda_{j, \ell}$ denotes the barycentric coordinate of S_{j} in $K_{\ell} ; F_{j, \ell}$ denotes the face opposite to vertex S_{j} in element K_{ℓ}, and $\mathbf{x}_{j, \ell}$ denotes its barycentre. We call $\mathcal{S}_{j, \ell}$ the outward normal vector of $F_{j, \ell}$ and of norm $\left|\mathcal{S}_{j, \ell}\right|=\left|F_{j, \ell}\right|$.

Let introduce spaces of piecewise regular elements:
We set $\mathcal{P}_{h} H^{1}=\left\{v \in L^{2}(\Omega) ; \quad \forall \ell \in \mathcal{I}_{K}, v_{\mid K_{\ell}} \in H^{1}\left(K_{\ell}\right)\right\}$, endowed with the scalar product :

$$
(v, w)_{h}:=\sum_{\ell \in \mathcal{I}_{K}}(\operatorname{grad} v, \operatorname{grad} w)_{\mathbf{L}^{2}\left(K_{\ell}\right)} \quad\|v\|_{h}^{2}=\sum_{\ell \in \mathcal{I}_{K}}\|\operatorname{grad} v\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}^{2} .
$$

We set $\mathcal{P}_{h} \mathbf{H}^{1}=\left[\mathcal{P}_{h} H^{1}\right]^{d}$, endowed with the scalar product :

$$
(\mathbf{v}, \mathbf{w})_{h}:=\sum_{\ell \in \mathcal{I}_{K}}(\mathbf{G r a d} \mathbf{v}, \operatorname{Grad} \mathbf{w})_{\mathbb{L}^{2}\left(K_{\ell}\right)} \quad\|\mathbf{v}\|_{h}^{2}=\sum_{\ell \in \mathcal{I}_{K}}\|\operatorname{Grad} \mathbf{v}\|_{\mathbb{L}^{2}\left(K_{\ell}\right)}^{2} .
$$

[^1]Let $f \in \mathcal{I}_{F}^{i}$ such that $F_{f}=\partial K_{L} \cap \partial K_{R}$ and \mathbf{n}_{f} is outward K_{L} oriented.
The jump (resp. average) of a function $v \in \mathcal{P}_{h} H^{1}$ across the facet F_{f} is defined as follows: $[v]_{F_{f}}:=v_{\mid K_{L}}-v_{\mid K_{R}}$ (resp. $\left.\{v\}_{F_{f}}:=\frac{1}{2}\left(v_{\mid K_{L}}+v_{\mid K_{R}}\right)\right)$. For $f \in \mathcal{I}_{F}^{b}$, we set: $[v]_{F_{f}}:=v_{\mid F_{f}}$ and $\{v\}_{F_{f}}:=v_{\mid F_{f}}$.
We set $\mathcal{P}_{h} \mathbf{H}$ (div) $=\left\{\mathbf{v} \in \mathbf{L}^{2}(\Omega) ; \quad \forall \ell \in \mathcal{I}_{K}, \mathbf{v}_{\mid K_{\ell}} \in \mathbf{H}\left(\operatorname{div} ; K_{\ell}\right)\right\}$, and we define the operator div_{h} such that:

$$
\forall \mathbf{v} \in \mathcal{P}_{h} \mathbf{H}(\operatorname{div}), \forall q \in L^{2}(\Omega), \quad\left(\operatorname{div}_{h} \mathbf{v}, q\right)=\sum_{\ell \in \mathcal{I}_{K}}(\operatorname{div} \mathbf{v}, q)_{L^{2}\left(K_{\ell}\right)}
$$

We recall classical finite elements estimates [16]. Let \hat{K} be the reference simplex and \hat{F} be the reference facet. For $\ell \in \mathcal{I}_{K}$ (resp. $f \in \mathcal{I}_{F}$), we denote by $T_{\ell}: \hat{K} \rightarrow K_{\ell}$ (resp. $\left.T_{f}: \hat{F} \rightarrow F_{f}\right)$ the geometric mapping such that $\forall \hat{\mathbf{x}} \in \hat{K}, \mathbf{x}_{\mid K_{\ell}}=T_{\ell}(\hat{\mathbf{x}})=$ $\mathbb{B}_{\ell} \hat{\mathbf{x}}+\mathbf{b}_{\ell}\left(\right.$ resp. $\left.\quad \mathbf{x}_{\mid F_{f}}=T_{f}(\hat{\mathbf{x}})=\mathbb{B}_{f} \hat{\mathbf{x}}+\mathbf{b}_{f}\right)$, and we set $J_{\ell}=\operatorname{det}\left(\mathbb{B}_{\ell}\right)$ (resp. $\left.J_{f}=\operatorname{det}\left(\mathbb{B}_{f}\right)\right)$. There holds:

$$
\begin{equation*}
\left|J_{\ell}\right|=d!\left|K_{\ell}\right|, \quad\left\|\mathbb{B}_{\ell}\right\|=\frac{h_{\ell}}{\rho_{\hat{K}}}, \quad\left\|\mathbb{B}_{\ell}^{-1}\right\|=\frac{h_{\hat{K}}}{\rho_{\ell}}, \quad\left|J_{f}\right|=(d-1)!\left|F_{f}\right| . \tag{4.1}
\end{equation*}
$$

For $v \in L^{2}\left(K_{\ell}\right)$, we set $\hat{v}_{\ell}=v \circ T_{\ell}$. For $v \in v^{2}\left(F_{f}\right)$, we set: $\hat{v}_{f}=v \circ T_{f}$. Changing the variable, we get:

$$
\begin{equation*}
\|v\|_{L^{2}\left(K_{\ell}\right)}^{2}=\left|J_{\ell}\right|\left\|\hat{v}_{\ell}\right\|_{L^{2}(\hat{K})}^{2}, \quad \text { and } \quad\|v\|_{L^{2}\left(F_{f}\right)}^{2}=\left|J_{f}\right|\left\|\hat{v}_{f}\right\|_{L^{2}(\hat{F})}^{2} \tag{4.2}
\end{equation*}
$$

Let $v \in \mathcal{P}_{h} H^{1}$. By changing the variable, $\boldsymbol{\operatorname { g r a d }} v_{\mid K_{\ell}}=\left(\mathbb{B}_{\ell}\right)^{-1} \operatorname{grad}_{\hat{\mathbf{x}}} \hat{v}_{\ell}$, and it holds:

$$
\begin{align*}
& \text { (i) } \quad\|\operatorname{grad} v\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}^{2} \\
& \leq\left\|\mathbb{B}_{\ell}^{-1}\right\|^{2}\left|K_{\ell}\right|\left\|\operatorname{grad}_{\hat{\mathbf{x}}} \hat{v}_{\ell}\right\|_{\mathbf{L}^{2}(\hat{K})}^{2} \tag{4.3}\\
& \text { (ii) }\left\|\operatorname{grad}_{\hat{\mathbf{x}}} \hat{v}_{\ell}\right\|_{\mathbf{L}^{2}(\hat{K})}^{2} \leq\left\|\mathbb{B}_{\ell}\right\|^{2}\left|K_{\ell}\right|^{-1}\|\operatorname{grad} v\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}^{2}
\end{align*}
$$

We recall the Poincaré-Steklov inequality in cells [16, Lemma 12.11]: for all $\ell \in \mathcal{I}_{K}\left(K_{\ell}\right.$ is a convex set), $\forall v \in H^{1}\left(K_{\ell}\right)$:

$$
\begin{equation*}
\left\|\underline{v}_{\ell}\right\|_{L^{2}\left(K_{\ell}\right)} \leq \pi^{-1} h_{\ell}\|\operatorname{grad} v\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}, \quad \text { where } \underline{v}_{\ell}=v_{\mid K_{\ell}}-\frac{\int_{K_{\ell}} v}{\left|K_{\ell}\right|} \tag{4.4}
\end{equation*}
$$

For all $D \subset \mathbb{R}^{d}$, and $k \in \mathbb{N}^{*}$, we call $P^{k}(D)$ the set of order k polynomials on D, $\mathbf{P}^{k}(D)=\left(P^{k}(D)\right)^{d}$, and we consider the broken polynomial space:

$$
P_{d i s c}^{k}\left(\mathcal{T}_{h}\right)=\left\{q \in L^{2}(\Omega) ; \quad \forall \ell \in \mathcal{I}_{K}, q_{\mid K_{\ell}} \in P^{k}\left(K_{\ell}\right)\right\}, \quad \mathbf{P}_{d i s c}^{k}\left(\mathcal{T}_{h}\right):=\left(P_{d i s c}^{k}\left(\mathcal{T}_{h}\right)\right)^{d} .
$$

We let $P^{0}\left(\mathcal{T}_{h}\right)$ be the space of piecewise constant functions on \mathcal{T}_{h}.

5. The nonconforming mixed finite element method for Stokes

The nonconforming finite element method was introduced by Crouzeix and Raviart in [2] to solve Stokes Problem (3.1). We approximate the vector space $\mathbf{H}^{1}(\Omega)$ component by component by piecewise polynomials of order $k \in \mathbb{N}^{\star}$. Let us consider X_{h} (resp. $X_{0, h}$), the space of nonconforming approximation of $H^{1}(\Omega)$ (resp. $H_{0}^{1}(\Omega)$)
of order k :

$$
\begin{gather*}
X_{h}=\left\{v_{h} \in P_{d i s c}^{k}\left(\mathcal{T}_{h}\right) ; \quad \forall f \in \mathcal{I}_{F}^{i}, \forall q_{h} \in P^{k-1}\left(F_{f}\right), \int_{F_{f}}\left[v_{h}\right] q_{h}=0\right\} ; \\
X_{0, h}=\left\{v_{h} \in X_{h} ; \quad \forall f \in \mathcal{I}_{F}^{b}, \forall q_{h} \in P^{k-1}\left(F_{f}\right), \int_{F_{f}} v_{h} q_{h}=0\right\} . \tag{5.1}
\end{gather*}
$$

The condition on the jumps of v_{h} on the inner facets is often called the patch-test condition.

Proposition 2. The broken norm $v_{h} \rightarrow\left\|v_{h}\right\|_{h}$ is a norm over $X_{0, h}$.
Proof. Let $v_{h} \in X_{0, h}$ such that $\left\|v_{h}\right\|_{h}=0$. Then for all $\ell \in \mathcal{I}_{K}, v_{h \mid K_{\ell}}$ is a constant. For all $f \in \mathcal{I}_{F}^{i}$ the jump $\left[v_{h}\right]_{F_{f}}$ vanishes, so that v_{h} is a constant over Ω. We deduce from the discrete boundary condition that $v_{h}=0$.

The space of nonconforming approximation of $\mathbf{H}^{1}(\Omega)$ (resp. $\left.\mathbf{H}_{0}^{1}(\Omega)\right)$ of order k is $\mathbf{X}_{h}=\left(X_{h}\right)^{d}$ (resp. $\left.\mathbf{X}_{0, h}=\left(X_{0, h}\right)^{d}\right)$. We set $\mathcal{X}_{h}:=\mathbf{X}_{0, h} \times Q_{h}$ where $Q_{h}=$ $P_{d i s c}^{k-1}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}(\Omega)$. We deduce from Proposition 2 the
Proposition 3. The broken norm defined below is a norm on \mathcal{X}_{h} :

$$
\|(\cdot, \cdot)\|_{\mathcal{X}_{h}}:\left\{\begin{align*}
\mathcal{X}_{h} & \mapsto \mathbb{R} \tag{5.2}\\
\left(\mathbf{v}_{h}, q_{h}\right) & \rightarrow\left(\left\|\mathbf{v}_{h}\right\|_{h}^{2}+\nu^{-2}\left\|q_{h}\right\|_{L^{2}(\Omega)}^{2}\right)^{1 / 2} .
\end{align*}\right.
$$

Thus, the product space \mathcal{X}_{h} endowed with the broken norm $\|\cdot\|_{\mathcal{X}_{h}}$ is a Hilbert space.

Proposition 4. The following discrete Poincaré-Steklov inequality holds: there exists a constant $C_{P S}^{n c}$ independent of \mathcal{T}_{h} such that

$$
\begin{equation*}
\forall \mathbf{v}_{h} \in \mathbf{X}_{0, h}, \quad\left\|\mathbf{v}_{h}\right\|_{\mathbf{L}^{2}(\Omega)} \leq C_{P S}^{n c}\left\|\mathbf{v}_{h}\right\|_{h} \tag{5.3}
\end{equation*}
$$

where $C_{P S}^{n c}$ is independent of \mathcal{T}_{h} and is proportional to the diameter of Ω.
Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for $k=1$, but one can check that the proof holds true for higher-order, thanks to the patch-test condition. An alternative proof is given in [17, Theorem C.1].

We consider the discrete continuous bilinear form $a_{S, h}(\cdot, \cdot)$ such that :

$$
\left\{\begin{aligned}
& a_{S, h}: \mathcal{X}_{h} \times \mathcal{X}_{h} \rightarrow \mathbb{R} \\
&\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right) \times\left(\mathbf{v}_{h}, q_{h}\right) \mapsto \\
& \nu\left(\mathbf{u}_{h}^{\prime}, \mathbf{v}_{h}\right)_{h}-\left(\operatorname{div}_{h} \mathbf{v}_{h}, p_{h}^{\prime}\right)-\left(\operatorname{div}_{h} \mathbf{u}_{h}^{\prime}, q_{h}\right) .
\end{aligned}\right.
$$

Let $\ell_{\mathbf{f}} \in \mathcal{L}\left(\mathcal{X}_{h}, \mathbb{R}\right)$ be such that :

$$
\forall\left(\mathbf{v}_{h}, q_{h}\right) \in \mathcal{X}_{h}, \quad \ell_{\mathbf{f}}\left(\left(\mathbf{v}_{h}, q_{h}\right)\right)=\left\{\begin{aligned}
\left(\mathbf{f}, \mathbf{v}_{h}\right)_{\mathbf{L}^{2}(\Omega)} & \text { if } \mathbf{f} \in \mathbf{L}^{2}(\Omega) \\
\left\langle\mathbf{f}, \mathcal{I}_{h}\left(\mathbf{v}_{h}\right)\right\rangle_{\mathbf{H}_{0}^{1}(\Omega)} & \text { if } \mathbf{f} \notin \mathbf{L}^{2}(\Omega)
\end{aligned}\right.
$$

where $\mathcal{I}_{h}: \mathbf{X}_{0, h} \rightarrow \mathbf{Y}_{0, h}$, with $\mathbf{Y}_{0, h}=\left\{\mathbf{v}_{h} \in \mathbf{H}_{0}^{1}(\Omega) ; \quad \forall \ell \in \mathcal{I}_{K}, \mathbf{v}_{h \mid K_{\ell}} \in \mathbf{P}^{k}\left(K_{\ell}\right)\right\}$, is the averaging operator described in [16, §22.4.1]. There exists a constant $C_{\mathcal{I}_{h}}^{\text {nc }}>0$ independent of \mathcal{T}_{h} such that:

$$
\begin{equation*}
\left\|\mathcal{I}_{h} \mathbf{v}_{h}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\mathcal{I}_{h}}^{n c}\left\|\mathbf{v}_{h}\right\|_{h}, \quad \forall \mathbf{v}_{h} \in \mathbf{X}_{0, h} \tag{5.4}
\end{equation*}
$$

The nonconforming discretization of Problem (3.9) reads:
Find $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathcal{X}_{h}$ such that

$$
\begin{equation*}
a_{S, h}\left(\left(\mathbf{u}_{h}, p_{h}\right),\left(\mathbf{v}_{h}, q_{h}\right)\right)=\ell_{\mathbf{f}}\left(\left(\mathbf{v}_{h}, q_{h}\right)\right) \quad \forall\left(\mathbf{v}_{h}, q_{h}\right) \in \mathcal{X}_{h} . \tag{5.5}
\end{equation*}
$$

Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.
Theorem 4. Suppose that there exists a Fortin operator $\Pi_{n c}: \mathbf{H}^{1}(\Omega) \rightarrow \mathbf{X}_{h}$ such that

$$
\begin{align*}
\exists C_{n c} \mid \forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left\|\Pi_{n c} \mathbf{v}\right\|_{h} & \leq C_{n c}\|\mathbf{G r a d} \mathbf{v}\|_{\mathbb{L}^{2}(\Omega)}, \tag{5.6}\\
\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left(\operatorname{div}_{h} \Pi_{n c} \mathbf{v}, q_{h}\right) & =\left(\operatorname{div} \mathbf{v}, q_{h}\right)_{L^{2}(\Omega)}, \quad \forall q \in Q_{h} \tag{5.7}
\end{align*}
$$

where the constant $C_{n c}$ does not depend on h. Then Problem (5.5) is well-posed. Moreover, it admits one and only one solution $\left(\mathbf{u}_{h}, p_{h}\right)$ such that:

$$
\begin{align*}
& \text { if } \mathbf{f} \in \mathbf{L}^{2}(\Omega):\left\{\begin{aligned}
\left\|\mathbf{u}_{h}\right\|_{h} & \leq C_{P S}^{n c} \nu^{-1}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)} \\
\left\|p_{h}\right\|_{L^{2}(\Omega)} & \leq 2 C_{P S}^{n c} C_{\operatorname{div}}^{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}
\end{aligned}\right. \\
& \text { if } \mathbf{f} \notin \mathbf{L}^{2}(\Omega):\left\{\begin{array}{rl}
\left\|\mathbf{u}_{h}\right\|_{h} & \leq C_{\mathcal{I}_{h}}^{n c} \nu^{-1}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)} \\
\left\|p_{h}\right\|_{L^{2}(\Omega)} & \leq 2 C_{\mathcal{I}_{h}}^{n c} C_{\mathrm{div}}^{n c}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)}
\end{array},\right. \tag{5.8}
\end{align*}
$$

where $C_{\text {div }}^{n c}=C_{\text {div }} C_{n c}$.
Proof. Let us consider $\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right) \in \mathcal{X}_{h}$ and let us build $\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right) \in \mathcal{X}_{h}$ satisfying (2.3) (with $V=\mathcal{X}_{h}$). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists $\tilde{\mathbf{v}}_{p_{h}^{\prime}} \in \mathbf{V}^{\perp}$ such that $\operatorname{div} \tilde{\mathbf{v}}_{p_{h}^{\prime}}=p_{h}^{\prime}$ in Ω and $\left\|\tilde{\mathbf{v}}_{p_{h}^{\prime}}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq C_{\text {div }}\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)}$. Let us set $\mathbf{v}_{p_{h}^{\prime}}=\nu^{-1} \tilde{\mathbf{v}}_{p_{h}^{\prime}}$ so that $\operatorname{div} \mathbf{v}_{p_{h}^{\prime}}=\nu^{-1} p_{h}^{\prime}$ and $\left\|\mathbf{v}_{p_{h}^{\prime}}\right\|_{\mathbf{H}_{0}^{1}(\Omega)} \leq \nu^{-1} C_{\mathrm{div}}\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)}^{2}$. Consider $\mathbf{v}_{h, p_{h}^{\prime}}=$ $\Pi_{n c} \mathbf{v}_{p_{h}^{\prime}}$, for all $q_{h} \in Q_{h}$, we have: $\left(\operatorname{div}_{h} \mathbf{v}_{h, p_{h}^{\prime}}, q_{h}\right)=\nu^{-1}\left(p_{h}^{\prime}, q_{h}\right)_{L^{2}(\Omega)}$ and

$$
\left\|\mathbf{v}_{h, p_{h}^{\prime}}\right\|_{h} \leq \nu^{-1} C_{\mathrm{div}}^{n c} \nu\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)} \text { where } C_{\mathrm{div}}^{n c}=C_{n c} C_{\mathrm{div}} .
$$

Let us set $\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right):=\left(\gamma_{n c} \mathbf{u}_{h}^{\prime}-\mathbf{v}_{h, p_{h}^{\prime}},-\gamma_{n c} p_{h}^{\prime}\right)$, with $\gamma_{n c}>0$. We obtain:

$$
\begin{equation*}
a_{S, h}\left(\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right),\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)\right)=\nu \gamma_{n c}\left\|\mathbf{u}_{h}^{\prime}\right\|_{h}^{2}+\nu^{-1}\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)}^{2}-\nu\left(\mathbf{u}_{h}^{\prime}, \mathbf{v}_{h, p_{h}^{\prime}}\right)_{h} \tag{5.10}
\end{equation*}
$$

2. In order to bound the last term of (5.10), we use Young inequality and then inequality (5.9) so that for all $\eta_{n c}>0$:

$$
\begin{equation*}
\left(\mathbf{u}_{h}^{\prime}, \mathbf{v}_{h, p_{h}^{\prime}}\right)_{h} \leq \frac{\eta_{n c}}{2}\left\|\mathbf{u}_{h}^{\prime}\right\|_{h}^{2}+\frac{\eta_{n c}^{-1}}{2}\left(\frac{C_{\mathrm{div}}^{n c}}{\nu}\right)^{2}\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)}^{2} \tag{5.11}
\end{equation*}
$$

3. Using the bound (5.11) in (5.10) and choosing $\eta_{n c}=\gamma_{n c}$, we get:

$$
a_{S, h}\left(\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right),\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)\right) \geq \nu\left(\frac{\gamma_{n c}}{2} \nu\left\|\mathbf{u}_{h}^{\prime}\right\|_{h}^{2}+\nu^{-2}\left(1+\frac{\left(\gamma_{n c}\right)^{-1}}{2}\left(C_{\mathrm{div}}^{n c}\right)^{2}\right)\left\|p_{h}^{\prime}\right\|_{L^{2}(\Omega)}^{2}\right)
$$

Consider now $\gamma_{n c}=\left(C_{\text {div }}^{n c}\right)^{2}$. We obtain:

$$
a_{S, h}\left(\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right),\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)\right) \geq \frac{\nu}{2} C_{\min }^{n c}\left\|\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)\right\|_{\mathcal{X}_{h}}^{2}
$$

where $C_{\min }^{n c}=\frac{1}{2} \min \left(\left(C_{\text {div }}\right)^{2}, 1\right)$.
The operator T_{h} such that $T_{h}\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)=\left(\mathbf{v}_{h}^{\star}, p_{h}^{\star}\right)$ is linear and continuous:

$$
\left\|T_{h}\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)\right\|_{\mathcal{X}_{h}}^{2}=\left\|\mathbf{v}_{h}^{\star}\right\|_{h}^{2}+\nu^{-2}\left\|q_{h}^{\star}\right\|_{L^{2}(\Omega)} \leq\left(C_{\max }^{n c}\right)^{2}\left\|\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)\right\|_{\mathcal{X}_{h}}^{2}
$$

where $C_{\max }^{n c}=C_{\mathrm{div}}^{n c}\left(1+\left(C_{\mathrm{div}}^{n c}\right)^{2}\right)^{1 / 2} .{ }^{4}$ The discrete continuous bilinear form $a_{S, h}(\cdot, \cdot)$ is then T_{h}-coercive and according to Theorem 1, Problem (5.5) is well posed. Consider $\left(\mathbf{u}_{h}, p_{h}\right)$ the unique solution of Problem (5.5). Choosing $\mathbf{v}_{h}=0$, we obtain that $\operatorname{div}_{h} \mathbf{u}_{h}=0$. Now, choosing $\mathbf{v}_{h}=\mathbf{u}_{h}$ in (5.5) and using Cauchy-Schwarz inequality, we get that:

$$
\left\{\begin{align*}
\left\|\mathbf{u}_{h}\right\|_{h} \leq \nu^{-1} C_{P S}^{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)} & \text { if } \mathbf{f} \in \mathbf{L}^{2}(\Omega), \text { using (5.3) } \tag{5.12}\\
\left\|\mathbf{u}_{h}\right\|_{h} \leq \nu^{-1} C_{\mathcal{I}_{h} c}^{n c}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)} & \text { if } \mathbf{f} \notin \mathbf{L}^{2}(\Omega), \text { using (5.4) }
\end{align*}\right.
$$

Consider $\left(\mathbf{v}_{h}, q_{h}\right)=\left(\mathbf{v}_{h, p_{h}}, 0\right)$ in (5.5), where $\mathbf{v}_{h, p_{h}}=\Pi_{n c} \mathbf{v}_{p_{h}}$ is built as $\mathbf{v}_{h, p_{h}^{\prime}}$ in point 1 , setting $p_{h}^{\prime}=p_{h}$. Suppose that $\mathbf{f} \in \mathbf{L}^{2}(\Omega)$. Using the triangular inequality, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and estimate (5.12), we have:

$$
\begin{aligned}
\left\|p_{h}\right\|_{L^{2}(\Omega)}^{2} & =\nu\left(\mathbf{u}_{h}, \mathbf{v}_{h, p_{h}}\right)_{h}-\left(\mathbf{f}, \mathbf{v}_{h, p_{h}}\right)_{\mathbf{L}^{2}(\Omega)} \\
& \leq \nu\left\|\mathbf{u}_{h}\right\|_{h}\left\|\mathbf{v}_{h, p_{h}}\right\|_{h}+\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}\left\|\mathbf{v}_{h, p_{h}}\right\|_{\mathbf{L}^{2}(\Omega)} \\
& \leq 2 C_{P S}^{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}\left\|\mathbf{v}_{h, p_{h}}\right\|_{h} \leq 2 C_{P S}^{n c} C_{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}\left\|\mathbf{G r a d}_{p_{h}}\right\|_{\mathbb{L}^{2}(\Omega)} \\
& \leq 2 C_{P S}^{n c} C_{\operatorname{div}}^{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)}\left\|p_{h}\right\|_{L^{2}(\Omega)} .
\end{aligned}
$$

Applying the same reasoning when $\mathbf{f} \in \mathbf{H}^{-1}(\Omega)$, we get that:

$$
\begin{cases}\left\|p_{h}\right\|_{L^{2}(\Omega)} \leq 2 C_{P S}^{n c} C_{\operatorname{div}}^{n c}\|\mathbf{f}\|_{\mathbf{L}^{2}(\Omega)} & \text { if } \mathbf{f} \in \mathbf{L}^{2}(\Omega), \text { using (5.3) } \tag{5.13}\\ \left\|p_{h}\right\|_{L^{2}(\Omega)} \leq 2 C_{\mathcal{I}_{h}}^{n c} C_{\operatorname{div}}^{n c}\|\mathbf{f}\|_{\mathbf{H}^{-1}(\Omega)} & \text { if } \mathbf{f} \notin \mathbf{L}^{2}(\Omega), \text { using (5.4) }\end{cases}
$$

Corollary 1. Under the assumption of Theorem 4, suppose that $(\mathbf{u}, p) \in \mathbf{H}^{1+k}(\Omega) \times$ $H^{k}(\Omega)$, we then have the estimate:

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{\mathbf{L}^{2}(\Omega)} \leq C \sigma^{\ell} h^{k+1}\left(|\mathbf{u}|_{\mathbf{H}^{k+1}(\Omega)}+\nu^{-1}|p|_{H^{k}(\Omega)}\right), \tag{5.14}
\end{equation*}
$$

where the constant $C>0$ is independent of h, σ is the shape regularity parameter and the exponent $\ell \in \mathbb{N}^{\star}$ depends on k.

Proof. The a priori error estimate corresponds to [2, Theorem 4].
Remark 2. Again, we recover the first Banach-Nečas-Babuška condition $[8$, Thm. 25.9, (BNB1)]:

$$
a_{S, h}\left(\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right),\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)\right) \geq \nu C_{\min }^{n c}\left(C_{\max }^{n c}\right)^{-1}\left\|\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)\right\|_{\mathcal{X}_{h}}\left\|\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)\right\|_{\mathcal{X}_{h}}
$$

[^2]Let us call $C_{\mathrm{stab}}^{n c}=\nu C_{\min }^{n c}\left(C_{\max }^{n c}\right)^{-1}$ the stability constant. With the choice of our parameters, $C_{\text {stab }}^{n c}$ is such that:

$$
C_{\mathrm{stab}}^{n c}= \begin{cases}\frac{\nu}{2} \frac{C_{\text {div }}^{n c}}{\left(1+\left(C_{\text {div }}^{n c}\right)^{2}\right)^{1 / 2}} & \text { if } 0<C_{\text {div }}^{n c} \leq 1 \\ \frac{\nu}{2} \frac{\left(C_{\text {div }}^{n c}\right)^{-1}}{\left(1+\left(C_{\text {div }}^{n c}\right)^{2}\right)^{1 / 2}} & \text { if } 1 \leq C_{\text {div }}^{n c}\end{cases}
$$

The main issue with nonconforming mixed finite elements is the construction the basis functions. In a recent paper, Sauter explains such a construction in two dimensions [17, Corollary 2.4], and gives a bound to the discrete counterpart $\beta_{\mathcal{T}}(\Omega)$ of $\beta(\Omega)$ defined in (3.4):

$$
\begin{equation*}
\beta_{\mathcal{T}}(\Omega)=\inf _{q_{h} \in Q_{h} \backslash\{0\}} \sup _{\mathbf{v}_{h} \in \mathbf{X}_{0, h} \backslash\{0\}} \frac{\left(\operatorname{div}_{h} \mathbf{v}_{h}, q_{h}\right)}{\left\|q_{h}\right\|_{L^{2}(\Omega)}\left\|\mathbf{v}_{h}\right\|_{h}} \geq c_{\mathcal{T}} k^{-\alpha} . \tag{5.15}
\end{equation*}
$$

This bound is in $c_{\mathcal{T}} k^{-\alpha}$, where the parameter α is explicit and depends on k and on the mesh topology; and the constant $c_{\mathcal{T}}$ depends only on the shape-regularity of the mesh.

6. Nonconforming Crouzeix-Raviart mixed finite elements

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements [2]. Let us consider $X_{C R}$ (resp. $X_{0, C R}$), the space of nonconforming approximation of $H^{1}(\Omega)$ (resp. $H_{0}^{1}(\Omega)$) of order 1:

$$
\begin{align*}
X_{C R} & =\left\{v_{h} \in P_{d i s c}^{1}\left(\mathcal{T}_{h}\right) ; \quad \forall f \in \mathcal{I}_{F}^{i}, \int_{F_{f}}\left[v_{h}\right]=0\right\} ; \tag{6.1}\\
X_{0, C R} & =\left\{v_{h} \in X_{C R} ; \quad \forall f \in \mathcal{I}_{F}^{b}, \int_{F_{f}} v_{h}=0\right\}
\end{align*}
$$

The space of nonconforming approximation of of $\mathbf{H}^{1}(\Omega)$ (resp. $\mathbf{H}_{0}^{1}(\Omega)$) of order 1 is $\mathbf{X}_{C R}=\left(X_{C R}\right)^{d}\left(\right.$ resp. $\left.\mathbf{X}_{0, C R}=\left(X_{0, C R}\right)^{d}\right)$. We set $\mathcal{X}_{C R}:=\mathbf{X}_{0, C R} \times Q_{C R}$ where $Q_{C R}=P^{0}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}(\Omega)$.
We can endow $X_{C R}$ with the basis $\left(\psi_{f}\right)_{f \in \mathcal{I}_{F}}$ such that: $\forall \ell \in \mathcal{I}_{K}$,

$$
\psi_{f \mid K_{\ell}}=\left\{\begin{array}{cc}
1-d \lambda_{i, \ell} & \text { if } f \in \mathcal{I}_{F, \ell} \\
0 & \text { otherwise }
\end{array}\right.
$$

where S_{i} is the vertex opposite to F_{f} in K_{ℓ}. We then have $\psi_{f \mid F_{f}}=1$, so that $\left[\psi_{f}\right]_{F_{f}}=0$ if $f \in \mathcal{I}_{F}^{i}$ (i.e. $F_{f} \in \stackrel{\circ}{\Omega}$), and $\forall f^{\prime} \neq f, \int_{F_{f^{\prime}}} \psi_{f}=0$.
We have: $X_{C R}=\operatorname{vect}\left(\left(\psi_{f}\right)_{f \in \mathcal{I}_{F}}\right)$ and $X_{0, C R}=\operatorname{vect}\left(\left(\psi_{f}\right)_{f \in \mathcal{I}_{F}^{i}}\right)$.
The Crouzeix-Raviart interpolation operator $\pi_{C R}$ for scalar functions is defined by:

$$
\pi_{C R}:\left\{\begin{array}{rl}
H^{1}(\Omega) & \rightarrow X_{C R} \\
v & \mapsto
\end{array} \sum_{f \in \mathcal{I}_{F}} \pi_{f} v \psi_{f} \quad, \quad \text { where } \pi_{f} v=\frac{1}{\left|F_{f}\right|} \int_{F_{f}} v\right.
$$

Notice that $\forall f \in \mathcal{I}_{F}, \int_{F_{f}} \pi_{C R} v=\int_{F_{f}} v$. Moreover, the Crouzeix-Raviart interpolation operator preserves the constants, so that $\pi_{C R} \underline{v}_{\Omega}=\underline{v}_{\Omega}$ where $\underline{v}_{\Omega}=\int_{\Omega} v /|\Omega|$. We recall the following result [18, Lemma 2]):

Lemma 1. The Crouzeix-Raviart interpolation operator $\pi_{C R}$ is such that:

$$
\begin{equation*}
\forall v \in H^{1}(\Omega), \quad\left\|\pi_{C R} v\right\|_{h} \leq\|\operatorname{grad} v\|_{\mathbf{L}^{2}(\Omega)} \tag{6.2}
\end{equation*}
$$

Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:

$$
\begin{aligned}
\operatorname{grad} \pi_{C R} v_{\mid K_{\ell}} & =\left|K_{\ell}\right|^{-1} \int_{K_{\ell}} \operatorname{grad} \pi_{C R} v=\left|K_{\ell}\right|^{-1} \sum_{f \in \mathcal{I}_{F, \ell}} \int_{F_{f}} \pi_{C R} v \mathbf{n}_{f}, \\
& =\left|K_{\ell}\right|^{-1} \sum_{f \in \mathcal{I}_{F, \ell}} \int_{F_{f}} v \mathbf{n}_{f}=\left|K_{\ell}\right|^{-1} \int_{K_{\ell}} \operatorname{grad} v \\
\Rightarrow\left\|\operatorname{grad} \pi_{C R} v\right\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}^{2} & \leq\|\operatorname{grad} v\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}^{2} .
\end{aligned}
$$

Summing these local estimates over $\ell \in \mathcal{I}_{K}$, we obtain (6.2).
For a vector $\mathbf{v} \in \mathbf{H}^{1}(\Omega)$ of components $\left(v_{d^{\prime}}\right)_{d^{\prime}=1}^{d}$, the Crouzeix-Raviart interpolation operator is such that: $\Pi_{C R} \mathbf{v}=\left(\pi_{C R} v_{d^{\prime}}\right)_{d^{\prime}=1}^{d}$. Let us set $\Pi_{f} \mathbf{v}=\left(\pi_{f} v_{d^{\prime}}\right)_{d^{\prime}=1}^{d}$.

Lemma 2. The Crouzeix-Raviart interpolation operator $\Pi_{C R}$ can play the role of the Fortin operator:

$$
\begin{align*}
\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left\|\Pi_{C R} \mathbf{v}\right\|_{h} & \leq\|\mathbf{G r a d} \mathbf{v}\|_{\mathbb{L}^{2}(\Omega)}, \tag{6.3}\\
\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left(\operatorname{div}_{h} \Pi_{C R} \mathbf{v}, q_{h}\right) & =\left(\operatorname{div} \mathbf{v}, q_{h}\right)_{L^{2}(\Omega)}, \quad \forall q \in Q_{h} \tag{6.4}
\end{align*}
$$

Moreover, for all $\mathbf{v} \in \mathbf{P}^{1}(\Omega), \Pi_{C R} \mathbf{v}=\mathbf{v}$.
Proof. We obtain (6.3) applying Lemma (1) component by component. By integrating by parts, we have $\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega), \forall \ell \in \mathcal{I}_{K}$:

$$
\begin{aligned}
\int_{K_{\ell}} \operatorname{div} \Pi_{C R} \mathbf{v} & =\sum_{f \in \mathcal{I}_{F, \ell}} \int_{F_{f}} \Pi_{C R} \mathbf{v} \cdot \mathbf{n}_{f}=\sum_{f \in \mathcal{I}_{F, \ell}} \int_{F_{f}} \Pi_{f} \mathbf{v} \cdot \mathbf{n}_{f} \\
& =\sum_{f \in \mathcal{I}_{F, \ell}} \int_{F_{f}} \mathbf{v} \cdot \mathbf{n}_{f}=\int_{K_{\ell}} \operatorname{div} \mathbf{v}
\end{aligned}
$$

so that (6.4) is satisfied.
We can apply the T-coercivity theory to show the next following result:
Theorem 5. Let $\mathcal{X}_{h}=\mathcal{X}_{C R}$. Then the continuous bilinear form $a_{S, h}(\cdot, \cdot)$ is T_{h} coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4.
Since the constant of the interpolation operator $\Pi_{C R}$ is equal to 1 , we have $C_{\min }^{C R}=C_{\min }$ and $C_{\max }^{C R}=C_{\max }$: the stability constant of the nonconforming Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the case for higher-order (see [19, Theorem 2.2]).
For higher-order, we cannot built the interpolation operator component by component, since higher-order divergence moments must be preserved. Thus, for $k>1$, we must build $\Pi_{n c}$ so that for all $\mathbf{v} \in \mathbf{H}^{1}(\Omega)$, for all $\ell \in \mathcal{I}_{K}$, for all $q \in P^{k-1}\left(K_{\ell}\right)$:

$$
\int_{K_{\ell}} q \operatorname{div} \Pi_{n c} \mathbf{v}=\int_{K_{\ell}} q \operatorname{div} \mathbf{v}
$$

We recall that by integration by parts, we have:

$$
\begin{equation*}
\int_{K_{\ell}} q \operatorname{div} \Pi_{n c} \mathbf{v}+\int_{K_{\ell}} \operatorname{grad} q \cdot \Pi_{n c} \mathbf{v}=\int_{\partial K_{\ell}} q \Pi_{n c} \mathbf{v} \cdot \mathbf{n}_{\mid \partial K_{\ell}} \tag{6.5}
\end{equation*}
$$

Hence, to obtain a local estimate of $\left\|\operatorname{Grad} \Pi_{n c} \mathbf{v}\right\|_{\mathbb{L}\left(K_{\ell}\right)}$, we will need the following Lemma:
Lemma 3. Let $\mathbf{v} \in \mathbf{H}^{1}(\Omega)$ and $q \in P^{k-1}\left(K_{\ell}\right)$. We set $\underline{\mathbf{v}}_{\ell}:=\mathbf{v}_{\ell}-\frac{\int_{K_{\ell}} \mathbf{v}}{\left|K_{\ell}\right|}$, where $\mathbf{v}_{\ell}=\mathbf{v}_{\mid K_{\ell}}$. We have:

$$
\begin{equation*}
\left|\int_{\partial K_{\ell}} q \underline{\mathbf{v}}_{\ell} \cdot \mathbf{n}_{\mid \partial K_{\ell}}\right| \leq\left|K_{\ell}\right|^{k / 2}\left\|\operatorname{Grad} \mathbf{v}_{\ell}\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \tag{6.6}
\end{equation*}
$$

Proof. We have by integration by parts, and then using Cauchy-Schwarz inequality:

$$
\begin{aligned}
& \left|\int_{\partial K_{\ell}} q \underline{\mathbf{v}}_{\ell} \cdot \mathbf{n}_{f}\right| \leq\left|\int_{K_{\ell}} q \operatorname{div} \underline{\mathbf{v}}_{\ell}\right|+\left|\int_{K_{\ell}} \operatorname{grad} q \cdot \underline{\mathbf{v}}_{\ell}\right| \\
& \quad \leq\|q\|_{L^{2}\left(K_{\ell}\right)}\left\|\operatorname{Grad}_{\underline{\mathbf{v}}_{\ell}}\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)}+\|\operatorname{grad} q\|_{\mathbf{L}^{2}\left(K_{\ell}\right)}\left\|\underline{\mathbf{v}}_{\ell}\right\|_{\mathbf{L}^{2}\left(K_{\ell}\right)} \\
& \quad \leq\left|K_{\ell}\right|^{k / 2}\left\|\mathbf{G r a d}_{\mathbf{v}_{\ell}}\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)}+\left|K_{\ell}\right|^{(k-1) / 2}\left\|\underline{\mathbf{v}}_{\ell}\right\|_{\mathbf{L}^{2}\left(K_{\ell}\right)} \\
& \quad \lesssim\left|K_{\ell}\right|^{k / 2}\left\|\mathbf{G r a d} \mathbf{v}_{\ell}\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \text { using }(4.4)
\end{aligned}
$$

7. Fortin-Soulie mixed finite elements

We consider here the case $d=2$ and we study Fortin-Soulie mixed finite elements [3]. We consider a shape-regular triangulation sequence $\left(\mathcal{T}_{h}\right)_{h}$.
Let us consider $X_{F S}$ (resp. $X_{0, F S}$), the space of nonconforming approximation of $H^{1}(\Omega)$ (resp. $H_{0}^{1}(\Omega)$) of order 2:

$$
\begin{gather*}
X_{F S}=\left\{v_{h} \in P_{d i s c}^{2}\left(\mathcal{T}_{h}\right) ; \quad \forall f \in \mathcal{I}_{F}^{i}, \forall q_{h} \in P^{1}\left(F_{f}\right), \int_{F_{f}}\left[v_{h}\right] q_{h}=0\right\} \\
X_{0, F S}=\left\{v_{h} \in X_{F S} ; \quad \forall f \in \mathcal{I}_{F}^{b}, \forall q_{h} \in P^{1}\left(F_{f}\right), \int_{F_{f}} v_{h} q_{h}=0\right\} \tag{7.1}
\end{gather*}
$$

The space of nonconforming approximation of $\mathbf{H}^{1}(\Omega)$ (resp. $\left.\mathbf{H}_{0}^{1}(\Omega)\right)$ of order 2 is $\mathbf{X}_{F S}=\left(X_{F S}\right)^{2}\left(\right.$ resp. $\left.\mathbf{X}_{0, F S}=\left(X_{0, F S}\right)^{2}\right)$. We set $\mathcal{X}_{F S}=\mathbf{X}_{0, F S} \times Q_{F S}$ where $Q_{F S}:=P_{d i s c}^{1}\left(\mathcal{T}_{h}\right) \cap L_{z m v}^{2}(\Omega)$.
The building of a basis for $X_{0, F S}$ is more involved than for $X_{0, C R}$ since we cannot use two points per facet as degrees of freedom. Indeed, for all $\ell \in K_{\ell}$, there exists a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the boundary ∂K_{ℓ}. Let $f \in \mathcal{I}_{F}$. The barycentric coordinates of the two Gauss-Legendre points $\left(p_{+, f}, p_{-, f}\right)$ on F_{f} are such that:

$$
p_{+, f}=\left(c_{+}, c_{-}\right), p_{-, f}=\left(c_{-}, c_{+}\right), \text {where } c_{ \pm}=(1 \pm 1 / \sqrt{3}) / 2
$$

These points can be used to integrate exactly order three polynomials:

$$
\forall g \in P^{3}\left(F_{f}\right), \int_{F_{f}} g=\frac{\left|F_{f}\right|}{2}\left(g\left(p_{+, f}\right)+g\left(p_{-, f}\right)\right)
$$

For all $\ell \in \mathcal{I}_{K}$, we define the quadratic function $\phi_{K_{\ell}}$ that vanishes on the six Gauss-Legendre points of the facets of K_{ℓ} (see Fig. 1):

$$
\begin{equation*}
\phi_{K_{\ell}}:=2-3 \sum_{i \in \mathcal{I}_{S, \ell}} \lambda_{i, \ell}^{2} \text { such that } \quad \forall f \in \mathcal{I}_{F, \ell}, \forall q \in P^{1}(F), \quad \int_{F_{f}} \phi_{K_{\ell}} q=0 \tag{7.2}
\end{equation*}
$$

Figure 1. The six Gauss-Legendre points of an element K_{ℓ} and the elliptic function $\phi_{K_{\ell}}$.

We also define the spaces of P^{2}-Lagrange functions:

$$
\begin{aligned}
X_{L G} & :=\left\{v_{h} \in H^{1}(\Omega) ; \quad \forall \ell \in \mathcal{I}_{K}, v_{h \mid K_{\ell}} \in P^{2}\left(K_{\ell}\right)\right\}, \\
X_{0, L G} & :=\left\{v_{h} \in X_{L G} ; \quad v_{h \mid \partial \Omega}=0\right\}
\end{aligned}
$$

The Proposition below proved in [3, Prop. 1] allows to build a basis for $X_{0, F S}$:
Proposition 5. We have the following decomposition: $X_{F S}=X_{L G}+\Phi_{h}$ with $\operatorname{dim}\left(X_{L G} \cap \Phi_{h}\right)=1$. Any function of $X_{F S}$ can be written as the sum of a function of $X_{L G}$ and a function of Φ_{h}. This representation can be made unique by specifying one degree of freedom.

Notice that $\Phi_{h} \cap X_{L G}=\operatorname{vect}\left(v_{\Phi}\right)$, where for all $\ell \in \mathcal{I}_{K}, v_{\Phi \mid K_{\ell}}=\phi_{K_{\ell}}$. Then, counting the degrees of freedom, one can show that $\operatorname{dim}\left(X_{F S}\right)=\operatorname{dim}\left(X_{L G}\right)+$ $\operatorname{dim}\left(\Phi_{h}\right)+1$. For problems involving Dirichlet boundary conditions we can prove thus that for $X_{0, F S}$ the representation is unique and $X_{0, F S}=X_{0, L G} \oplus \Phi_{h}$. We have $X_{L G}=\operatorname{vect}\left(\left(\phi_{S_{i}}\right)_{i \in \mathcal{I}_{S}},\left(\phi_{F_{f}}\right)_{f \in \mathcal{I}_{F}}\right)$ where the basis functions are such that:

$$
\begin{aligned}
& \forall i, j \in \mathcal{I}_{S}, \forall f, g \in \mathcal{I}_{F}: \\
& \quad \phi_{S_{i}}\left(S_{j}\right)=\delta_{i j}, \phi_{S_{i}}\left(M_{f}\right)=0, \quad \phi_{M_{f}}\left(M_{g}\right)=\delta_{f g}, \phi_{M_{f}}\left(S_{i}\right)=0
\end{aligned}
$$

For all $\ell \in \mathcal{I}_{K}$, we will denote by $\left(\phi_{\ell, j}\right)_{j=1}^{6}$ the local nodal basis such that:

$$
\left(\phi_{\ell, j}\right)_{j=1}^{3}=\left(\phi_{S_{i} \mid K_{\ell}}\right)_{i \in \mathcal{I}_{S, \ell}} \quad \text { and } \quad\left(\phi_{\ell, j}\right)_{j=4}^{6}=\left(\phi_{F_{f} \mid K_{\ell}}\right)_{f \in \mathcal{I}_{F, \ell}}
$$

The spaces $X_{F S}$ and $X_{0, F S}$ are such that:

$$
\begin{align*}
X_{F S} & =\operatorname{vect}\left(\left(\phi_{S_{i}}\right)_{i \in \mathcal{I}_{S}},\left(\phi_{F_{f}}\right)_{f \in \mathcal{I}_{F}},\left(\phi_{K_{\ell}}\right)_{\ell \in \mathcal{I}_{K}}\right), \\
X_{0, F S} & =\operatorname{vect}\left(\left(\phi_{S_{i}}\right)_{i \in \mathcal{I}_{s}^{i}},\left(\phi_{F_{f}}\right)_{f \in \mathcal{I}_{F}^{i}},\left(\phi_{K_{\ell}}\right)_{\ell \in \mathcal{I}_{K}}\right) . \tag{7.3}
\end{align*}
$$

We propose here an alternative definition of the Fortin interpolation operator proposed in [3]. Let us first recall the Scott-Zhang interpolation operator [20, 21]. For all $i \in \mathcal{I}_{S}$, we choose some $\ell_{i} \in \mathcal{I}_{K, i}$, and we build the $L^{2}\left(K_{\ell_{i}}\right)$-dual basis $\left(\tilde{\phi}_{\ell_{i}, j}\right)_{j=1}^{6}$ of the local nodal basis such that:

$$
\forall j, j^{\prime} \in\{1, \cdots, 6\}, \quad \int_{K_{\ell_{i}}} \tilde{\phi}_{\ell_{i}, j} \phi_{\ell_{i}, j^{\prime}}=\delta_{j, j^{\prime}}
$$

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

$$
\pi_{F S}:\left\{\begin{array}{rll}
H^{1}(\Omega) & \rightarrow & X_{F S} \tag{7.4}\\
v & \mapsto & \tilde{\pi} v+\sum_{\ell \in \mathcal{I}_{K}} v_{K_{\ell}} \phi_{K_{\ell}}
\end{array},\right.
$$

- The coefficients $\left(v_{S_{i}}\right)_{i \in \mathcal{I}_{S}}$ are fixed so that: $\forall i \in \mathcal{I}_{S}, v_{S_{i}}=\int_{K_{\ell, i}} v \tilde{\phi}_{\ell_{i}, j_{i}}$, where j_{i} is the index such that $\int_{K_{\ell_{i}}} \tilde{\phi}_{\ell_{i}, j_{i}} \phi_{S_{i} \mid K_{\ell_{i}}}=1$.
- The coefficients $\left(\tilde{v}_{F_{f}}\right)_{f \in \mathcal{I}_{F}}$ are fixed so that: $\forall f \in \mathcal{I}_{F}, \int_{F_{f}} \tilde{\pi} \tilde{v}=\int_{F_{f}} v$.

For all $\ell \in \mathcal{I}_{K}$, the coefficient $v_{K_{\ell}}$ is fixed so that: $\int_{K_{\ell}} \pi_{F S} v=\int_{K_{\ell}} v$.
The definition (7.4) is more general than the one given in [3], which holds for $v \in H^{2}(\Omega)$.
We set $\mathbf{v}_{S_{i}}:=\left(\tilde{\pi} v_{1}\left(S_{i}\right), \tilde{\pi} v_{2}\left(S_{i}\right)\right)^{T}$ and $\tilde{\mathbf{v}}_{F_{f}}:=\left(\tilde{\pi} v_{1}\left(F_{f}\right), \tilde{\pi} v_{2}\left(F_{f}\right)\right)^{T}$.
We can define two different Fortin-Soulie interpolation operators for vector functions. First, let

$$
\tilde{\Pi}_{F S}:\left\{\begin{array}{rl}
\mathbf{H}^{1}(\Omega) & \rightarrow \mathbf{X}_{F S} \\
\mathbf{v} & \mapsto
\end{array}\left(\pi_{F S}(\mathbf{v})_{1}, \pi_{F S}(\mathbf{v})_{2}\right)^{T} .\right.
$$

We remind that the coefficients $\left(\tilde{\mathbf{v}}_{K_{\ell}}\right)_{\ell \in \mathcal{I}_{K}}$ are such that:

$$
\begin{equation*}
\forall \ell \in \mathcal{I}_{K}, \quad \int_{K_{\ell}} \tilde{\Pi}_{F S} \mathbf{v}=\int_{K_{\ell}} \mathbf{v} \tag{7.5}
\end{equation*}
$$

The interpolation operator $\tilde{\Pi}_{F S}$ preserves the local averages, but it doesn't preserve the divergence. We then define a second interpolation operator which preserves the divergence in a weak sense:

$$
\Pi_{F S}:\left\{\begin{aligned}
\mathbf{H}^{1}(\Omega) & \rightarrow \mathbf{X}_{F S} \\
\mathbf{v} & \mapsto \sum_{i \in \mathcal{I}_{S}} \mathbf{v}_{S_{i}} \phi_{S_{i}}+\sum_{f \in \mathcal{I}_{F}} \tilde{\mathbf{v}}_{F_{f}} \phi_{F_{f}}+\sum_{\ell \in \mathcal{I}_{K}} \mathbf{v}_{K_{\ell}} \phi_{K_{\ell}}
\end{aligned}\right.
$$

For all $\ell \in \mathcal{I}_{K}$, the vector coefficient $\mathbf{v}_{K_{\ell}} \in \mathbb{R}^{2}$ is now fixed so that condition (5.7) is satisfied. We can impose for example that the projection $\Pi_{F S} \mathbf{v}$ satisfies:

$$
\begin{equation*}
\int_{K_{\ell}} T_{\ell}^{-1}(\mathbf{x}) \operatorname{div} \Pi_{F S} \mathbf{v}=\int_{K_{\ell}} T_{\ell}^{-1}(\mathbf{x}) \operatorname{div} \mathbf{v} \tag{7.6}
\end{equation*}
$$

Notice that due to (7.2), the patch-test condition is still satisfied.

Proposition 6. Let $\sigma_{D}>0$. The Fortin-Soulie interpolation operator $\Pi_{F S}$ is such for all $\mathbf{v} \in \bigcap_{0<s<\sigma_{D}} \mathbf{H}^{1+s}(\Omega)$ we have:

$$
\begin{array}{r}
\forall s \in] 0, \sigma_{D}\left[, \forall \ell \in \mathcal{I}_{K},\left\|\mathbf{G r a d}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \lesssim\left(\sigma_{\ell}\right)^{2}\left(h_{\ell}\right)^{s}|\mathbf{v}|_{1+s, K_{\ell}}\right. \\
\forall s \in] 0, \sigma_{D}\left[, \exists C_{F S}=\mathcal{O}\left(\sigma^{2}\right), \quad\left\|\Pi_{F S} \mathbf{v}-\mathbf{v}\right\|_{h} \leq C_{F S} h^{s}|\mathbf{v}|_{1+s, \Omega}\right. \tag{7.8}
\end{array}
$$

Remark 3. Albeit we are inspired by the proof of [2, Lemma 4], we changed the transition from equation (4.27) to (4.29) there by using only the properties related to the normal component of the velocity, cf (6.6). As a matter of fact, in the original proof, one ends up with either $C_{F S}=\mathcal{O}\left(\sigma^{3}\right)$ with the help of the multiple trace inequality or with $C_{F S}=\mathcal{O}\left(\sigma^{2}\right)$ at the cost of imposing a stronger assumption on the regularity of \mathbf{v} (namely, $\sigma_{D}>1 / 2$). Finally, because we do not split the integral over the boundaries of elements into the sum of $d+1$ integrals over the facets, we obtain purely local estimates, which appear to be new for the Fortin-Soulie element in the case of low-regularity fields \mathbf{v}.

Proof. Let $\mathbf{v} \in \mathbf{H}^{1}(\Omega)$. By construction, we have:

$$
\begin{equation*}
\int_{K_{\ell}}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)=0 \text { and for all } f \in \mathcal{I}_{F, \ell}, \int_{F_{f}}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)_{\mid K_{\ell}}=0 \tag{7.9}
\end{equation*}
$$

We have:

$$
\begin{align*}
\left\|\operatorname{Grad}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \leq & \|\left.\operatorname{Grad}\left(\Pi_{F S} \mathbf{v}-\tilde{\Pi}_{F S} \mathbf{v}\right)\right|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \\
& +\left\|\mathbf{G r a d}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \tag{7.10}
\end{align*}
$$

Notice that for all $\ell \in \mathcal{I}_{K},\left(\Pi_{F S} \mathbf{v}-\tilde{\Pi}_{F S} \mathbf{v}\right)_{\mid K_{\ell}}=\left(\mathbf{v}_{K_{\ell}}-\tilde{\mathbf{v}}_{K_{\ell}}\right) \phi_{K_{\ell}}$. Using (4.3)-(i), we obtain that:

Let us estimate $\left|\mathbf{v}_{K_{\ell}}-\tilde{\mathbf{v}}_{K_{\ell}}\right|$. On the one hand, we have:

$$
\begin{aligned}
\int_{K_{\ell}}\left(\Pi_{F S} \mathbf{v}-\tilde{\Pi}_{F S} \mathbf{v}\right) & =\int_{K_{\ell}}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right) \text { from }(7.5) \\
& =\int_{\partial K_{\ell}} \mathbf{x}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right) \cdot \mathbf{n}_{\mid \partial K_{\ell}} \text { by IBP } \\
& =\int_{\partial K_{\ell}} \mathbf{x}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right) \cdot \mathbf{n}_{\mid \partial K_{\ell}} \text { from (7.2). }
\end{aligned}
$$

Hence, using (7.9), we obtain:

$$
\begin{equation*}
\left|\int_{K_{\ell}}\left(\Pi_{F S} \mathbf{v}-\tilde{\Pi}_{F S} \mathbf{v}\right)\right| \leq\left|K_{\ell}\right|\left\|\operatorname{Grad}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \tag{7.12}
\end{equation*}
$$

On the other hand, it holds:

$$
\begin{equation*}
\int_{K_{\ell}}\left(\Pi_{F S} \mathbf{v}-\tilde{\Pi}_{F S} \mathbf{v}\right)=\left(\mathbf{v}_{K_{\ell}}-\tilde{\mathbf{v}}_{K_{\ell}}\right) \int_{K_{\ell}} \phi_{K_{\ell}}=\frac{\left|K_{\ell}\right|}{4}\left(\mathbf{v}_{K_{\ell}}-\tilde{\mathbf{v}}_{K_{\ell}}\right) \tag{7.13}
\end{equation*}
$$

Hence, combining (7.12) and (7.13), we have:

$$
\left|\mathbf{v}_{K_{\ell}}-\tilde{\mathbf{v}}_{K_{\ell}}\right| \leq 4\left\|\mathbf{G r a d}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)}
$$

We deduce from (7.10) that for all $\mathbf{v} \in \mathbf{H}^{1}(\Omega)$, for all $\ell \in \mathcal{I}_{K}$ we have:

$$
\begin{equation*}
\left\|\operatorname{Grad}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{K_{\ell}} \lesssim \sigma_{\ell}\left\|\mathbf{G r a d}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \tag{7.14}
\end{equation*}
$$

For all $\mathbf{v} \in \mathbf{P}^{2}\left(K_{\ell}\right)$ we have $\tilde{\Pi}_{F S}(\mathbf{v})=\mathbf{v}$ and $\left(\widehat{\tilde{\Pi}_{F S} \mathbf{v}}\right)_{\ell}=\widehat{\tilde{\Pi}}_{F S} \hat{\mathbf{v}}_{\ell}$. Hence, using Bramble-Hilbert/Deny-Lions Lemma [16, Lemma 11.9], we have:

$$
\begin{aligned}
& \forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left\|\mathbf{G r a d}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \lesssim \sigma_{\ell}|\mathbf{v}|_{1, K_{\ell}} \\
& \forall \mathbf{v} \in \mathbf{H}^{2}(\Omega) \quad\left\|\mathbf{G r a d}\left(\tilde{\Pi}_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \lesssim \sigma_{\ell} h_{\ell}|\mathbf{v}|_{2, K_{\ell}}
\end{aligned}
$$

We deduce that:

$$
\begin{align*}
& \forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \quad\left\|\mathbf{G r a d}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \lesssim\left(\sigma_{\ell}\right)^{2}|\mathbf{v}|_{1, K_{\ell}} \tag{7.15}\\
& \forall \mathbf{v} \in \mathbf{H}^{2}(\Omega) \quad\left\|\mathbf{G r a d}\left(\Pi_{F S} \mathbf{v}-\mathbf{v}\right)\right\|_{\mathbb{L}^{2}\left(K_{\ell}\right)} \lesssim\left(\sigma_{\ell}\right)^{2} h_{\ell}|\mathbf{v}|_{2, K_{\ell}} \tag{7.16}
\end{align*}
$$

Using interpolation property [22, Lemma 22.2], we obtain (7.8).
We recall that the discrete Poincaré-Steklov inequality (5.3) holds.
Theorem 6. Let $\mathcal{X}_{h}=\mathcal{X}_{F S}$. Then the continuous bilinear form $a_{S, h}(\cdot, \cdot)$ is T_{h} coercive and Problem (5.5) is well-posed.

Proof. According to Proposition 6, the Fortin-Soulie interpolation operator $\Pi_{F S}$ satisfies (5.6)-(5.7), so that we can apply the proof of Theorem 4.

Notice that in the recent paper [23], the inf-sup condition of the mixed FortinSoulie finite element is proven directly on a triangle and then using the macroelement technique [24], but it seems difficult to use this technique to build a Fortin operator, which is needed to compute error estimates.
The study can be extended to higher orders for $d=2$ using the following papers: [25] for $k \geq 4, k$ even, [26] for $k=3$ and [19] for $k \geq 5, k$ odd. In [27], the authors propose a local Fortin operator for the lowest order Taylor-Hood finite element [14] for $d=3$ which could be used to prove the T-coercivity.

8. Numerical results

Consider Problem (3.1) with data $\mathbf{f}=-\operatorname{grad} \phi$, where $\phi \in H^{1}(\Omega) \cap L_{z m v}^{2}(\Omega)$. The unique solution is then $(\mathbf{u}, p):=(0, \phi)$. By integrating by parts, the source term in (3.6) reads:

$$
\begin{equation*}
\forall \mathbf{v} \in \mathbf{H}_{0}^{1}(\Omega), \quad \int_{\Omega} \mathbf{f} \cdot \mathbf{v}=\int_{\Omega} \phi \operatorname{div} \mathbf{v} . \tag{8.1}
\end{equation*}
$$

Recall that the nonconforming space \mathbf{X}_{h} defined in (5.1) is a subset of $\mathcal{P}_{h} \mathbf{H}^{1}$: using a nonconforming finite element method, the integration by parts must be done on each element of the triangulation, and we have:

$$
\begin{equation*}
\forall \mathbf{v} \in \mathcal{P}_{h} \mathbf{H}^{1}, \quad \int_{\Omega} \mathbf{f} \cdot \mathbf{v}=\left(\operatorname{div}_{h} \mathbf{v}, \phi\right)+\sum_{f \in \mathcal{I}_{F}} \int_{F_{f}}\left[\mathbf{v} \cdot \mathbf{n}_{f}\right] \phi \tag{8.2}
\end{equation*}
$$

When we apply this result to the right-hand-side of (5.5), we notice that the term with the jumps acts as a numerical source, which numerical influence is proportional to $1 / \nu$. Thus, we cannot obtain exactly $\mathbf{u}_{h}=0$ (see also (5.14)). Linke proposed in [28] to project the test function $\mathbf{v}_{h} \in \mathbf{X}_{h}$ on a discrete subspace of $\mathbf{H}(\operatorname{div} ; \Omega)$, like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [29, 30], or the monograph [15]). Let $\Pi_{\text {div }}: \mathbf{X}_{0, h} \rightarrow P_{d i s c}^{k}\left(\mathcal{T}_{h}\right) \cap \mathbf{H}_{0}(\operatorname{div} ; \Omega)$ be some interpolation
operator built so that for all $\mathbf{v}_{h} \in \mathbf{X}_{0, h}$, for all $\ell \in \mathcal{I}_{K}$, $\left(\operatorname{div} \Pi_{\operatorname{div}} \mathbf{v}_{h}\right)_{\mid K_{\ell}}=\operatorname{div} \mathbf{v}_{h \mid K_{\ell}}$. Integrating by parts, we have for all $\mathbf{v}_{h} \in \mathbf{X}_{0, h}$:

$$
\begin{aligned}
\int_{\Omega} \mathbf{f} \cdot \Pi_{\mathrm{div}} \mathbf{v}_{h} & =\int_{\Omega} \phi \operatorname{div} \Pi_{\mathrm{div}} \mathbf{v}_{h}=\sum_{\ell \in K_{\ell}} \int_{K_{\ell}} \phi \operatorname{div} \Pi_{\mathrm{div}} \mathbf{v}_{h} \\
& =\sum_{\ell \in K_{\ell}} \int_{K_{\ell}} \phi \operatorname{div} \mathbf{v}_{h}=\left(\operatorname{div}_{h} \mathbf{v}_{h}, \phi\right)
\end{aligned}
$$

The projection $\Pi_{\text {div }}$ allows to eliminate the terms of the integrals of the jumps in (8.2).

Let us write Problem (5.5) as:
Find $\left(\mathbf{u}_{h}, p_{h}\right) \in \mathcal{X}_{h}$ such that

$$
\begin{equation*}
a_{S, h}\left(\left(\mathbf{u}_{h}, p_{h}\right),\left(\mathbf{v}_{h}, q_{h}\right)\right)=\ell_{\mathbf{f}}\left(\left(\Pi_{\operatorname{div}} \mathbf{v}_{h}, q_{h}\right)\right) \quad \forall\left(\mathbf{v}_{h}, q_{h}\right) \in \mathcal{X}_{h} \tag{8.3}
\end{equation*}
$$

In the case of $\mathcal{X}_{h}=\mathcal{X}_{C R}$ and a projection on Brezzi-Douglas-Marini finite elements, the following error estimate holds if $(\mathbf{u}, p) \in \mathbf{H}^{2}(\Omega) \times H^{1}(\Omega)$:

$$
\begin{equation*}
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{\mathbf{L}^{2}(\Omega)} \leq \widetilde{C} h^{2}|\mathbf{u}|_{\mathbf{H}^{2}(\Omega)} \tag{8.4}
\end{equation*}
$$

where the constant \widetilde{C} if independent of h. The proof is detailed in [31] for shaperegular meshes and [32] for anisotropic meshes. We remark that the error doesn't depend on the norm of the pressure nor on the ν parameter. We will provide some numerical results to illustrate the effectiveness of this formulation, even with a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial order, are less precise than the Brezzi-Douglas-Marini finite elements.
For all $\ell \in \mathcal{I}_{K}$, we let $P_{H}^{k}\left(K_{\ell}\right)$ be the set of homogeneous polynomials of order k on K_{ℓ}.
For $k \in \mathbb{N}^{\star}$, the space of Raviart-Thomas finite elements can be defined as:
$\mathbf{X}_{R T_{k}}:=\left\{\mathbf{v} \in \mathbf{H}(\operatorname{div} ; \Omega) ; \forall \ell \in \mathcal{I}_{k}, \mathbf{v}_{\mid K_{\ell}}=\mathbf{a}_{\ell}+b_{\ell} \mathbf{x} \mid\left(\mathbf{a}_{\ell}, b_{\ell}\right) \in P^{k}\left(K_{\ell}\right)^{d} \times P_{H}^{k}\left(K_{\ell}\right)\right\}$.
Let $k \leq 1$.
The Raviart-Thomas interpolation operator $\Pi_{R T_{k}}: \mathbf{H}^{1}(\Omega) \cup \mathbf{X}_{h} \rightarrow \mathbf{X}_{R T_{k}}$ is defined by: $\forall \mathbf{v} \in \mathbf{H}^{1}(\Omega) \cup \mathbf{X}_{h}$,

$$
\left\{\begin{array}{rl}
\forall f \in \mathcal{I}_{F}, & \int_{F_{f}} \Pi_{R T_{k}} \mathbf{v} \cdot \mathbf{n}_{f} q=\int_{F_{f}} \mathbf{v} \cdot \mathbf{n}_{f} q, \quad \forall q \in P^{k}\left(F_{f}\right) \tag{8.5}\\
\text { for } k=1, \forall \ell \in \mathcal{I}_{K}, & \int_{K_{\ell}} \Pi_{R T_{1}} \mathbf{v}=\int_{K_{\ell}} \mathbf{v}
\end{array} .\right.
$$

Note that the Raviart-Thomas interpolation operator preserves the constants. Let $\mathbf{v}_{h} \in \mathbf{X}_{h}$. In order to compute the left-hand-side of (8.2), we must evaluate $\left(\Pi_{R T_{k}} \mathbf{v}_{h}\right)_{\mid K_{\ell}}$ for all $\ell \in \mathcal{I}_{K}$. Calculations are performed using the proposition below, which corresponds to [33, Lemma 3.11]:
Proposition 7. Let $k \leq 1$. Let $\hat{\Pi}_{R T_{k}}: \mathbf{H}^{1}(\hat{K}) \rightarrow \mathbf{P}^{k}(\hat{K})$ be the Raviart-Thomas interpolation operator restricted to the reference element, so that: $\forall \hat{\mathbf{v}} \in \mathbf{H}^{1}(\hat{K})$,

$$
\left\{\begin{array}{l}
\forall \hat{F} \in \partial \hat{K}, \quad \int_{\hat{F}} \hat{\Pi}_{R T_{k}} \hat{\mathbf{v}} \cdot \mathbf{n}_{\hat{F}} \hat{q}=\int_{\hat{F}} \hat{\mathbf{v}} \cdot \mathbf{n}_{\hat{F}} \hat{q}, \quad \forall \hat{q} \in P^{k}(\hat{F}) \tag{8.6}\\
\text { for } k=1, \quad \int_{\hat{K}} \hat{\Pi}_{R T_{k}} \hat{\mathbf{v}}=\int_{\hat{K}} \hat{\mathbf{v}}
\end{array}\right.
$$

We then have: $\forall \ell \in \mathcal{I}_{K}$,

$$
\begin{equation*}
\left(\Pi_{R T_{k}} \mathbf{v}\right)_{\mid K_{\ell}}(\mathbf{x})=\mathbb{B}_{\ell}\left(\hat{\Pi}_{R T_{k}} \mathbb{B}_{\ell}{ }^{-1} \hat{\mathbf{v}}_{\ell}\right) \circ T_{\ell}^{-1}(\mathbf{x}) \text { where } \hat{\mathbf{v}}_{\ell}=\mathbf{v} \circ T_{\ell}(\hat{\mathbf{x}}) \text {. } \tag{8.7}
\end{equation*}
$$

The proof is based on the equality of the \hat{F} and \hat{K}-moments of $\left(\Pi_{R T_{k}} \mathbf{v}\right)_{\mid K_{\ell}} \circ T_{\ell}(\hat{\mathbf{x}})$ and $\mathbb{B}_{\ell}\left(\hat{\Pi}_{R T_{k}} \mathbb{B}_{\ell}{ }^{-1} \hat{\mathbf{v}}_{\ell}\right)(\hat{\mathbf{x}})$. For $k=0$, setting for $d^{\prime} \in\{1, \cdots, d\}: \psi_{f, d^{\prime}}:=\psi_{f} \mathbf{e}_{d^{\prime}}$, we obtain that:

$$
\begin{equation*}
\forall \ell \in \mathcal{I}_{K}, \forall f \in \mathcal{I}_{F, \ell}, \quad\left(\Pi_{R T_{0}} \boldsymbol{\psi}_{f, d^{\prime}}\right)_{\mid K_{\ell}}=\left(d\left|K_{\ell}\right|\right)^{-1}\left(\mathbf{x}-\overrightarrow{O S_{f, \ell}}\right) \mathcal{S}_{f, \ell} \cdot \mathbf{e}_{d^{\prime}}, \tag{8.8}
\end{equation*}
$$

where $S_{f, \ell}$ is the vertex opposite to F_{f} in K_{ℓ}.
For $k=1$, the vector $\left(\Pi_{R T_{1}} \mathbf{v}_{h}\right)_{\mid K_{\ell}}$ is described by eight unknowns:

$$
\left(\Pi_{R T_{1}} \mathbf{v}_{h}\right)_{\mid K_{\ell}}=\mathbb{A}_{\ell} \mathbf{x}+\left(\mathbf{b}_{\ell} \cdot \mathbf{x}\right) \mathbf{x}+\mathbf{d}_{\ell}, \text { where } \mathbb{A}_{\ell} \in \mathbb{R}^{2 \times 2}, \mathbf{b}_{\ell} \in \mathbb{R}^{2}, \mathbf{d}_{\ell} \in \mathbb{R}^{2} .
$$

We compute only once the inverse of the matrix of the linear system (8.6), in $\mathbb{R}^{8 \times 8}$. In the Table 1 (resp. Tables 2 and 3), we call $\varepsilon_{0}(\mathbf{u})=\left\|\mathbf{u}_{h}\right\|_{\mathbf{L}^{2}(\Omega)}$ (resp. $\| \mathbf{u}-$ $\left.\mathbf{u}_{h}\left\|_{\mathbf{L}^{2}(\Omega)} /\right\| \mathbf{u} \|_{\mathbf{L}^{2}(\Omega)}\right)$ the velocity error in $\mathbf{L}^{2}(\Omega)$-norm, where \mathbf{u}_{h} is the solution to Problem (5.5) (columns $\mathbf{X}_{C R}$ and $\mathbf{X}_{F S}$) or (8.3) (columns $\mathbf{X}_{C R}+\Pi_{R T_{0}}$ and $\mathbf{X}_{F S}+\Pi_{R T_{1}}$) and h is the mesh step.
We first consider Stokes Problem (3.1) in $\Omega=(0,1)^{2}$ with $\mathbf{u}=0, p=\left(x_{1}\right)^{3}+\left(x_{2}\right)^{3}-$ $0.5, \mathbf{f}=\operatorname{grad} p=3\left(\left(x_{1}\right)^{2},\left(x_{2}\right)^{2}\right)^{T}$. We report in Table $1 \varepsilon_{0}(\mathbf{u})$ for $h=5.00 e-2$ and for different values of ν.

ν	$\mathbf{X}_{C R}$	$\mathbf{X}_{C R}+\Pi_{R T_{0}}$	$\mathbf{X}_{F S}$	$\mathbf{X}_{F S}+\Pi_{R T_{1}}$
$1.00 e+0$	$3.19 e-4$	$1.34 e-18$	$3.53 e-7$	$9.09 e-19$
$1.00 e-3$	$3.19 e-1$	$1.34 e-15$	$3.53 e-4$	$9.09 e-16$
$1.00 e-4$	$3.19 e+0$	$1.34 e-14$	$3.53 e-3$	$9.09 e-15$
TABLE 1. Values of $\varepsilon_{0}(\mathbf{u})$ for $h=5.00 e-2$				

When there is no projection, the error is inversely proportional to the ν parameter, whereas using the projection, we obtain $\mathbf{u}_{h}=0$ up to machine precision. We now consider Stokes Problem (3.1) in $\Omega=(0,1)^{2}$ with:

$$
\mathbf{u}=\binom{\left(1-\cos \left(2 \pi x_{1}\right)\right) \sin \left(2 \pi x_{2}\right)}{\left(\cos \left(2 \pi x_{2}\right)-1\right) \sin \left(2 \pi x_{1}\right)}, \quad\left\{\begin{array}{l}
p=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right), \\
\mathbf{f}=-\nu \Delta \mathbf{u}+\operatorname{grad} p .
\end{array}\right.
$$

We report in Table 2 (resp. 3) the values of $\varepsilon_{0}(\mathbf{u})$ in the case $\nu=1.00 e-3$ (resp. $\nu=1.00 e-4$) for different level of mesh refinement. When there is no projection, $\varepsilon_{0}(\mathbf{u})$ is inversely proportional to ν, whereas using the projection, $\varepsilon_{0}(\mathbf{u})$ is independent of ν.

h	$\mathbf{X}_{C R}$	$\mathbf{X}_{C R}+\Pi_{R T_{0}}$	$\mathbf{X}_{F S}$	$\mathbf{X}_{F S}+\Pi_{R T_{1}}$
$5.00 e-2$	$5.66 e-1$	$1.13 e-2$	$2.35 e-3$	$2.06 e-4$
$2.50 e-2$	$1.33 e-1$	$2.89 e-3$	$3.21 e-4$	$2.59 e-5$
$1.25 e-2$	$3.88 e-2$	$5.40 e-4$	$4.20 e-5$	$3.40 e-6$
$6.25 e-3$	$8.40 e-3$	$1.79 e-4$	$5.04 e-6$	$4.15 e-7$
Rate	$h^{2.05}$	$h^{2.07}$	$h^{2.96}$	$h^{2.98}$

TABLE 2. Values of $\varepsilon_{0}(\mathbf{u})$ for $\nu=1.00 e-3$

h	$\mathbf{X}_{C R}$	$\mathbf{X}_{C R}+\Pi_{R T_{0}}$	$\mathbf{X}_{F S}$	$\mathbf{X}_{F S}+\Pi_{R T_{1}}$
$5.00 e-2$	$5.66 e-0$	$1.13 e-2$	$2.35 e-2$	$2.06 e-4$
$2.50 e-2$	$1.33 e-0$	$2.89 e-3$	$3.20 e-3$	$2.59 e-5$
$1.25 e-2$	$3.38 e-1$	$5.40 e-4$	$4.20 e-4$	$3.40 e-6$
$6.25 e-3$	$8.40 e-2$	$1.79 e-4$	$5.04 e-5$	$4.15 e-7$
Rate	$h^{2.05}$	$h^{2.07}$	$h^{2.96}$	$h^{2.98}$

TABLE 3. Values of $\varepsilon_{0}(\mathbf{u})$ for $\nu=1.00 e-4$

Figure 2. Values of $\left(\mathbf{u}_{F S}-\mathbf{u}_{F S+}+R T_{1}\right)$. Left: x_{1}-component, right: x_{2}-component.

Let $\mathbf{u}_{F S}$ (resp. $\mathbf{u}_{F S+R T_{1}}$) the solution to Problem (5.5) (resp. (8.3)) computed with Fortin-Soulie finite elements. We represent on Figure 2 the values of the Lagrange projection of $\left(\mathbf{u}_{F S}-\mathbf{u}_{F S+R T_{1}}\right)$ in the case where $h=2.50 e-2$ and $\nu=1.00 e-4$. We observe local oscillations, of order the mesh step, which are caused by the numerical source exhibited in (8.2).
In order to enhance the numerical results, one can also use a posteriori error estimators to adapt the mesh (see [34, 35] for order 1 and [36] for order 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method, one can build a divergence-free basis, as described in [37]. Notice that using conforming finite elements, the Scott-Vogelius finite elements [38, 39] produce velocity approximations that are exactly divergence free.
The code used to get the numerical results can be downloaded on GitHub [40]. In principle, one can also obtain results with low-regularity velocity field.

9. Conclusion

We analysed the discretization of Stokes problem with nonconforming finite elements in light of the T-coercivity theory, we computed stability coefficients for order 1 in 2 or 3 dimension without mesh regularity assumption; and for order 1 in 2 dimension in the case of a shape-regular triangulation sequence. We then provided numerical results to illustrate the importance of using \mathbf{H} (div)-conforming projection. Further, we intend to extend the study to other mixed finite element methods.

Acknowledgements

The author acknowledges Mahran Rihani and Albéric Lefort.

References

[1] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations. SpringerVerlag, 1986.
[2] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO, Sér. Anal. Numér., 7(3):33-75, 1973.
[3] M. Fortin and M. Soulie. A non-conforming piecewise quadratic finite element on triangles. International Journal for Numerical Methods in Engineering, 19(4):505-520, 1983.
[4] P. Ciarlet Jr. T-coercivity: Application to the discretization of Helmhotz-like problems. Computers $\begin{aligned} & \text { Mathematics with Applications, 64(1):22-24, } 2012 .\end{aligned}$
[5] E. Jamelot and P. Ciarlet, Jr. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation. Journal of Computational Physics, 241:445-463, 2013.
[6] P. Ciarlet Jr., E. Jamelot, and F. D. Kpadonou. Domain decomposition methods for the diffusion equation with low-regularity solution. Computers $\mathcal{\&}$ Mathematics with Applications, 74(10):2369-2384, 2017.
[7] L. Giret. Non-Conforming Domain Decomposition for the Multigroup Neutron SPN Equation. PhD thesis, Université Paris-Saclay, 2018.
[8] A. Ern and J.-L. Guermond. Finite elements II, volume 73 of Texts in Applied Mathematics. Springer, 2021.
[9] C. Bernardi, M. Costabel, M. Dauge, and V. Girault. Continuity properties of the inf-sup constant for the divergence. SIAM J. Math. Anal., 48(2):1250-1271, 2016.
[10] D. Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence. Mathematics of Computation, 88(315):73-89, 2019.
[11] M. Costabel and M. Dauge. On the inequalities of Babuška-Aziz, Friedrichs and HorganPayne. Arch. Rational Mech. Anal., 217:873-898, 2015.
[12] M. Barré and P. Ciarlet Jr. T-coercivité et problèmes mixtes. working paper or preprint, October 2022.
[13] P. Ciarlet Jr. Méthodes variationnelles pour l'analyse de problèmes non coercifs, 2021. M.Sc. AMS lecture notes (ENSTA-IPP).
[14] C. Taylor and T. Hood. Numerical solution of the Navier-Stokes equations using the finite element technique. Computers \& Fluids, 1:73-100, 1973.
[15] D. Boffi, F. Brezzi, and M. Fortin. Mixed and hybrid finite element methods and applications. Springer-Verlag, 2013.
[16] A. Ern and J.-L. Guermond. Finite elements I, volume 72 of Texts in Applied Mathematics. Springer, 2021.
[17] S. Sauter. The inf-sup constant for Crouzeix-Raviart triangular elements of any polynomial order, 2022.
[18] T. Apel, S. Nicaise, and J. Schöberl. Crouzeix-Raviart type finite elements on anisotropic meshes. Numerische Mathematik, 89(2):193-223, 2001.
[19] C. Carstensen and S. Sauter. Critical functions and inf-sup stability of Crouzeix-Raviart elements. Computers and Mathematics with Applications, 108:12-23, 2022.
[20] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54:483-493, 1990.
[21] P. Ciarlet Jr. Analysis of the Scott-Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math., 21(3):173--180, 2013.
[22] L. Tartar. An introduction to sobolev spaces and interpolation spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, 2007.
[23] S. Sauter and C. Torres. On the Inf-Sup Stabillity of Crouzeix-Raviart Stokes Elements in 3D, 2022.
[24] R. Stenberg. Error analysis of some finite element methods for the stokes problem. Math. Comp., 54:495-508, 1990.
[25] À. Baran and G. Stoyan. Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing, 79(1):1-21, 2007.
[26] C. Carstensen and S. Sauter. Crouzeix-Raviart triangular elements are inf-sup stable, 2021. Preprint.
[27] L. Diening, J. Storn, and T. Tscherpel. Fortin operator for Taylor-Hood element. Numerische Mathematik, 150(2):671-689, 2022.
[28] A. Linke. On the Role of the Helmholtz-Decomposition in Mixed Methods for Incompressible Flows and a New Variational Crime. Comput. Methods Appl. Mech. Engrg., 268:782-800, 2014.
[29] P.-A. Raviart and J.-M. Thomas. A mixed finite element method for second order elliptic problems. In Mathematical aspects of finite element methods, volume 606 of Lecture Notes in Mathematics, pages 292-315. Springer, 1977.
[30] F. Brezzi, J. Douglas, and L. D. Marini. Two families of mixed finite elements for second order elliptic problems. Numerische Mathematik, 47(2):217-235, 1985.
[31] C. Brennecke, A. Linke, C. Merdon, and J. Schöberl. Optimal and pressure independent L^{2} velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions. Journal of Computational Mathematics, 33(2):191-208, 2015.
[32] T. Apel, V. Kempf, A. Linke, and C. Merdon. A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes. IMA Journal of Numerical Analysis, 42(1):392-416, 2022.
[33] G. N. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. SpringerBriefs in Mathematics. Springer, 2014.
[34] E. Dari, R. Durán, and C. Padra. Error estimators for nonconforming finite element approximations of the Stokes problem. Mathematics of Computation, 64(211):1017-1033, 1995.
[35] W. Dörfler and M. Ainsworth. Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow. Mathematics of Computation, 74(252):1599-1619, 2005.
[36] M. Ainsworth, A. Allendes, G. R. Barrenechea, and R. Rankin. Computable error bounds for nonconforming Fortin-Soulie finite element approximation of the Stokes problem. IMA Journal of Numerical Analysis, 32(2):417-447, 2011.
[37] F. Hecht. Construction d'une base de fonctions P_{1} non conforme à divergence nulle dans \mathbb{R}^{3}. RAIRO, Sér. Anal. Numér., 15(2):119-150, 1981.
[38] L. R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO, Sér. Anal. Numér., 19(1):111-143, 1985.
[39] S. Zhang. A new family of stable mixed finite elements for the 3D Stokes equations. Mathematics of Computation, 74:543-554, 2005.
[40] E. Jamelot. https://github.com/cea-trust-platform/Stokes_NCFEM.

[^0]: ${ }^{1}$ Remark that $\left(\mathbf{v}^{\star}, q^{\star}\right)=(\mathbf{0}, 0) \Leftrightarrow\left(\mathbf{u}^{\prime}, p^{\prime}\right)=(\mathbf{0}, 0)$: the operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{X})$ is bijective.
 ${ }^{2}$ According to [1, Cor. I.2.3], since $\mathbf{v}_{p} \in \mathbf{V}^{\perp}, \exists p \in L_{z m v}^{2}(\Omega) \mid \Delta \mathbf{v}_{p}=\operatorname{grad} q$ in $\mathbf{H}^{-1}(\Omega)$. Integrating by parts twice, we have: $\left(\mathbf{u}, \mathbf{v}_{p}\right)_{\mathbf{H}_{0}^{1}(\Omega)}=-\langle\operatorname{grad} q, \mathbf{u}\rangle_{\mathbf{H}_{0}^{1}(\Omega)}=(q, \operatorname{div} \mathbf{u})_{L^{2}(\Omega)}=0$.

[^1]: ${ }^{3}$ The term facet stands for face (resp. edge) when $d=3$ (resp. $d=2$).

[^2]: ${ }^{4}$ Note that $\left(\mathbf{v}_{h}^{\star}, q_{h}^{\star}\right)=(\mathbf{0}, 0) \Leftrightarrow\left(\mathbf{u}_{h}^{\prime}, p_{h}^{\prime}\right)=(\mathbf{0}, 0)$, so that the operator $T_{h} \in \mathcal{L}\left(\mathcal{X}_{h}, \mathcal{X}_{h}\right)$ is bijective.

