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ABSTRACT. We propose to analyse the discretization of the Stokes problem
with nonconforming finite elements in light of the T-coercivity (cf. [1] for
Helmholtz-like problems, see [2], [3] and [4] for the neutron diffusion equation).
We propose explicit expressions of the stability constants. Finally, we give
numerical results illustrating the importance of using divergence-free velocity
reconstruction.
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1. INTRODUCTION

The Stokes problem describes the steady state of incompressible Newtonian
flows. They are derived from the Navier-Stokes equations [5]. With regard to
numerical analysis, the study of Stokes problem helps to build an appropriate ap-
proximation of the Navier—Stokes equations. We consider here a discretization with
nonconforming finite elements [6, 7]. We propose to state the discrete inf-sup con-
dition in light of the T-coercivity (cf. [1] for Helmholtz-like problems, see [2], [3]
and [4] for the neutron diffusion equation), which allows to estimate the discrete
error constant. In Section 2, we recall the T-coercivity theory as written in [1]. In
Section 3 we apply it to the continuous Stokes Problem. We give details on the
triangulation in Section 4, and we apply the T-coercivity to the discretization of
Stokes problem with nonconforming mixed finite elements in Section 5. In Section
6 (resp. 7), we precise the proof of the well-posedness in the case of order 1 (resp.
order 2) nonconforming mixed finite elements. Finally, we give numerical results
illustrating the importance of using divergence-free velocity reconstruction.

2. T-COERCIVITY

We recall here the T-coercivity theory as written in [1]. Consider first the vari-
ational problem, where V and W are two Hilbert spaces and f € V':

(2.1) Find w € V such that Vv € W, a(u,v) = (f,v)v.

E-mail address: erell. jamelot@cea.fr.
Date: October 28, 2022.



2 T-COERCIVITY FOR STOKES

Classically, we know that Problem (2.1) is well-posed if a(-,-) satisfies the stabil-
ity and the solvability conditions of the so-called Banach—Necas—Babuska (BNB)
Theorem (see a.e. [8, Thm. 25.9]). For some models, one can also prove the well-
posedness using the T-coercivity theory (cf. [1] for Helmholtz-like problems, see
[2], [3] and [4] for the neutron diffusion equation).

Definition 1. Let V and W be two Hilbert spaces and a(-,-) be a continuous and
bilinear form over V.x W. It is T-coercive if

(2.2) 3T € L(V,W), bijective, Ia > 0, Vv € V, |a(v, Tv)| > aljv||?.
If in addition a(-,-) is symmetric, it is T-coercive if
(2.3) IT € L(V,V), Ja >0, Vv €V, |a(v, Tv)| > a|jv|?.

When the bilinear form a(-,-) is symmetric, the requirement that the operator
T is bijective can be dropped. It is proved in [1] that the T-coercivity condition is
equivalent to the stability and solvability conditions of the BNB Theorem. Whereas

the BNB theorem relies on an abstract inf-sup condition, T-coercivity uses explicit
inf-sup operators, both at the continuous and discrete levels.

Theorem 1. (well-posedness) Let a(-,-) be a continuous and bilinear form. Suppose
that the form a(-,-) is T-coercive. Then Problem (2.1) is well-posed.

3. STOKES PROBLEM

Let 2 be a connected bounded domain of R?, d = 2, 3, with a polygonal (d = 2)
or Lipschitz polyhedral (d = 3) boundary 9. We consider Stokes problem:
—vAu+gradp = f,

divu = 0.
with Dirichlet boundary conditions for the velocity u and a normalization condition
for the pressure p:

(3.1) Find (u,p) such that {

u =0 on 99, /p:O.
Q

The vector field u represents the velocity of the fluid and the scalar field p represents
its pressure divided by the fluid density which is supposed to be constant. Thus,
the SI unit of the components of u is m - s~! and the SI unit of p is m? - s72).
The first equation of (3.1) corresponds to the momentum balance equation and the
second one corresponds to the conservation of the mass. The constant parameter
v > 0 is the kinematic viscosity of the fluid, its SI umit is m? - s~'. The vector
field f € H~1(Q) represents a body forces divided by the fluid density, its SI unit
is m-s72.

Before stating the variational formulation of Problem (3.1), we provide some
definition and reminders. Let us set L%(Q) = (L%(Q))¢, H(Q) = (HL(Q))4,
H™ Q) = (H () its dual space and L2, (Q) = {q¢ € L*(Q)| [,q = 0}.

We recall that H(div; Q) = {v € L?(Q)|divv € L*Q)}. Let us first recall
Poincaré-Steklov inequality:

(32) Cps > O|VU S Hé(Q), ||’UHL2(Q) < CpsH gradv||Lz(Q).

The SI unit of Cpg is m.
Thanks to this result, in H}(Q), the semi-norm is equivalent to the natural norm,
so that the scalar product reads (v, w)Hé(Q) = (grad v, grad w)y,> (o) and the norm
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is [|v]l g ) = llgradv||Le(q). Let v, w € Hy(Q2). We denote by (v;)&; (resp.
(w;){,) the components of v (resp. w), and we set Grad v = (9;v;)¢,_; € L*(Q),
where L2(Q) = [L?(©2)]**¢. We have:

d
(Grad v, Grad W)ILQ(Q) = (V,W)H(l)(g) = Z(Ui7wi)Hé(Q)
i=1
and:
4 1/2
Vi) = | D Iosllin = || Grad v||L2(o).

j=1

Let us set V = {v € H{(Q) | divv = 0}. The space V is a closed subset of H§({2).
We denote by V= the orthogonal of V in H}(2). Let v, > 0 be a kinematic
viscosity. We recall that [5, cor. 1.2.4]:

Proposition 1. The operator div : HY(Q) — L2(Q) is an isomorphism of V+
onto L2, (). Let v, > 0 be a constant kinematic viscosity. We call Cqiy the
constant such that:

zZmov

. 1 C iv
(3:3) ¥pe L2,,(Q), Ivy € V| divvy = —p and |[v,|leye) < VLHpHLz(Q).
p p

Here, the constant Cgi, has no unit. It depends only on the domain 2. Notice
that we have: Caiy = 1/8(€2) where 5(€2) is the inf-sup condition (or Ladyzhen-
skaya—Babuska—Brezzi condition):

(q, div V)LQ(Q)
sup

(3.4) BOQ) =  inf .
9€L2,,,(O\{0} veni @\ {0} [9llr2(0) (VI @)

Generally, the value of 3(€2) is not known explicitly. In [9], Bernardi et al established
results on the discrete approximation of 3(2) using conforming finite elements.
Recently, Gallistl proposed in [10] a numerical scheme with adaptive meshes for
computing approximations to §(2). In the case of d = 2, Costabel and Dauge [11]
established the following bound:

Theorem 2. Let ) C R? be a domain contained in a ball of radius R, star-shaped
with respect to a concentric ball of radius p. Then

2

—-1/2
P P P

Let us detail the bound for some remarkable domains. If 2 is a ball, 3(Q) > 3

and if Q is a square, S(2) > ﬁ Suppose now that (2 is stretched in some direction
by a factor k, then () > ﬁ Finally, if Q is L-shaped (resp. cross-shaped) such
that L = k[, where L is the largest length and [ is the smallest length of an edge,
then 5(Q2) > 2\}§k (resp. B(Q) > ﬁ)

The variational formulation of Problem (3.1) reads:
Find (u,p) € H}(Q) x L2,,,(Q) such that

zmu
(36) l/(u, V)Hé(ﬂ) — (p, div V)Lz Q) = <f, V>H(1)(Q) Vv € Hé(Q) 3
(q, div u)L2(Q) = 0 Vq € Lgmv(ﬂ)'
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Classically, one proves that Problem (3.6) is well-posed using Poincaré-Steklov in-
equality (3.2) and Prop. 1. Check for instance the proof of [5, Thm. 1.5.1].

Let us set X = H}(Q) x L2, (Q) which is a Hilbert space which we endow with
the following norm:

(3.7) IV, D)llx = IVl @) + v lallzz)-
We consider now the following bilinear symmetric and continuous form:

(3.8) ag: X xX — R
) (', p) x (v,q) — V(u’,v)Hé(Q) — (0, divv)r2) — (¢, divu’) 2(q)

We can write Problem (3.1) in an equivalent way as follows:
(3.9) Find (u,p) € X such that as ((u,p),(v.q)) = (£, v)mio) V(v,q) € X.
Let us prove that Problem (3.9) is well-posed using the T-coercivity theory.

Theorem 3. Problem (3.9) is well-posed. It admits one and only one solution such
that:

- <vHflla-1o
3.10 vE e H(Q), { [ulegy o) < @
( ) ( ) Hp||L2(Q) < Caiv ||f||H—1(Q).

Proof. We follow here the proof given in [12, 13]. Let us consider (u’,p’) € X and
let us build (v*,¢*) = T(u/,p’) € X satisfying (2.3) (with V' = X’). We need three
main steps.

/

1. According to Prop. 1, there exists v,, € H{(Q) such that: divv, = v lp
in 2 and

Caiv\”
(311) v g < (S25) W

!/

Let us set (v*,¢*) := (yu' — vy, —yD'), with v > 0. We obtain:
(3.12) as ((0,p), (v*.a")) = vy [0 F o) + v 11220y — v (0, Vi )z ()

2. In order to bound the last term of (3.12), we use Young inequality and then
inequality (3.11):

Cvdiv ? ||p/H22
v L2(Q)"

3. Using the bound (3.13) in (3.12) and choosing n = v, we get:

—1
n n
(3.13) (v e < 5 iy + 75 (

-1

_ gl
v + v (1 + 2(Cdiv)2) 11220

as (W,p), (v'.q) 2

Consider now v = (Cyiy)?.
. . _ v .
Noticing that V||u||f{é(m +v P ) > 5“(11/’13/)”%0 we obtain:

o * % v 1 .
as ((11 » D )7 (V »q )) > §Cmin ||(u/ap/)||3\’ where Crin = 5111111( (Cdiv)Z; 1)
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The operator T such that T(u’,p’) = (v*, ¢*) is linear and continuous:

1T )l = Vi@ + v etz
< / —1 /
< vl e @) + v ey + v 1P 2@,
< 112 C: —1 /112
< i) + (Caw +9) v lIPl72(0)

< Chmax (W, 0] 2,

where Cinax = Caiv (1 + Cliv)-
! The symmetric and continuous bilinear form a(-,-) is then T-coercive and ac-
cording to Theorem 1, Problem (3.9) is well-posed. Let us prove (3.10). Con-
sider (u,p) the unique solution of Problem (3.9). Choosing v = 0, we obtain
that Vg € L?,,,(Q), (g,divu)z2q) = 0, so that u € V. Now, choosing v

u and using Cauchy-Schwarz inequality, we have: I/Hu||i1[1)(Q = (£, )10

IA I

[£lle-1(0) [allaz @), so that: [[ufgiq < v |fllg-1(q). Next, we choose in (3.9)
v = v, € VI, where divv, = —v~1p (see Prop. 1). Noticing that u € V and
v, € V14 it holds?: (u, Vp)Hi() = 0. This gives:

—(p.divvp)rz) = v P72 = (£ Ve @)
< flla-r @ Ivallay @) < Caiv v HIEla-1@) [Pll22 @)
so that: ||p||L2(Q) < Cdiv”fHH*l(Qy (Il

Remark 1. We recover the first Banach—Necéas—Babuska condition [8, Thm. 25.9,
(BNB1)]:

as ((0,p), (v*,¢")) = 5 Cumin (Comax) " |0, ) 2 1(v*, 0 -

v
2

Let us call Cspap = 5 Crin (Cax) ! the stability constant. With the choice of
our parameters, Cgiap is such that:

v Cgiv .

—— |if v <1,

115 gy TO<Cavs
Cstab = ( ) L

v C’div - .

——— if 1 < Cyjy-

41 +Cdiv ' =

Thus, the T-coercivity approach allows to give an estimate of the stability constant.
In our computations, it depends on the choice of the parameters n and -, so that
it could be optimized.

If we were using a conforming discretization to solve Problem (3.9) (a.e. Taylor-
Hood finite elements [14]), we would use the bilinear form ag(-,-) to state the
discrete variational formulation. Let us call the discrete spaces X, C H}(Q2) and
Qe C L2,,,(92). Then to prove the discrete T-coercivity, we would need to state

zZmuv

IRemark that (v*,¢*) = (0,0) < (u/,p’) = (0,0): the operator T' € L(X, X) is bijective.
2According to [5, Cor. 1.2.3], since v, € VL, 3p € L2, (Q)|Av, = gradq in H-1(Q).
Integrating by parts twice, we have: (uvvp)H})(Q) = —(gradgq, u>H6(Q) = (g, div u)Lg(Q) =0.
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the discrete counterpart to Proposition 1. To do so, we can build a linear operator
II. : X — X}, known as Fortin operator, such that (see a.e. [15, §8.4.1]):

(3.14) 3C.|vveH'(Q) | Gradll.v|iz) < Ce| Grad vl|i2(o),
(3.15) Vv e H(Q) (divILv,qn)r2(0) = (divv,an)r2),  Yan € Qe

Using a nonconforming discretization, we will not use the bilinear form ag(-,-) to
exhibit the discrete variational formulation, but we will need a similar operator to
(3.14)-(3.15) to prove the discrete T-coercivity, which is stated in Theorem 4.

4. DISCRETIZATION

We call (O, (z4)%_,) the Cartesian coordinates system, of orthonormal basis
(eq)4_,. Consider (7)s a simplicial triangulation sequence of Q. For a triangu-
lation 7j, we use the following index sets:

e 7 denotes the index set of the elements, such that 7} := U K,y is the

LeTK
set of elements.

e Tr denotes the index set of the facets®, such that Fj, := U Fy is the set

fEIr
of facets.

Let Zp = T4 UZY, where Vf € Ik, Fy € Q and Vf € I%, Fy € O5.
e Zg denotes the index set of the vertices, such that (S;);ez, is the set of
vertices.
Let Zg = T U TY, where Vj € Ti, S; € Q and Vj € I%, S; € 9.
We also define the following index subsets:
o V/ €Tk, IF,Z = {f GIF|Ff S Kg}, Is,g = {j EIs|Sj S Kg}.
e VjeTg, IKJ = {K IS | Sj € Kg}, Nj = card(IKJ).
For all £ € Tk, we call hy and py the diameters of K, and its inscribed sphere
respectively, and we let: o, = %. When the (73), is a shape-regular triangulation
sequence (see a.e. [16, def. 11.2]), there exists a constant o > 1 such that for all h,
forall £ € I, 0o < 0. For all f € T, My denotes the barycentre of F¢, and by n¢
its unit normal (outward oriented if Fy € 0Q). For all j € Zg, for all £ € Tg j, Aj ¢
denotes the barycentric coordinate of S; in Ky; Fj, denotes the face opposite to
vertex S in element K, and x; ¢ denotes its barycentre. We call S;, the outward

normal vector of F;, and of norm |S; ¢| = |Fj ¢|. We remind the expression of A;
and the integration formula (25.14) p. 187 of [17]:
¥x € Ko, Aje(x) = (d|Kel) ™ (x50 = %) Sje
d ] i
4.1 i
K, 1€Ls,¢
d—+ Z Q¢ !
iEISV(

Let introduce spaces of piecewise regular elements:
We set PpH' = {v e L*(Q); Ve Ik, vk, € H(K;)}, endowed with the scalar

3The term facet stands for face (resp. edge) when d = 3 (resp. d = 2).
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product :
(v,w)p = Z (grad v, grad w)y2(k,) lv||2 = Z ngade%g(KZ).
€Tk €Tk
We set P,H! = [P, H']¢, endowed with the scalar product :
(v,w)p = Z (Gradv,Grad w)i2(k,) V|7 = Z I Gradv||E2(K[).

ek ek
Let f € Z¢ such that Fy = 0K, NOKp and ny is outward K, oriented.
The jump (resp. average) of a function v € P, H' across the facet F is defined as
follows: [v]F, := vk, — VK, (resp. {v}p, == 3(vjK, +VK,))- For f € L%, we set:
[v]F; = vp, and {v}F, := v,
We set PyH(div) = {veL*Q); V€I, vk, €H(div; K;)}, and we define
the operator divy such that:

Vv € PuH(div), Vg € L*(Q), (divav,q) = > (divv,q)r2(x,)-
LeTK

We recall classical finite elements estimates [16]. Let K be the reference simplex
and F be the reference facet. For £ € Ty (resp. f € Zr), we denote by Ty : K — K,
(resp. Ty : I' — Fy) the geometric mapping such that Vx € K, x|, = Ty(X) =
Bex + by (vesp. xp, = Ty(X) = ByX + by), and we set J, = det(B,) (resp.
J¢ = det(By)). There holds:

hg _ hy
el = dU K, [IBell = —, B ==, |Js| = (d—1)![Fyl.
Pr pe

For v € L?(K,), we set 9y = v o Ty. For v € v}(F}), we set: oy = voTy. Changing
the variable, we get:
(4.2) [z ) = | Tel 0l 7 gy, and [0lZace,y = 1Tp 1941172 5y
Let v € P,H'. By changing the variable, grad v g, = B, 1T grady iy, and it
holds:

. 2 _
| grady o|| [Bel|” [T =" || grad v]Fz k-
o® (pe)~ % | grad v|Lz k-
Let us recall some useful inequalities that we will need:

2 <
(4.3) LK) —
S

e The Poincaré-Steklov inequality in cells [16, Lemma 12.11]:
for all £ € Iy (K is a convex set), Vv € H(K,):

fKﬂ’
| K|

e The multiplicative trace inequality as written in the proof of [16, lemma
12.15] for p = 2: for all £ € Tk, for all f € Zpy, Vv € H*(K,):

| E| 2
(4.5) [0lZ 25,y < ﬁ\\vﬂm(m) [vllr2(x,) + Elfz,f)HgFadUHL%Kg) ;

44)  ell2ey <7 thellgrad vfLa(x,),  where v, = vk, —

where lé P is the largest length of an edge in K, and not belonging to FY.
e Combining (4.4) and (4.5), we get that Vv € H(K,):

7| L
(46) ||QEH%2(Ff) < 7|KJ;|7T 1hg ™ 1hg + gl&,f) ngad’UHiz(KZ).
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Notice that in the reference element, inequality (4.6) reads:
(47) vl eIKa Vf GIF’K, H(Qi)f||i2(ﬁ) 5 ||grad§c{)5||i2(f()

For all D C RY, we call P¥(D) the set of order k polynomials on D, P¥(D) =
(P*(D))?, and we consider the broken polynomial space:

Pjiso(Th) = {qg € L*(Q); VI €Ik, qk, € P*(Ky)}.

5. THE NONCONFORMING MIXED FINITE ELEMENT METHOD FOR STOKES

The nonconforming finite element method was introduced by Crouzeix and Raviart
in [6] to solve Stokes Problem (3.1). We approximate the vector space H(Q2) com-
ponent by component by piecewise polynomials of order k£ € N*. Let us consider X,
(resp. Xo,), the space of nonconforming approximation of H*() (resp. Hj(Q))
of order k:

Xy = {Uh € P o(Th); Vf €Ip, Van, € PP 1(Fy), / [vn] an = 0} ;
Fy
(5.1)

Xo,n = {'Uh € Xp; VfeTh Vg, € PHEY, / Vh qn = 0} .
Fy

The condition on the jumps of vy on the inner facets is often called the patch-test
condition.

Proposition 2. The broken norm v, — ||vg||n is a norm over X p.

Proof. Let vy, € Xo,p, such that ||vp|n = 0. Then for all £ € Tk, vy g, is a constant.
For all f € I% the jump [’Uh]Ff vanishes, so that vy, is a constant over 2. We deduce
from the discrete boundary condition that v, = 0. O

The space of nonconforming approximation of H!(Q) (resp. H}(Q)) of order k
is Xh = (Xh)d (resp. XO,h = (Xo’h)d). We set Xh = XO,h X Qh where Qh =
PE (TN L2, (). We deduce from Proposition 2 the

disc zZmu

Proposition 3. The broken norm defined below is a norm on X}, :

X, — R
5.2 e : _
52 16954 (a2 Tl el
Thus, the product space &}, endowed with the broken norm || - || x, is a Hilbert
space.

Proposition 4. The following discrete Poincaré-Steklov inequality holds: there
exists a constant C'pS independent of Ty, such that

(5.3) Vi € Xon,  [VallLze) < Cp§ Ivalln,
where C3% is independent of Ty, and is proportional to the diameter of Q.

Proof. Inequality (5.3) is stated in [8, Lemma 36.6] for ¥ = 1, but one can check
that the proof holds true for higher orders, thanks to the patch-test condition. An
alternative proof is given in [18, Theorem C.1]. O
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We consider the discrete continuous bilinear form ag (-, ) such that :
{ ag’h:thXh - R
(W, ph) X (Viyan) = v(wy,, vi)n — (P, dive vi) — (qn, divi, up,)
Let ¢¢ € L(X),R) be such that :
(f7 Vh)L2(Q) iff e LQ(Q)
Y(vh, eEXy, £ , = . ,
(an) € % e ((Vh01)) { (6. Tu(vi))myoy i £ € L2(Q)

where Zp, : Xon — You, with Yo, = {vy, € H}(Q); W€ Ik, Vi, € Pk(K,)},
is the averaging operator described in [16, §22.4.1]. There exists a constant Cze >0
independent of T, such that :

(5.4) [Znvnllay o) < CF) [Ivalln,  Vvi € Xop.

The nonconforming discretization of Problem (3.9) reads:

Find (up, pp) € A}, such that

(5.5) asn ((Un,pn)s (Vasan)) = be ((Vasan))  Y(Vh, qn) € X

Let us prove that Problem (5.5) is well-posed using the T-coercivity theory.

Theorem 4. Suppose that there exists a Fortin operator I, : HY(Q) — X}, such
that

(5.6) 3Che |Vv € HY(Q)  |IL,ev|[h < Cne| Grad v||iz(),
(57) Vv e Hl(Q) (divh anva Qh) = (le v, Qh)LQ(Q)a vq c Qha

where the constant Cy. does not depend on h. Then Problem (5.5) is well-posed.
Moreover, it admits one and only one solution (uy,pp) such that:

unlln < CEGv'[IfllL2(o
itf e L2(Q) :

)

Iprllee) < 2035 CFS [Ifllz (o)

lunlln < CE v Il (0
if £ ¢ L2(Q) :

)

Iprllzz) < 207 CFS lIflla-1(o)

where CYS, = Caiy Che. Additionally, we can compute classical a priori error esti-
mates (see [6, Theorems 3, 4 and 6]). Suppose that (u,p) € HT*(Q) x H*(Q), we
then have the estimate:
(5.9) [u—unllLz) < Co' ! (Julggrs ) + v Pl e () »
where the constant C' > 0 is independent of h, o is the shape regularity constant
and the exponent € N* depends on k.
Proof. Let us consider (uj,,p},) € &, and let us build (v}, ¢}) € A}, satistying (2.3)
(with V' = A},). We follow the three main steps of the proof of Theorem 1.

1. According to Proposition 1, there exists Vp € V+ such that div S

Z/_lp/h in Q and:

2
Vo e < (S5 (10412
ARG nlizz )
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Consider vy, = Ilevyy , for all gy € Qpn, we haver (divy, Vi ,qn) =
v (Dh, an) 12(0) and
2 Cre\’ 2
/
5100 gyl < (S5 a3 ) where € = Coe
Let us set (v, q;) = (YneW), = Vi p, s —Yne P))s With 7, > 0. We obtain:

(5.11)  asn ((Wh,ph), (Vi k) = v el ll7 + v IPh1IZ2 ) — v(Wh, Vi Dn-

2. In order to bound the last term of (5.11), we use Young inequality and then
inequality (5.10):

-1 ne \ 2
Ui R C iv
612 Vi< B+ T (SR

3. Using the bound (5.12) in (5.11) and choosing npe = Yne, we get:
! / * ok > Tne 1112 —1 1 (rync)il nc \2 /12
as,n (W, p4), (Vi a)) = 9 vyl +v + 9 (CE)" ) 1PR 720

Consider now v, = ( gﬁ)z-

.. v .
Noticing that v|[un ||} + v~ {|p}[720) = §H(u§l,p;1)||3(h, we obtain:
v
asp ((Wh,p1), (Vs 6n)) = 5 Ca [l (i, PRI,
1
where C7)5, = 3 min( (Caiv)?,1).
The operator T}, such that Tj(uj},,p},) = (v}, p}) is linear and continuous:

1T (w32, = [Vl + 27 g 22 (@) < Ol 1w 23) [,

where C1¢, = O (Che +1). * The discrete continuous bilinear form ag (-, -) is
then Tp-coercive and according to Theorem 1, Problem (5.5) is well posed. Consider
(up, pp) the unique solution of Problem (5.5). Choosing vy = 0, we obtain that
divy, up, = 0. Now, choosing v, = uy, in (5.5) and using Cauchy-Schwarz inequality,

we get that:

luplln, < v PO If]lL2)  if £ € L2(Q), using (5.3) ;
(5.13)

laplln < u_lC%f ||fHH71(Q) if £ ¢ L2(2), using (5.4).
Consider (vi,qn) = (Vh,p,,0) in (5.5), where vy, p, = Il,cvp, is built as v, in
point 1, setting p}, = ps. Suppose that f € L?(Q2). Using the triangular inequal-
ity, Cauchy-Schwarz inequality, Poincaré-Steklov inequality (5.3), Theorem 4, and
estimate (5.13), we have:

||Ph||2L2(Q) = v(un, Vap,)n — (£, Vhp,)L2@)

IN

vanlln [vap,lln + I1fllLz@) Vi, Iz @

nc

2085 Ifllz() [Vhp, In < 2C35 Cue [|fllLz(o) | Grad vy, |20

IA

IA

2035 Cgs IfllLz ) Pl 2 (o) -

4Note that (vi,q5) = (0,0) & (u},p},) = (0,0), so that the operator T} € L(Xp, X)) is
bijective.
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Applying the same reasoning when f € H=1(Q), we get that:

Ipnllzz) < 2005 CE £l if £ € L2(Q), using (5.3) ;
(5.14)

Ipnllcz) < 207 CECllifllu-1(o) if f ¢ L?(Q), using (5.4).
The a priori error estimate corresponds to [6, Theorem 4]. (]

Remark 2. Again, we recover the first Banach—Necas—Babuska condition [8, Thm.
25.9, (BNB1)]:

(Coase) ™M 1, 23) s 1V 03 -

[CIIAN

as,h ((u;'mp;l)? (V;mqg)) >

Let us call C2i¢, = 5 Cne (Cne )~! the stability constant. With the choice of
our parameters, C1i¢, is such that:
v _ G :
- —— if0<ClE <1
414+CRe div ="
nec __
stab —

v (Cq)
4 14+ CFe
The main issue with nonconforming mixed finite elements is the construction the
basis functions. In a recent paper, Sauter explains such a construction in two

dimensions [18, Corollary 2.4], and gives a bound to the discrete counterpart 57 (2)
of 5(€2) defined in (3.4):

if 1< Cne.

(5.15) Br(Q) = (divp va)

= inf sup —_——— >ecr k%
0 €Qr\{0} v, eXo n\{0} 22 () IValln

This bound is in ¢y k=, where the parameter « is explicit and depends on k and
on the mesh topology; and the constant ¢ depends only on the shape-regularity
of the mesh.

6. NONCONFORMING CROUZEIX-RAVIART MIXED FINITE ELEMENTS

We study the lowest order nonconforming Crouzeix-Raviart mixed finite elements

[6]. Let us consider Xc i (resp. Xo,cr), the space of nonconforming approximation
of H(Q) (resp. H}(Q)) of order 1:

Xcr = {vh € Piioe(Th); Vf GI%,/ [U] _0} ;
Fy
(6.1)

Xocr = {Uh € Xcr; erzlbw,/ tho}-
Fy

The space of nonconforming approximation of of H*(2) (resp. H}(Q2)) of order 1
is Xcr = (Xor)? (vesp. Xo,or = (Xo,cr)?). We set Xog := Xo,cr X Qor where
QCR = Pgisc(ﬂl) N Lzmv(Q)

We can endow X¢g with the basis (¢¢) fez, such that: V¢ € Tk,

w - 1-— d>\i,£ if f S IF,E,
FIKe = 0 otherwise,
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where S; is the vertex opposite to Fy in K,. We then have ¢y p, = 1, so that
[Welp, =01if f € Ty (ie. Fy € Q), and V[’ # f, fFf/ Yy =0.

We have: XCR = vect ((wf)fel-p) and XO,CR = vect ((dﬁ”)fel%)
The Crouzeix-Raviart interpolation operator m¢g for scalar functions is defined by:
Hl(Q) — XCR 1
TOR : v T+0 , where mpv = —— v
2 s 71y,
fEIFr
Notice that Vf € Zp, [, F; TORV = / U Moreover, the Crouzeix-Raviart interpo-
lation operator preserves the constants, so that Tcrvg = v where v, = fQ v/|9].
We recall the following result [19, Lemma 2]):

Lemma 1. The Crouzeiz-Raviart interpolation operator mog is such that:

(6.2) VYo e H'(Q), |rcrv|n < | gradvl|pzq).
Proof. We have, integrating by parts twice and using Cauchy-Schwarz inequality:
gradﬂ'CRmKe = |Kg|71/ grad Tgrv = |K[|71 Z / TCRUNf,
Ky fe€zp i
= |K/! Z / ’Ul’lf:|Kg|71/ grad v,
feTpe” s Ke
|grad morvik,| < |Ko|™'?| grad v|re(k,)
= |lgradmorvlfeg, < | grad v|{z g, )-
Summing these local estimates over ¢ € Tk, we obtain (6.2). O

For a vector v € H'(2) of components (vg)% _,, the Crouzeix-Raviart interpo-
lation operator is such that: IIorv = (WCRvd/)Z,:l. Let us set ITyv = (ﬂ'fvdf)g,zl.

Lemma 2. The Crouzeix-Raviart interpolation operator llcg can play the role of
the Fortin operator:

(6.3) vv e HY(Q) |Tcrv|s < || Grad vz (q),
(6.4) vv e HY(Q) (divy Horv,qn) = (div V.qn)r2Q), Vg € Qn,
Moreover, for all v.e PY(Q), Horv = v.

Proof. We obtain (6.3) applying Lemma (1) component by component. By inte-
grating by parts, we have Vv € HY(Q), ¥/ € Tk

/ diVHCRV = Z / HCRV~Ilf: Z / va~nf,
Ky Fy Fy

f€Ir. f€LIr,e
= Z / v-ny = / divv,
f€TIr.e Fy Ke
so that (6.4) is satisfied. O

We can apply the T-coercivity theory to show the next following result:

Theorem 5. Let X), = Xcg. Then the continuous bilinear form ag(-,-) is Th-
coercive and Problem (5.5) is well-posed.

Proof. Using estimates (6.3) and (5.3), we apply the proof of Theorem 4. O
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Since the constant of the interpolation operator Ilog is equal to 1, we have
CCR = Cpin and CSE = Oy, the stability constant of the nonconforming

Crouzeix-Raviart mixed finite elements is independent of the mesh. This is not the
case for higher order (see [20, Theorem 2.2]).

7. FORTIN-SOULIE MIXED FINITE ELEMENTS

We consider here the case d = 2 and we study Fortin-Soulie mixed finite elements
[7]. We consider a shape-regular triangulation sequence (7p)p.
Let us consider Xpg (resp. Xo rg), the space of nonconforming approximation of
HY(Q) (resp. H}(Q)) of order 2:

Xrps = {Uh € Pl,.(Th); Vf €Iy, Vg, € PY(Fy), / [on] qn = 0} ;
Fy
(7.1)

Xo,FSZ{UhEXFs; VfGI%,VQhGPl(Ff),/ UhthO}-
Fy

The space of nonconforming approximation of H!(Q) (resp. H}(2)) of order 2 is
XFS = (XF5)2 (resp. XO,FS = (Xo)ps)z). We set XFS = XO,FS X QFS where
QFS = Pc%zsc(ﬂﬂ N Lzm'u(Q)

The building of a basis for Xy g is more involved than for X cr since we cannot
use two points per facet as degrees of freedom. Indeed, for all £ € Ky, there exists
a polynomial of order 2 vanishing on the Gauss-Legendre points of the facets of the
boundary 0K,. Let f € Zp. The barycentric coordinates of the two Gauss-Legendre
points (p4,f,p—,f) on Fy are such that:

Py, = (cq,c-), p— 5= (c—,cq), where cx = (1 £ 1/V/3)/2.
These points can be used to integrate exactly order three polynomials:
F
v Py, [ o= T 0twen) + oo,
¥
For all ¢ € Ix, we define the quadratic function ¢x, that vanishes on the six
Gauss-Legendre points of the facets of K, (see Fig. 1):

(7.2) ¢K,:=2-3 A}, suchthat Vf€Zp,, Yqe P (F), b, q=0.
1€Ls, Fy

2

Pr._____.- D2

FIGURE 1. The six Gauss-Legendre points of an element K, and
the elliptic function ¢, .
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We also define the spaces of P2-Lagrange functions:

X = {on € H(Q); VL€ Ik, vyx, € P*(K))},
Xore = {vn€Xia wvpoo=0}.

The Proposition below proved in [7, Prop. 1] allows to build a basis for Xy pg:

Proposition 5. We have the following decomposition: Xpg = Xpg + ®p with
dim(Xpe N®y) = 1. Any function of Xps can be written as the sum of a function
of Xra and a function of ®p,. This representation can be made unique by specifying
one degree of freedom.

Notice that ®, N Xy = vect(vg), where for all ¢ € Tk, vp|K, = Pk, Then,
counting the degrees of freedom, one can show that dim(Xpg) = dim(Xpqg) +
dim(®p) 4+ 1. For problems involving Dirichlet boundary conditions we can prove
thus that for Xy pg the representation is unique and Xo rs = Xo,rg ® ®y. We
have X1 = vect ((¢s,)iczs, (#F,)fez) where the basis functions are such that:
Ve Ik,

Viels, ¢sk, = { Xie (2N —1) ifieZsy

0 ifj¢Tse
(7.3)

4)\i,g )\"g if f S Ip,g, and Fy = 5,5

ViEIr, orx, = { 0 iS¢ T o

For all £ € Tk, we will denote by ((25573')?:1 the local nodal basis such that:

(¢e)3=1 = (0s,k,)iczs, and (de;)5—y = (Drk,) fezr,-

The spaces Xpgs and Xy pg are such that:

XFS = vect ( (¢Si)i6157 (¢Ff)fEIF7 (¢Ke)5611( ) ’
(7.4)
Xors = vect ((¢Si)ielgv (<Z5Ff)fezga (¢K({)Z€IK ) .

We propose here an alternative definition of the Fortin interpolation operator pro-
posed in [7]. Let us first recall the Scott-Zhang interpolation operator [21, 22]. For
all i € Zg, we choose some ¢; € Z ;, and we build the L?(K, )-dual basis (&ghj)?:l
of the local nodal basis such that:

Vi, 5 e{1,---,6}, . Ge,j beijr = -
£;

Let us define the Fortin-Soulie interpolation operator for scalar functions by:

PhHl — XFS

TFS v o= T+ Z VK, DK,
(75) LeTk

with 7v = Z vs; Ps; + Z UF; @Ry -

i€ls fETR
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e The coefficients (vs,);c7, are fixed so that: Vi € Zg, vs, = / v bu, s
Ky,

where j; is the index such that / g?)g“ji ¢s,k,, = 1. Using Cauchy-
K (2

Schwarz inequality and inequality (42), we have:
1/2
(7.6) o] < < / m) Pollzacrey S 1Kl ol S ool pagi
Li

e The coefficients (0, )

ez, Are fixed so that: Vf € Zp, / T = {v}.
P

Fy
We then have:

- 3 1
(7.7) UF, = 5 VE T Z vs,, where vp, 1=

2 ,
i€Lg, s

\F e,

For all ¢ € Tk, the coefficient vk, is fixed so that: / = / .
Ky Ky
The definition (7.5) is more general than the one given in [7], which holds for
v e H*(Q).
We set vg, := (7v1(S;), 7v2(S;))" and Vi, o= (Tvi(Fy), v (Fy) )"
We now define the Fortin-Soulie interpolation operator for vector functions by:
Hl(Q) — XFS
IFs : vV Z VSiQSSi + Z VFstFf + Z VK[,¢K@~

i€Lg fETr Lelyk

For all £ € Ik, the vector coefficient v, € R? is now fixed so that condition (5.7)
is satisfied. We can impose for example that the projection I1pgv satisfies:

(7.8) / T, ' (x) divIIpsv :/ T, ' (x) divv.
Ky K,

Notice that due to (7.2), the patch-test condition is still satisfied. Moreover, one
can check that for all v € P?(Q2), llpgv = v. In particular, if v € P1(£), we obtain
that for all £ € Tk, vk, = 0. Using definitions (7.3) and (7.7), we obtain for all
{eIlg:

3
(79) (HFSV)|K£ = Z Vs, ¢Si + 5 Z va¢Ff' + VK£¢K41

i€Ls e f€Tr.e

where g, 1k, = 3/\1274 —2Xie.
Let us estimate vg,. By changing the variable, setting v4(X) = voT;(x), the linear
system (7.8) is written as follows, for d’' € {1, 2}:

(Bg_l VKZ)./I”(jd/ gradfc QZ)K[ = /de/ lex( )
- Z / + gradg ¢
K
3
3 Z Be™ 1VFf)'[ tq grady ép,.

fELF. K
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Noticing that [ Z4 gradg qASKZ = —1ey, we have:
1 o .
Z]B%g vk, = Z / % (B, ' vs,) - grad, vg,
4 K
i€Ls e
3 ™ —1 I
(7.10) +5 D [ %Bvr,) gradgdr,
f€Lre K

- /A X diV,z(]B%gil\A/'g).
K

Using integration formula (4.1), and Cauchy-Schwarz inequality to bound the last
term of (7.10), we have:

(7.11) Vie P S0 | Y IveP+ Y v P + [ Grads Vollfs
i€Zs,, f€Tre

Proposition 6. The Fortin-Soulie interpolation operator llpg is such that:
(7.12) ICrs > 0,¥v e H'(Q), [Hpsv|s < Crs|l Grad viz(q).

Proof. Let v.€ HY(Q). Let us set v € P,H! such that V¢ € T, Vi, =V —
Jx, V/|Ke|. We have:

2 2 2
Mrsvll), = Z |Grad HFSVH]IP(K[) = Z |Grad HFSXH]IP(K@ :
eIk eIk
For a, b € R?, we set: a® b := (a;b;)7 -, € R**?. According to equation (7.9),
we have:
3

Gradllpgv = Z Vg, @ grad s, + 3 Z Vi, ® grad ¢p, + vy, ® grad ¢, .

i€lse f€Tr,

We can then make the estimate:

| GradIesyl e, S 5. Ivs [ lgradis,

i€Ls ¢

2
L2(K,)
+ > [¥p1*llgrad ép, |22 k)
f€Lp,
2 2
+ vk, " | grad ér, T2k, )

_ 2
N HBZ 1” | Je] Z Vs, 2+ Z |!Ff|2+ |XKZ‘2
1€Ls,¢ f€Ip,e

Thus, using estimate (7.11), and noticing that H]B%[le |Je| < 02, we have:
| Grad Fsv |72k,
(7.13)

Sot [ 3 lwalf e 3 lvn P+l Gradewa
i€Lse fE€LR
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Using inequality (7.6) and Poincaré-Steklov inequality (4.4) in cell, component by
component, we have:

(7.14) lvg. |? < || Grads Vo,

2

L2(K)’

Since the triangulation 7 is suppose to be shape-regular, there exists a constant
Ny < 02 such that for all i € Z;, N; < Ny [16, Rmk. 11.5]. We then obtain that:

SN Grads Ve, 7. z) S No > | Grads Vellf, -
LELK i€Ls, Lely
Thus, summing (7.14), we get:

(7.15) ST s PSNe D Gradx Ve[|, 4.

Lely i€Ls,e LeTk

Using the triangular inequality, equality (4.2), and inequality (4.7), we obtain:

Ve PSIET S e ey S Y0 I Gradevol%, .

UVETKk s UVETKk s
Notice that: Z Z Z I GradﬁW/Hiz(m <6 Z HGrad;(\Ang]iQ(m, SO
Lelk fE€Ip ol €1k s LeTk
that:
1 2 S 112
(7.16) Z Z | Fy| ||!2/\FfHL2(Ff) S Z [ Grad&vl||L2([g)~
Lelk fELFR, Lelk

Summing (7.13) over ¢ € Tk, using (7.15) and (7.16), we get that:

(7.17) Mesvli So® No Y || Grads v,
LeT)K

(K)’

Considering (4.3) for each component, and noticing that ||B.||* |J¢|™* < o2, we

obtain that:

(7.18) Mrsv]? S o' No > [|Grad vil[s k) -
JASI N
We obtain then (7.12) with Cpg &~ o2 (Ng)'/2. d

We recall that the discrete Poincaré-Steklov inequality (5.3) holds.

Theorem 6. Let Xj, = Xpg. Then the continuous bilinear form agp(-,-) is Th-
coercive and Problem (5.5) is well-posed.

Proof. Apply the proof of Theorem 4. O

Notice that in the recent paper [23], the inf-sup condition of the mixed Fortin-

Soulie finite element is proven directly on a triangle and then using the macro-
element technique [24], but it seems difficult to use this technique to build a Fortin
operator, which is needed to compute error estimates.
The study can be extended to higher orders for d = 2 using the following papers:
[25] for k > 4, k even, [26] for k = 3 and [20] for k > 5, k odd. In [27], the authors
propose a local Fortin operator for the lowest order Taylor-Hood finite element [14]
for d = 3 which could be used to prove the T-coercivity.
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8. NUMERICAL RESULTS

Consider Problem (3.1) with data f = —grad ¢, where ¢ € HY(Q) N L2, ().
The unique solution is then (u,p) := (0,¢). By integrating by parts, the source
term in (3.6) reads:

(8.1) vv € HY(Q), /Qf-v:/Qquivv.

Recall that the nonconforming space Xy, defined in (5.1) is a subset of P, H!: using
a nonconforming finite element method, the integration by parts must be done on
each element of the triangulation, and we have:
[ wenge
Fy

When we apply this result to the right-hand-side of (5.5), we notice that the term
with the jumps acts as a numerical source, which numerical influence is proportional
to 1/v. Thus, we cannot obtain exactly uy = 0 (see also (5.9)). Linke proposed
in [28] to project the test function vy € X}, on a discrete subspace of H(div; ),
like Raviart-Thomas or Brezzi-Douglas-Marini finite elements (see [29, 30], or the
monograph [15]). Let Haiy : Xo.n — Pk (Tn) N Ho(div; Q) be some interpolation
operator built so that for all vj, € Xq p, for all £ € T, (divaivvp)|k, = div vy,
Integrating by parts, we have for all v, € X j:

/ f-Igivvy
Q

(8.2) Vv € PhHl, / f-v=(divyv,¢)+ Z
Q

fEIr

/ ¢ divilgva = 3 [ 6 divIlawva,
Q

LeK, K,

> ¢ divvy, = (divy vi, ).

LeK, K,

The projection Ilg;, allows to eliminate the terms of the integrals of the jumps in
(8.2).

Let us write Problem (5.5) as:

Find (up,pp) € & such that

(8.3) asn ((an,pr), Vi, qn)) = e ((MaivVr,an))  Y(Vi,qn) € X

In the case of &}, = X g and a projection on Brezzi-Douglas-Marini finite elements,
the following error estimate holds if (u,p) € H2(Q2) x H'(Q):

(8.4) [u —wplr2 () < C A2 |ulgz (o),

where the constant C if independent of h. The proof is detailed in [31] for shape-
regular meshes and [32] for anisotropic meshes. We remark that the error doesn’t
depend on the norm of the pressure nor on the v parameter. We will provide
some numerical results to illustrate the effectiveness of this formulation, even with
a projection on the Raviart-Thomas finite elements, which, for a fixed polynomial
order, are less precise than the Brezzi-Douglas-Marini finite elements.

For all ¢ € Zg, we let Pk (K;) be the set of homogeneous polynomials of order k
on Kg.

For k € N*, the space of Raviart-Thomas finite elements can be defined as:

Xpr, = {v € H(div; Q); VL € Ty, vk, = a¢ + byx| (g, by) € PF(K)* x PE(K,)} .
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Let £ < 1.
The Raviart-Thomas interpolation operator gz, : HY(Q)UX), — Xpr, is defined
by: Vv € HY(Q) U Xy,

vVfelp, / HRTkV'nfq:/ V- -1nrq, quPk(Ff)
Iy

Fy
for k=1,Vl e Ik, /HRTlv:/ v
K(g KE

Note that the Raviart—Thomas interpolation operator preserves the constants. Let
v, € Xj,. In order to compute the left-hand-side of (8.2), we must evaluate
(Ogr,vi)|k, for all £ € Zx. Calculations are performed using the proposition
below, which corresponds to [33, Lemma 3.11]:

(8.5)

Proposition 7. Let k < 1. Let gy, : HY(K) — P*(K) be the Raviart-Thomas
interpolation operator restricted to the reference element, so that: Vv € H(K),

VFG@K, /ﬁRTk0~nFqZ/0~nﬁd, V(jEPk(ﬁ‘)

(8.6) A F
for I{):L HRTk\A/':/ v
K

K
We then have: V¢ € Tk,

(87) (HRTkV)IKz (X) =B, (ﬁRTkBgil\Afg> o Tgil(X) where Vy =V o Tg(f()

The proof is based on the equality of the F and K-moments of (IgrT, V) |k, 0Te (%)
and B, (fIRTkIBg_1W> (X). For k = 0, setting for d’ € {1,--- ,d}: ¥; 4 = Vyea,
we obtain that:

(88) VL€ T, Vf €Trs, (Manthya)i, = (d|Kel)™ (x - oﬂsﬂ) Spe-ea

where S, is the vertex opposite to Fy in K.
For k = 1, the vector (Ilrr, Vi) |k, is described by eight unknowns:

(HRTlvh)\Kg =A;x+ (bg . X)X + dy, where Ay € R2X2, b, € RZ, d, € R2.

We compute only once the inverse of the matrix of the linear system (8.6), in R8>8,
In the Table 1 (resp. Tables 2 and 3), we call go(u) = [Jup||L2(q) (resp. [[u —
w20/ l[ullLz)) the velocity error in L2(Q)-norm, where uy, is the solution
to Problem (5.5) (columns X¢pr and Xpg) or (8.3) (columns Xcogr + Hprp, and
Xrs + grp ) and h is the mesh step.

We first consider Stokes Problem (3.1) in Q = (0,1)? withu =0, p = (21)3+(22)>—
0.5, f = gradp =3 ((21)?, (22)? )T. We report in Table 1 g9(u) for h = 5.00e — 2
and for different values of v.

v Xcr Xcr + HRr, XFs Xrs + T,
1.00e+0 3.19e¢—4 1.34e—18 3.53e—7 9.09¢—19
1.00e—3 3.19e—1 1.34e—15 3.53e—4 9.09¢— 16
1.00e—4 3.19e¢+0 134e—14 3.53e—3 9.09e¢—15

TABLE 1. Values of gg(u) for h = 5.00e — 2

When there is no projection, the error is inversely proportional to the v parameter,
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whereas using the projection, we obtain u; = 0 up to machine precision.
We now consider Stokes Problem (3.1) in = (0,1)? with:

_ [((1—cos(2mx1)) sin(2 7 x2) D sin(2mw 1) sin(2 7 x2),
U= (cos(2mag) — 1) sin(2mxy) )’ f = —vAu+gradp.

We report in Table 2 (resp. 3) the values of gg(u) in the case v = 1.00e — 3
(resp. v = 1.00e — 4) for different level of mesh refinement. When there is no
projection, £o(u) is inversely proportional to v, whereas using the projection, € (u)
is independent of v.

h Xer  Xept+Urr,  Xps  Xps+1gn
5.00e —2 5.66e—1 1.13e -2 2.35e—-3 2.06e—4
250e—-2 133e—-1 2.89e—-3 3.2le—4 2.59e -5
1.25e—-2 3.88e—2 5.40e —4 4.20e -5 3.40e —6
6.25e—3 840e—-3 1.79e -4 5.04e -6 4.15e -7

Rate },2:05 }2:07 },2-96 },2:98
TABLE 2. Values of ¢(u) for v =1.00e — 3

h Xcr Xcr + HRr, XFs Xrs + gt
5.00e—2 5.66e—0 1.13e -2 2.35e—2 2.06e—4
250e—2 1.33e—0 2.89e¢ —3 3.20e —3 2.59e -5
1.25e—2 3.38e—1 540e —4 4.20e — 4 3.40e —6
6.25e—3 &840e—2 1.79e — 4 5.04e —5 4.15e -7

Rate h2.05 h2‘07 h2.96 h2.98
TABLE 3. Values of gp(u) for v = 1.00e — 4

Let ups (resp. upstrr,) the solution to Problem (5.5) (resp. (8.3)) computed
with Fortin-Soulie finite elements. We represent on Figure 2 the values of the
Lagrange projection of (ups — upsiprr ) in the case where h = 2.50e — 2 and
v = 1.00e — 4. We observe local oscillations, of order the mesh step, which are
caused by the numerical source exhibited in (8.2).

In order to enhance the numerical results, one can also use a posteriori error esti-
mators to adapt the mesh (see [34, 35] for order 1 and [36] for order 2).
Alternatively, using the nonconforming Crouzeix-Raviart mixed finite element method,
one can build a divergence-free basis, as described in [37]. Notice that using con-
forming finite elements, the Scott-Vogelius finite elements [38, 39] produce velocity
approximations that are exactly divergence free.

The code used to get the numerical results can be downloaded on GitHub [40].

9. CONCLUSION

We analysed the discretization of Stokes problem with nonconforming finite el-
ements in light of the T-coercivity theory, we computed stability coefficients for
k=1, d= 2 or 3 without regularity assumption; and for £ = 2, d = 2 in the case of
a shape-regular simplicial triangulation sequence. For k = 2, we used an alternative
definition of the Fortin-Soulie interpolation operator. We then provided numerical
results to illustrate the importance of using H(div)-conforming projection. Further,
we intend to extend the study to other mixed finite element methods.
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