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Figure 1: Baskeball court registration examples from the MMSPorts 2022 camera calibration challenge genearted by KaliCalib.

ABSTRACT
Tracking the players and the ball in team sports is key to analyse
the performance or to enhance the game watching experience with
augmented reality.When the only sources for this data are broadcast
videos, sports-field registration systems are required to estimate the
homography and re-project the ball or the players from the image
space to the field space. This paper describes a new basketball court
registration framework in the context of the MMSports 2022 camera
calibration challenge. The method is based on the estimation by
an encoder-decoder network of the positions of keypoints sampled
with perspective-aware constraints. The regression of the basket
positions and heavy data augmentation techniques make the model
robust to different arenas. Ablation studies show the positive effects
of our contributions on the challenge test set. Our method divides
the mean squared error by 4.7 compared to the challenge baseline.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
sports-field registration, neural networks, computer vision

ACM Reference Format:
Adrien Maglo, Astrid Orcesi, and Quoc-Cuong Pham. 2022. KaliCalib: A
Framework for Basketball Court Registration. In Proceedings of the 5th Inter-
national ACMWorkshop on Multimedia Content Analysis in Sports (MMSports
’22), October 10, 2022, Lisboa, Portugal. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3552437.3555701

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
MMSports ’22, October 10, 2022, Lisboa, Portugal
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9488-8/22/10. . . $15.00
https://doi.org/10.1145/3552437.3555701

1 INTRODUCTION
The usage of data in team sport coaching is a growing trend. Player
and ball positions are keys to the coaches for performance analysing,
player scouting, train load monitoring or opponent analysis. More-
over, this data has also usage for entertainment. Indeed, virtual or
augmented reality systems can enhance the viewing experience of
a game by enabling replays with new point of views.

GPS tracking systems have been used for many years in outdoor
sports. They are handy to use, evenwhen a team is away his stadium.
Yet, the coach can only gather data from his team and not the
opponents. For indoors sports, tracking system exists but they
require the arena to be specifically equipped. The only readily
available sources to determine the player and ball position are often
broadcast videos. Thus, automatic player and ball tracking in team
sports has been a growing research interest in the past years.

To compute the position of elements in the court space from
a video, the location of the court should be known in each frame
when the camera moves. Sports-field registration aims at estimating
the homography between the 3D position of a sport-field and the
2D position in the image space.

Sports-field registration can be a difficult task. Sport fields are
often composed of large homogeneous areas. The only available
common distinctive features between them are the rule lines and
their intersections. During the game, some of these features can be
occluded by the players. When the camera moves quickly to follow
the action, the field lines can also be blurry, which hinders their
detection. In some sports, like basketball, the color design of the
courts can vary a lot between arenas. Some logos and advertise-
ments can be displayed on the court ground, thus changing their
appearance.

For theMMSports 2022 workshop, a camera calibration challenge
for basketball is organized [30]. The aim is to retrieve the camera
calibration parameters from single images of basketball games. As,
in the challenge, the calibration error is estimated only on the
ground plane, we decided to estimate the calibration parameters
with only points from this plane. This transforms the full calibration
problem to a homography estimation.

https://doi.org/10.1145/3552437.3555701
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We therefore propose KaliCalib, a new sports-field registration
method based on the estimation by an encoder-decoder network
of the positions of keypoints sampled with perspective-aware con-
straints. We also added the regression of the basket positions so
as to help court localization. As the challenge training dataset was
relatively small, we resorted to heavy data augmentation methods
in order to generalize as much as possible to the test and challenge
datasets.

In the first section of this paper, we review previous sports-
field registration methods that process single images and available
public sports-field registration datasets. In the second section, we
describe the method and our contributions for the participation to
the challenge. Finally, in the last section we perform ablative studies
and describe the results we obtained on the test and challenge sets.

2 RELATEDWORK
2.1 Sports-field registration methods
Some previous work focused on the sports-field registration for
video with initial annotations [14, 16, 22] or without [28]. In this
section, we focus on fully automatic sports-field registration for
single images as it is the target task of the MMSports 2022 camera
calibration challenge [30].

The approach described in [12] uses a Hough transform to extract
tennis court lines and then computes the homography with the
line intersection points. Farin et al. [11] resorted to a RANSAC-like
algorithm to detect the court lines. The method of Yao et al. [29]
detects intersections between soccer field lines and computes a
feature vector to associate them to template points. Homography
candidates are generated and then evaluated using a back projection
to the frame space. After having detected the soccer field lines
and circles, the system of Cuevas et al. [8] classifies them with a
probabilistic decision tree. The homography is estimated with the
intersection points between the classified elements.

Most of the recent approaches relies on a deep convolutional
neural network to estimate the homography. Homayounfar et al.
[18] uses a segmentation network to determine the play field sur-
faces, lines and circles. The matching between the images features
and the template is formulated as a Markov random field solved by
a branch and bound algorithm. Sharna et al. [26] matches the soc-
cer field lines detected with pix2pix [19] and a pre-built dictionary
of synthetic edge maps. The homographies corresponding to the
matched maps are then later refined with a Markov random field op-
timization. In the approach of Sha et al. [25], the template matching
is performed on segmented maps obtained with a U-Net network.
Input image and template segmentations are transformed to fea-
tures by a siamese network and compared with a 𝐿2 distance. The
template homography is then refined by a spatial transformer net-
work. Ciopa et al. [6] train the same model with a teacher-student
approach, the teacher being a commercial tool. Chen and Little
[3] use two GAN models : the first one to segment the soccer play
field and the second one to extract the field lines. Then a siamese
network matches the detected line features with an entry from a
feature-pose database. The final homography is generated by refin-
ing the mapping of the detected and retrieved edges images thanks
to a Lucas-Kanade algorithm [1].

Jiang et al. [20] homography estimation framework is based
on two models. The first network estimates the homography by
regressing the real-world positions of four control points in the
frame space. The second network estimates the re-projection er-
ror between the estimated field template and the real image. This
allows to iteratively refine the initial homography estimation by
minimizing this error. Fani et al. [10] also regresses four control
point for hockey ice-rink registration.

The framework of Citaro et al. [7] computes the homography
by estimating the position of court specific keypoints with a U-Net
network. Instead of using keypoint located on court corners, Nie et
al. [21] sampled them on a regular grid. They also use a RANSAC
algorithm to estimate the homography. The model is trained with
a pixel classification approach. Chu et al. [5] recently improved the
keypoint detection by using dynamic filters.

KaliCalib is built upon the approach of Nie et al. [21] without
the homography refinement. We however resort to heavy data
augmentation techniques, perspective aware keypoint sampling
and basket localization to better fit the data of the MMSports 2022
camera calibration challenge.

2.2 Public datasets
Sports-field registration methods based on convolutional neural net-
work need a significant amount of annotated images to be trained.
Many authors resorted to private datasets to train and test their
method. Chen and Little [3] however publicly released their soc-
cer WorldCup dataset. Composed of 395 images, it became the
reference to compare recent sports-field registration approaches.
Nevertheless, this small number of images can introduce biases
in the training and evaluation of the appraoches. Chu et al. [5]
therefore recently publicly released their TS-WorldCup datasets
composed of 3812 soccer images. For its second edition, the Soccer-
Net challenge [9] also publicly released a soccer-field registration
dataset with 20028 annotated frames.

There are therefore currently a significant offer of public datasets
to train and evaluate soccer-field registration systems. The situation
is however not so satisfying for other sports. For the MMSports
2022 camera calibration challenge, the organizers released the first
public dataset for basketball composed of 728 images.

3 PROPOSED METHOD
3.1 Overview
KaliCalib estimates the position in the frame space of keypoints
sampled on the field template thanks to an encoder-decoder con-
volutional neural network [21]. At inference time, this model gen-
erates heatmaps for each keypoint and the background. Keypoint
positions are retrieved at the center of mass of the heatmaps. Since
some of the positions may be inaccurate, a RANSAC algorithm [13]
with DLT [15] estimates a robust homography between the court
space and the image space by excluding outliers. This process is
summarized on figure 2.

3.2 Network design
KaliCalib’s model generates heatmaps for each of the keypoints at
a resolution of 1/4 of the input resolution. K different keypoints
are sampled from the court template but the network also outputs
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Figure 2: Overview of KaliCalib, our sports-field registration framework during inference. An encoder-decoder network
generates keypoint and background heatmaps to retrieve the keypoint positions in the image space. A RANSAC algorithm then
estimates the homography between the 3D positions of the court and the 2D positions in the frame.

a heatmap for the background that supervises the areas that do not
contain any keypoint.

Our model has an encoder-decoder architecture similar to U-Net
[23]. The encoder is based on a ResNet-18 network [17]. Dilated
convolutions [4] with a factor two and non-local blocks [27] are
used in the last two ResNet blocks. Nie et al. [21] showed that they
help to increase the receptive fields of local features. This improves
keypoint localization in the case, for example, of occlusions or blur.
The decoder is composed of four deconvolution layers followed by a
Relu activation. We also add skip connections between the encoder
and the decoder to recover fine-grained details in the heatmaps.
The total number of parameters of our model is 14.5 millions.

3.3 Training
KaliCalib’s network generates a softmax score for each pixel of the
heatmaps that quantifies how much it corresponds to one keypoint
or the background. It is trained with a cross-entropy loss:

𝐿 = −
∑︁
𝑥

∑︁
𝑘

𝛼𝑘 × 𝑝𝑥,𝑘 × 𝑙𝑜𝑔(𝑝𝑥,𝑘 )

where 𝑥 is a pixel position at the heapmap resolution, 𝑘 is a class
(one of the keypoint or the background), 𝛼𝑘 is a constant weight
for the class 𝑘 and 𝑝𝑥,𝑘 is the softmax score of the heatmap pixel at
position 𝑥 for the class 𝑘 .

Instead of using single activated pixel for each keypoint on the
ground truth heatmaps, we use a disk with a radius of 10 pixels
to increase the number of pixels to positively regress. Since the
background class is still more represented than the keypoint classes,
we set 𝛼𝑘 = 1000 for the keypoint classes while 𝛼𝑘 = 1 for the
background class.

3.4 Localizing the baskets
The challenge input data provides the full camera calibrations pa-
rameters. As the dimensions of a FIBA basketball court are nor-
malized, it is possible to retrieve the positions in the frame of the
baskets. The baskets have very distinctive features that ease their
localization. Even if our approach estimates a homography between
the court and the frame space, we train our model to generate two

additional heatmaps for the baskets. These points cannot be used
to estimate the homography but this supplementary task helps the
network to localize correctly the field keypoints.

3.5 Perspective aware keypoint sampling
Nie et al. [21] regularly sample the keypoints in the court template.
With the effect of the perspective, the field keypoints far from
the camera are more concentrated than the keypoints near the
camera. Having a bigger keypoint concentration in the area far
from the camera means that the RANSAC will more likely estimate
the homography with keypoints from this area despite less pixels
were available to the network to estimate the keypoint heatmaps.

We therefore proposed a method to sample more uniformly
the keypoints in the frame space, in the court width between the
camera side and the opposite side. The differences between the
two sampling method is shown on figure 3. We model 𝑤𝑖 the 𝑖𝑡ℎ
distance between the keypoints in the court width axis and starting
from the camera side by an arithmetic progression

𝑤𝑖 = 𝑤0 + 𝑖 × 𝑟

with𝑤0 the distance in the court width axis between the first two
keypoints nearest to the camera and 𝑟 , the common difference.

Considering the sum of an arithmetic progression, we therefore
have:

𝑊 = (𝑁 − 1) 2 ×𝑤0 + (𝑁 − 2) × 𝑟
2

for 𝑁 ≥ 2

with𝑊 the real-world width of the court and 𝑁 the total number
of keypoints on the court width axis. We calculate 𝑟 by setting a
value to𝑤0 with the following formula:

𝑟 =
2

𝑛 − 2
( 𝑊

𝑛 − 1
−𝑤0)

We experimentally found that 1.75m was a good value of𝑤0 for
the dataset.

3.6 Data augmentation
To increase variety in training images, we use data augmentation
techniques. As in the training and test datasets, the images have
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Figure 3: a. Uniform grid sampling of the keypoints. b. Per-
spective aware grid sampling of the keypoints. The points
nearest to the camera are more spread out than the point far-
thest to the camera in order to compensate for the too large
distance variations in the image generated by the perspective
effect. c. Input image. d. Keypoints ground truth obtained
with a uniform samping. e. Keypoints ground truth obtained
with the perspective aware sampling.

been taken from the center of the court, it is possible to horizontally
flip the images and the ground truth registration so the side of one
team becomes the side of the other. Random image flips virtually
increase the number of setups for each side.

Contrary to other sports such as soccer, the color appearance
of basketball courts can be very different between arenas. In order
to make our network more robust to the court color design, we
resorted to heavy brightness, contrast and color jittering.

4 EXPERIMENTS
4.1 Dataset
The DeepSportRadar Basketball Instants Dataset used in the chal-
lenge is composed of 480 images for the training, 164 for the vali-
dation, 84 for the testing and 84 for the challenge. All the dataset
images, except the challenge ones, come by pair, one for each side
of the court. Random crops are extracted from both views to dy-
namically generate the train, validation and test datasets.

It is quite challenging to learn robust basketball field registration
with this dataset. The training set does not contain a wide variety
of arenas. It is therefore hard to generalize to various court color
designs. Besides, it is difficult to estimate the homography in some
test and challenge images because only a small part of the court
is visible or they contains lines from other courts as depicted on
figure 4.

4.2 Implementation details
Our network was implemented with the Pytorch framework. It
takes as input frames at the 960× 540 resolution. We train it during

a. b.

c. d.

Figure 4: Hard examples from the MMSport 2022 camera
calibration challenge test set (a. and b) and the challenge set
(c and d). The visible area of the court is sometimes small
in the test set. Multi-sports courts or arena with different
configuration in the challenge set have many lines that can
hinders the basketball court localization.

500 epochs with the AdamW optimizer, a batch size of 2 images and
an initial learning rate of 10−4. After 2/3 of the epochs, the learning
rate is divided by 10. The original ResNet-18 encoder layers that
have not been modified [17] have been pre-trained on ImageNet
[24]. The non-local blocks of the encoder are initialized according
to the Section 4.1 of the original paper [27]. The decoder layers are
initialized with default Pytorch uniform distributions.We normalize
the input images with the ImageNet mean and standard deviation
values. The size of a FIBA basket court is 28m by 15m. The number of
court keypoints𝐾 is set to 91. The RANSAC re-projection threshold
is set to 35 pixels.

Regarding data augmentations, we use a random image flip
probability of 0.5. For the color jittering, we use the torchvision
𝐶𝑜𝑙𝑜𝑟 𝐽𝑖𝑡𝑡𝑒𝑟 transformwith a brightness parameter of 0.7, a contrast
parameter of 0.5, a saturation parameter of 0.5 and a hue parameter
of 0.5.

In the case KaliCalib outputs a degenerated estimation or no
homography, the plausible average homography of the training set
is returned. We detect degenerated homographies by re-projecting
the frame points [240, 270] and [720, 270] in the court space and
checking that their distance is below a threshold of 1800 cm. The
camera calibration parameters are computed with the estimated
homography thanks to the OpenCV function 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝐶𝑎𝑚𝑒𝑟𝑎 [2,
31].

4.3 Metric
To evaluate the performance of our framework, we use the mean
square error metric (MSE) as proposed by the challenge organizer.
It is computed by re-projecting on the court space six frame points
(left, center and right at the middle on bottom part of the frame).
The frame error is defined as the square root of the mean squared
distance been the six points projected with the ground truth cali-
bration and the estimated calibration.
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Color Random P.A. Basket MSE
jittering flip sampling local. (cm)

x x x x 126.61
x x x 154.93

x x x 181.09
x x x 181.25
x x x 130.68

Nie et al. [21] - keypoints only 259.90
Challenge baseline 592.48

Table 1: Results on the test dataset of the MMSports 2022
camera calibration challenge. The result of Nie et al.’smethod
[21] was obtained with our implementation that does not
contain the homography refinement.

4.4 Results
A baseline approach was proposed by the challenge organizers. It
is based on two models: the first one segments in the frame the 20
different court lines and the second one finds the line intersections
and matches them with court points. Our lowest MSE values for all
the frames were respectively on the test and challenge sets 126.61
cm and 140.14 cm. For the test set, 76.5% of the MSE measured on
each image are inferior to one meter. The MSE for all the frames
is divided by 4.7 compared to the baseline and by 2.1 compared to
our implementation of Nie et al’s method without the homography
refinement. KaliCalib could not generate a homography for 2 images
of the test set. An image is processed in about 9 ms on a system
with an Intel Xeon Silver 4110 CPU and a NVIDIA GeForce GTX
1080 Ti GPU.

We performed an ablation study to measure the improvement
of our contributions. The results, presented on table 1 shows the
positive impact of our contributions. The color jittering reduces
the error by about 18%, random image flips by about 30%, the
perspective aware sampling of the keypoints by about 30% too and
the basket localization by about 3%.

5 CONCLUSION
We presented in this paper KaliCalib, a new sports-field registra-
tion framework we developed to participate to the MMSports 2022
camera calibration challenge. On the challenge test set, KaliCalib
divides the mean squared re-projection error by 4.7 compared to
the baseline. As future work, we would like to test this approach
on other datasets and study new network architectures to better
capture the field features.
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