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Introduction

REINFORCEMENT LEARNING (RL)

• A subset of machine learning wherein an agent

interacts and learns from its environment according to 

some policy (mapping of states to actions) with the 

overall goal of achieving a maximum reward over time 

(Figure 1).

• Used in games, computer vision applications, and 

increasingly in scientific disciplines to solve control 

problems (specifically those that can be formulated as a 

Markov Decision Process).

• The actions an agent can take can be continuous (e.g.

move according to some applied torque) or discrete 

(e.g. move left or right).

• In contrast to many RL examples, where the 

environment responses are easy to compute, the 

environments used in scientific RL studies are often 

complex and take substantial computation time to run, 

even in parallel. 

• The ability to scale these computations to multiple 

nodes can aid in considerably reducing computation 

time, allowing for more robust testing and prototyping of 

ideas.

EASILY EXTENDABLE ARCHITECTURE 

FOR REINFORCEMENT LEARNING 

(EXARL)

• A scalable RL framework for scientific applications.

• Provides customizable environments, agents, and 

workflows, which help improve performance and 

reduce execution time.

• The agent is divided into actors and learners. 

• The actors are responsible for interacting with the 

environment and generating trajectories (training data). 

• These trajectories are fed into the learners, which 

update the policy.

• The updated policy is shared with the actors, which 

perform the suitable to maximize the reward. 

• Similar to IMPALA architecture, the actors and learners 

are decoupled in order to scale the reinforcement 

learning (Figure 2).

Additional Agents

Figure 2. EXARL architecture.

Conclusions & Future 

Work

• EXARL is a scalable reinforcement learning 

framework for complex scientific environments. 

• Improved upon the existing framework by 

accelerating the data generation pipeline for faster 

convergence. 

• Demonstrated improved scalability performance 

using efficient RMA communication patterns. 

• Expanded the capability of EXARL by including 

additional agents like A2C/A3C and TD3

• Explored algorithmic improvements such as v-trace 

and prioritized experience replay. 

• Future work: Evaluate our improvements on 

complex scientific environments and scale our 

framework on large-scale systems.

Figure 16. Results for data generation pipeline improvements.

OPTIMIZING DATA GENERATION 

PIPELINE

• Results: Average speedup of 3.3x upon scaling the 

workload to 4 processes.

• Observed linear speedup when scaling the workload 

onto multiple processes. 
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Figure 22. Performance of DDPG with and without PER.

Methodology

MULTI-LEARNER ASYNCHRONOUS 

WORKFLOW

• All actors send training data (trajectories) to the master 

learner after interacting with the environment.

• The master learner then distributes batches of data to 

the remaining learners to perform distributed training.

• The updated policy from all learners is sent to all the 

actors.

Figure 6. RMA queue workflow schematic.

RMA QUEUE WORKFLOW

• Each actor has a local queue data structure remotely 

accessible by all learners, implemented using RMA 

windows.

• Each group of actors is assigned to a specific learner 

(allowing to limit the number of simultaneous 

accesses to the same queue).

• Learners can retrieve training data from these queues 

and share the updated weights via a global RMA 

window. 

• Actors and learners are synchronized using passive 

target RMA locks and the training part is performed in 

parallel using Horovod.
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Figure 4. Multi-learner asynchronous workflow schematic.

Figure 13. Scaling results of Multi-learner workflows on Darwin 

Testbed Cluster.

Performance Improvements

SCALING MULTI-LEARNER 

WORKFLOWS

• Results: Preliminary experiments demonstrated good 

scalability up to 1024 processes (32 processes per 

node) on ExaBooster environment (as shown in 

Figure 12).

• Efficient overlap of simultaneous computations of 

Bellman equation across actors could be a potential 

cause for superlinear speedup observed beyond 4 

nodes (with single node as baseline).

• Multi-learner RMA workflow performed better than 

asynchronous workflow – which uses a master learner 

to distribute training data to remaining learners.

• Owing to this centralized approach (Master-worker), 

multi-learner asynchronous workflow has relatively 

poor scalability compared to the RMA variants.

• Multi-learner asynchronous workflow is suitable for 

on-policy agents (like A2C) where the training is done 

towards the end of episode. 

RMA QUEUE WORKFLOW

• Results: Total execution time decreased by 77% while 

using 20 learners and 120 actors on 4 nodes, and by 

84% while using 200 actors and 40 learners (8 nodes).

Figure 15. Results for RMA queue scaling

(ASYNCHRONOUS) ADVANTAGE ACTOR 

CRITIC (A2C/A3C)

• An actor-critic network that acts on discrete or 

continuous action spaces. Current implementation is for 

discrete action space (e.g. ExaBooster environment).

• A2C/A3C is faster to train & has more diverse data than 

DQN.

• It is an on-policy agent, i.e. the policy an actor acts with 

should be the same as the policy a learner learns with. 

EXARL framework can’t guarantee that behavior.

• To correct for that, we add the “v-trace” algorithm to the 

loss functions. This correction assumes the ratio 

between the two policies is always equal to one.

EXABOOSTER ENVIRONMENT

• Control problem for FNAL particle accelerator at 

FermiLab (Figure 3).

• Reinforcement learning is used to control particle beam 

quality (i.e. reduce beam losses) in real time. 

• Keeps the beam field from spreading (thus degrading 

the beam quality) by regulating the magnetic current of 

the booster.

• Discrete action environment: magnetic field can either 

be increased or decreased.

• Original work developed by PNNL, FNAL, University of 

California San Diego, Columbia University.

Figure 19. Performance of A2C/A3C versus DQN for CartPole

environment. Note that DQN does not converge, whilst A2C/A3C with 

v-trace does.

RMA WINDOW SELECTION

• In Multi-learner RMA workflow, learners get training 

data from the actor’s RMA window.

• Current approach: Each learner randomly selects one 

of the actor’s RMA window. This can lead to slower 

convergence.

• Proposed approach: Allocate a set of actor RMA 

windows to each learner (Figure 5).

• Advantage: Guarantees no learner reads from the 

same actor’s RMA window, thus optimizing training.

OPTIMIZING DATA GENERATION 

PIPELINE

• Calculating the Bellman optimality equation on each 

experience is expensive (90% of computation time) 

while using Deep Q-Network (DQN) agent.

• Optimization: Offload data-generation on remaining 

environment processes (Figure 8).

Figure 3. FNAL particle accelerator complex at FermiLab with 

particle beam booster ring shown.

Figure 8. Data generation optimization process. Left shows previous 

implementation, right shows updated workflow.

Figure 11. (Asynchronous) Advantage Actor Critic agent schematic. The 

v-trace algorithm is added to the loss functions of the critic and actor 

networks.

RMA WINDOW SELECTION

• Results: In random window selection approach, 

multiple learners may select a same actor RMA window, 

thereby using same data in a distributing training setting 

–poor convergence.

• Range-based window selection guarantees no two 

learners train on the same data.

• As shown in Figure 14, Range-based window selection 

(orange line) had faster convergence than random 

window selection policy (blue line).

Figure 14. Convergence comparison of two window selection 

policies of Multi-learner RMA workflow used on ExaBooster

environment.

Figure 12. Twin Delayed Deep Deterministic Policy Gradient agent 

architecture.

Figure 18. Performance of  A2C/A3C with and without v-trace for 

CartPole environment. Note that A2C/A3C without v-trace does not 

converge, whilst A2C/A3C with v-trace does.

Figure 21. Performance of DDPG versus TD3.

Figure 1. Basics of reinforcement learning.

Figure 7. RMA queue workflow with shared bitmap implementation details.

• Learners that exhaust all ‘active’ actors (e.g. Learner 

3 in Fig. 7) assist other learners by training on the 

batch data from the latter's actor queue.

• A “shared bitmap” indicates which actors are active 

preventing getting data from an empty queue.
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Scaling results – Multi-learner workflows 

Multi-learner Asynchronous Multi-learner RMA (Random window)

Multi-learner RMA (Range-based window)

SEED WORKFLOW

• Inspired from SEED architecture and based on MPI 

P2P routines.

• Lower bandwidth requirements relative to base model.

• Only one copy of the model → there is no issue of 

copies going out of sync.

SEED WORKFLOW

• Our SEED implementation obtained similar results to 

current IMPALA implementation (Figure 16).

• The neural network model used for these experiments 

was relatively small. Therefore, the amount of 

transferred data during an iteration is similar in both 

implementations. 

ADVANTAGE ACTOR CRITIC WITH   

V-TRACE

• Results: (Asynchronous) Advantage Actor Critic 

(A2C/A3C) performs poorly without v-trace on the 

OpenAI gym CartPole environment but outperforms 

Deep Q-Network (DQN) when v-trace is added. 

Note that ”convergence” in the CartPole

environment is 200.

• A2C/A3C also converges faster in ExaBooster

environment than DQN.

• These results are consistent with the literature, ie. 

A2C/A3C is expected to be the state-of-the-art after 

DQN.

Figure 20. Performance of A2C/A3C (blue, orange) against DQN 

(green, red) for ExaBooster environment. Here A2C/A3C converges 

faster than DQN.

TWIN DELAYED DEEP 

DETERMINISTIC POLICY GRADIENT

• Results: Twin Delayed Deep Deterministic Policy 

Gradient Agent (TD3) has comparable performance 

to Deep Deterministic Policy Gradient (DDPG).

DEEP DETERMINISTIC POLICY 

GRADIENT & PRIORITIZED 

EXPERIENCE REPLAY

• Results: Deep Deterministic Policy Gradient 

(DDPG) with Prioritized Experience Replay (PER) 

converges faster than without, which we would 

expect from the literature.
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Figure 5. Multi-learner RMA workflow – range-based window selection.

                   

             

      

    

         

    

                   

             

      

    

              

          

                    

       

                           

                                            

       

       

TWIN DELAYED DEEP DETERMINISTIC 

POLICY GRADIENT (TD3)

• Actor-critic network for continuous action-space 

environments meant to correct for shortcomings in the 

Deep Deterministic Policy Gradient (DDPG) agent.

• It is an off-policy agent, meaning the policy an actor 

acts is independent of the policy a learner learns. 

• Address the overestimation of the Q-value in DDPG by 

using 3 tricks: (1) clipped Double Q-learning, (2) 

delayed policy agent, and (3) target policy smoothing.
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Figure 9. Current EXARL architecture (inspired from IMPALA)

ActorActorActor Learner
Send an entire training batch

Send model weights

model model

ActorActorActor Learner
Send a single observation

Send action to take
model

Figure 10. Architecture inspired from SEED (implemented using MPI)
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Figure 17. SEED vs IMPALA architecture (MPI implementations) 

* All Tests run on Darwin cluster with Intel Broadwell (36 cores) + IB ConnectX-4
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