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Abstract

A finite element analysis of intergranular normal stresses is performed in order to identify a possible statistical correlation
between the intergranular normal stresses and the corresponding grain boundary type within a polycrystalline aggregate. Elastic
continuum grains of cubic lattice symmetry are assumed in the analysis. Meaningful results are obtained by analyzing the first two
statistical moments of grain boundary normal stresses obtained on several grain boundary types.

Among the five macroscopic parameters (5D) describing a grain boundary, the orientation of the grain boundary plane relative
to the two adjacent crystal lattices (4D) is found to be the most important property influencing the normal stresses. To account
for it, a single new (1D) parameter E12 is introduced, which combines the geometrical aspect of grain boundary with its material
properties and measures the average stiffness of grain boundary neighborhood along the grain boundary normal direction. It is
demonstrated that E12, in combination with Zener elastic anisotropy index A, is able to accurately predict normal stress fluctuations
on any grain boundary type in a material with cubic lattice symmetry. It is argued that largest normal stresses most likely form on
grain boundaries whose normals are oriented along the stiffest direction in both adjacent grains (<111> for crystals with A > 1 or
<001> for crystals with A < 1). Moreover, it is shown that classification of grain boundaries according to their propensity to exhibit
large normal stresses can be trivially reduced to the (analytical) calculation of the corresponding effective stiffness parameter E12.

A few practical implications are discussed relevant to intergranular stress-corrosion cracking of Coincidence Site Lattice grain
boundaries. For example, it is highlighted that in face-centered cubic materials the coherent Σ3 twin grain boundaries, which are
known for their very high cracking resistance, nevertheless exhibit largest intergranular normal stresses, indicating that cracking
resistance is associated with high grain boundary strength.

Keywords: IGSCC, grain boundary type, coincidence site lattice, intergranular normal stress fluctuations, finite element method,
grain boundary engineering

1. Introduction

Due to their strength, stiffness, fracture toughness and resistance to high temperatures metallic alloys remain the
structural material of choice in various industries. But their susceptibility to ageing effects and material degradation
can shorten the total service life of components made from them. One of the most significant material degradation
modes responsible for initiation and propagation of cracks along the grain boundaries (GBs) is the intergranular stress
corrosion cracking (IGSCC). IGSCC has been observed experimentally for a wide range of materials, for example, in
austenitic stainless steels (Nishioka et al., 2008; Le Millier et al., 2013; Stephenson and Was, 2014; Gupta et al., 2016;
Fujii et al., 2019), zirconium alloys (Cox, 1970, 1990), nickel based alloys (Van Rooyen, 1975; Shen and Shewmon,
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1990; Panter et al., 2006; IAEA, 2011), high strength aluminum alloys (Speidel, 1975; Burleigh, 1991) and ferritic
steels (Wang and Atrens, 1996; Arafin and Szpunar, 2009).

In recent years, many studies have been conducted to analyze the susceptibility of various materials to IGSCC
initiation from experimental, analytical and numerical viewpoints. It is now well accepted that IGSCC occurs under
the conjoint action of material properties, aggressive environment, and mechanical forces. From the material aspect,
the susceptibility to IGSCC has been investigated on different GB types and GB networks using the electron backscat-
ter diffraction (EBSD) measurements. Restricting to austenitic stainless steel, efforts have been made to clarify the
initiation of intergranular cracks on Σn GBs based on the Coincidence Site Lattice (CSL) model. It was concluded
(Gertsman and Bruemmer, 2001) that crack initiation could not be explained using only Σn GB types as cracks oc-
curred even at some Σn GBs with small n, including Σ3 GBs, in stainless steel alloys. Studies on type 304 stainless
steel (Rahimi and Marrow, 2011; Fujii et al., 2019) established that GB type and grain size significantly influence
the susceptibility to IGSCC. The influence of GB arrangement on IGSCC susceptibility was investigated in stainless
steels of type 304 (Rahimi et al., 2009) and type 316 (Liu et al., 2019) where it was shown that IGSCC resistance
could be improved by increasing the fraction of twin or twin-related (Σ3) GBs.

On the mechanical side, intergranular normal stresses (INS) have been found to play a significant role in IGSCC
initiation. Few approaches have been applied to characterize the initiation of IGSCC. A simple Schmid-Modified
Grain Boundary Stress (SMGBS) model was proposed (West and Was, 2011) to investigate the initiation of an inter-
granular crack based on a normal stress acting at GB. The SMGBS model considers the combined effects of GB plane
orientation and grain orientations through their Schmid factors. It was pointed out that intergranular cracks occur most
likely at highly stressed GBs. In other similar studies (Stratulat et al., 2014; Zhang et al., 2019; Fujii et al., 2019) the
SMGBS model was used to discuss crack initiation in austenitic stainless steel. It was concluded that initiation sites
coincide with the most highly stressed GBs. Also, by measuring local stresses in irradiated iron based alloys using
high-resolution EBSD technique (Johnson et al., 2019), a criterion for crack initiation was proposed using normal
stresses acting at GBs.

The experimental and analytical studies have been supplemented by various numerical simulations. Focusing on
the mechanical aspect, crystal plasticity finite element model (CPFEM) simulations (Diard et al., 2002, 2005; Kanjarla
et al., 2010; Gonzalez et al., 2014; Hure et al., 2016; El Shawish and Hure, 2018) and crystal plasticity fast Fourier
transform (CPFFT) simulations (Lebensohn et al., 2012; Liang et al., 2020) were used to obtain intergranular stresses
in either synthetic or realistic polycrystalline aggregates, providing valuable information for IGSCC initiation. INS
were found to depend on elasto-plastic anisotropy of grains with either cubic (Gonzalez et al., 2014; Hure et al., 2016;
El Shawish and Hure, 2018) or hexagonal lattice symmetries (El Shawish and Hure, 2018). Based on results of a
recent systematic CPFEM study (El Shawish and Hure, 2018), a new phenomenological relationship was discovered
for standard deviation of INS evaluated on random GBs within a polycrystalline aggregate under external loading.
With such a relation, the probability of finding GB stress exceeding a critical value (related to GB strength) could be
assessed, thus providing a quick and reliable tool for estimating the propensity of an aggregate to develop high INS
without having to perform CPFEM simulations.

As different GB types (defined by five macroscopic degrees of freedom) show different IGSCC sensitivities in
a given material, it would be useful to know how much of this behavior results solely from the difference in their
associated GB strengths or there exists also some sizable variation of INS across the GB types. In this respect, a
possible correlation between a particular GB type and the corresponding INS distribution evaluated on it is investigated
in this study. Knowing how GB normal stresses (in addition to GB strengths) vary with a particular GB type in a given
polycrystal would provide a better understanding of both the material and loading aspects of IGSCC susceptibility.
Such study appears to be the key ingredient towards IGSCC initiation modelling and is therefore the main objective
of this paper.

To identify a possible statistical correlation between the INS and the corresponding GB type embedded within a
polycrystalline aggregate, finite element analysis of INS is performed in 3D periodic Voronoi aggregates composed
of elastic grains of cubic lattice symmetry and under uniaxial macroscopic loading. To obtain meaningful results, first
two statistical moments, the mean value and standard deviation, are analyzed from the calculated INS distributions
obtained on GBs of a certain type. Since material and mechanical aspects of IGSCC are jointly addressed (but
decoupled from the environmental factors hidden in the GB strength related to critical GB stresses), this study may
be also relevant for other degradation mechanisms where INS is the driving force for crack initiation leading to
intergranular fracture (e.g., mechanical and thermal fatigue). To allow for such generalization, a large set of different
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cubic materials is investigated and compared.
The reason for using elastic grains in the analysis is twofold. First, there are several applications that involve purely

elastic strains induced by small applied stresses or stresses close to yield stress. For example, fatigue damage initiation
considers purely elastic loads, while IGSCC initiation is usually related to stresses at or slightly below yield stress
(Gupta et al., 2016). Secondly, the INS distributions evaluated at the onset of plasticity deviate very gradually from
those calculated under purely elastic loads (El Shawish and Hure, 2018). This implies that elastic INS distributions
studied here may be relevant for an even broader set of mechanical applications. Nevertheless, having purely elastic
grains also requires much fewer assumptions about constitutive modelling, which may sometimes be hard to justify
unless some additional experimental validation is provided.

2. Models and method

2.1. Constitutive model

The anisotropic elasticity of crystals with cubic symmetry is governed by the generalized Hooke’s law, σi j =

Ci jklεkl, where the stiffness tensor Ci jkl is composed of three independent elastic constants (in Voigt notation), C11,C12,C44,
whose values are shown for several cubic crystals in Tab. 1.

Crystal C11 C12 C44 A Au

Mo 440.8 172.4 121.7 0.91 0.01
Al 107.3 60.9 28.3 1.22 0.05
Cr 339.8 58.6 99.0 0.70 0.15
Pt 346.7 250.7 76.5 1.59 0.27
Nb 240.2 125.6 28.2 0.49 0.63
α-Fe 231.4 134.7 116.4 2.41 0.99
Ni 246.5 147.3 127.4 2.57 1.15
Au 192.9 163.8 41.5 2.85 1.44
Cu 168.4 121.4 75.4 3.21 1.82
γ-Fe 197.5 125.0 122.0 3.37 2.00
Pb 49.5 42.3 14.9 4.14 2.86
Nb∗ 240.2 125.6 11.46 0.20 3.84
Li 13.5 11.44 8.78 8.52 7.97
Na 6.15 4.96 5.92 9.95 9.66
Nb∗∗ 240.2 125.6 5.73 0.10 9.72

Table 1. Elastic constants Ci j in Voigt notation (in units of GPa), Zener elastic anisotropy index A (Zener, 1948) and universal elastic anisotropy
index Au (Ranganathan and Ostaja-Starzewski, 2008) for cubic crystals used in this study. Elastic constants are taken from (Bower, 2010). Nb∗

and Nb∗∗ are fictitious materials representing Nb with modified C44 to obtain A = 0.20 and A = 0.10, respectively. Materials are ordered according
to Au.

Materials in Tab. 1 are ordered according to their universal elastic anisotropy index Au (Ranganathan and Ostaja-
Starzewski, 2008) where Au = 0 denotes isotropic crystal. For comparison, also Zener elastic anisotropy index A
(Zener, 1948) is added

A =
2C44

C11 −C12
(1)

with A = 1 denoting isotropic crystal.
To study elastic INS distributions on different special GBs, elastic grains with γ-Fe properties are assumed in

Sec. 3 and used as a reference material throughout the paper. In Sec. 4, however, also other cubic materials from
Tab. 1 are investigated.

The constitutive equations of the generalized Hooke’s law were solved with finite element solver Abaqus (Simulia,
2016) using small strain approximation.
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2.2. Aggregate model generation

(a)

(c) (d)

(b)

Figure 1. (a) Periodic Voronoi aggregate model with 1000 grains used in this study. Different grains are denoted by different colors. Finite element
mesh is shown on one selected grain. Total number of elements in the model is 1263042. (b) Histogram showing distribution of GB areas in
arbitrary units (note the logarithmic scale). Special GBs are selected among GBs with largest area. Total number of GBs is 7762 and the number
of special GBs is either 709 (representing 28% GB area) or 419 (17% GB area). 2D distributions of GB normals, n = (sin θ cos φ, sin θ sin φ, cos θ),
accounting for either all GBs (c) or only special GBs (d) are both approximately uniform.

Polycrystal aggregate models were generated upon Voronoi tessellations using software package Neper (Quey
et al., 2011) to build the periodic microstructures in all three spatial directions. The arrangement of grains was based
on a Poisson-Voronoi diagram. Finite element meshes were also generated with Neper using quadratic tetrahedral
elements (C3D10) to preserve the geometry of the grains.1 An example of the model with 1000 grains used throughout
this study is shown in Fig. 1(a).

The periodic boundary conditions were implemented along all three aggregate principal directions (El Shawish
et al., 2020) and a uniaxial loading was applied along direction 1 (x axis), providing a single nonzero macroscopic
stress component, Σ11 = 〈σ11〉 > 0. Here, the averaging 〈.〉 was performed over the entire volume of the model. As
grains were assumed to be purely elastic, a unit loading was applied using a small strain approximation.

2.3. Grain boundary type assignment
Same elastic material properties of γ-Fe were assigned to all the grains of the model but each time with different

crystallographic orientations to model aggregates with various GB types.
On a macroscopic (continuum) level, a GB can be characterized by five degrees of freedom (DOF), following

two standard approaches. In the first approach, three parameters are used to specify a rotation between the crystal
lattices of the two neighboring grains (e.g., using either three Euler angles or misorientation angle and axis) and two
parameters to specify GB boundary plane. Alternatively, one can use four parameters to define a GB plane in the
coordinate system of each of the two grains and one additional parameter to describe a twist angle (with respect to
GB normal) between the neighboring crystal lattices.

It is important to note that external loading implies additional DOF per GB. For example, in the case of applied
tensile stress two additional DOF should be considered to uniquely characterize a GB. In this study, however, the effect
of a GB tilt relative to the applied tensile direction is studied statistically by evaluating GB stresses on a large number
of randomly oriented GBs (see also further discussion). In this way, the two additional DOF per GB are integrated out
and only five DOF per GB are retained in the model. Note that at smaller (atomistic) scales even more DOF per GB
would be required, for example, to describe the arrangement of atoms on both sides of the GB plane (e.g., coherent
vs. non-coherent GBs).

1We note that quadratic tetrahedral elements (C3D10) were not supported by Neper (Quey et al., 2011) when used in combination with periodic
geometries, therefore an in-house script was developed to generate second-order meshes with proper node connectivity at the free surfaces.
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Following the above discussion, a random aggregate is defined here as a Voronoi aggregate with purely random
GBs. In practice, this is achieved by assigning random grain orientations to all the grains to provide a random
crystallographic texture. In this case, the resulting 1D distribution of misorientation angles approaches a well-known
curve for a randomly textured polycrystal with cubic lattice symmetry (Mackenzie, 1958).

Unlike random GBs, special GBs are defined as GBs with the value of at least one chosen DOF set. The simplest
example would be a misorientation GB type where a misorientation angle (one DOF) between the two grains is fixed
to a certain value while the remaining four DOF are left random. It is expected that the effect of special GBs is larger
when more DOF are fixed (thus having fewer random DOF).

To generate a non-random aggregate, a relatively small fraction η of GBs is assigned a special GB character while
the remaining fraction 1 − η is retained as random GBs2. The fraction η in fact denotes a ratio between the area of
all special GBs and the area of all GBs employed in the model. To improve statistical evaluations presented later
on, special GBs were selected from the largest available GBs of the aggregate. This is depicted in histogram on
Fig. 1(b) where a special GB area distribution is shown to overlap with the right-hand side of a all-GB area histogram
distribution. In this way, ηmax ≈ 0.28 and ηmax ≈ 0.17 were reached in practice (with the limiting factor being the
topology of the grains in 3D) for respectively fixing up to three DOF and more than three DOF per special GB. By
comparing 2D distributions of GB normals in Figs. 1(c,d), special GBs as well as all GBs are shown to be more or
less randomly oriented in space with no preferred inclination.

Table 2 lists and describes all the different types of special GBs investigated in this study. The visualization of
some of the most common special GBs is given for one particular grain pair in Appendix A.

Special GB Definition fixed DOF GB plane Fraction Comment
misorientation fixed misorientation around random axis 1 no 0.28 Fig. A.14(a,b)
twist fixed rotation around n 3 yes 0.28
Σ3 60.0000o rotation around <111> 3 no 0.28
Σ5 36.8699o rotation around <100> 3 no 0.28
Σ7 38.2132o rotation around <111> 3 no 0.28
Σ9 38.9424o rotation around <110> 3 no 0.28
Σ11 50.4788o rotation around <110> 3 no 0.28
Σ3-twist 60.0000o rotation around <111> ‖ n 5 yes 0.17 Fig. A.14(d)
Σ5-twist 36.8699o rotation around <100> ‖ n 5 yes 0.17 Fig. A.14(f)
Σ7-twist 38.2132o rotation around <111> ‖ n 5 yes 0.17 Fig. A.14(h)
Σ9-twist 38.9424o rotation around <110> ‖ n 5 yes 0.17 Fig. A.14(j)
Σ11-twist 50.4788o rotation around <110> ‖ n 5 yes 0.17 Fig. A.14(l)
Σ3-twin 60.0000o sym. rotation around <111> ⊥ n 5 yes 0.17 Fig. A.14(c)
Σ5-twin 36.8699o sym. rotation around <100> ⊥ n 5 yes 0.17 Fig. A.14(e)
Σ7-twin 38.2132o sym. rotation around <111> ⊥ n 5 yes 0.17 Fig. A.14(g)
Σ9-twin 38.9424o sym. rotation around <110> ⊥ n 5 yes 0.17 Fig. A.14(i)
Σ11-twin 50.4788o sym. rotation around <110> ⊥ n 5 yes 0.17 Fig. A.14(k)

<abc>-twist
fixed rotation around <abc> ‖ n
considered axes: <001>, <101>, <111> 5 yes 0.17 Fig. A.14(n,p,r)

<abc>-twin
fixed sym. rotation around <abc> ⊥ n
considered axes: <001>, <101>, <111> 5 yes 0.17 Fig. A.14(m,o,q)

(abc)-(de f )

grain 1: [abc] ‖ n, grain 2: [de f ] ‖ n
considered planes: (001), (104), (114),
(102), (214), (112), (304), (314), (324),
(334), (101), (414), (212), (434), (111)

4 yes 0.17 Fig. A.14(s-x)

Table 2. List of investigated special GBs and their definitions. GB plane column denotes if GB plane is involved in the definition of a special GB. n
stands for a GB normal. Fraction value η denotes a ratio between the area of all GBs of a special type investigated and the area of all GBs employed
in the model. Twin GBs in Σn-twin and <abc>-twin are defined as symmetric tilt GBs.

2Here, a GB is understood as a Voronoi facet.
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The assignment of special GB orientations was performed with in-house Mathematica script (Wolfram Research).
A practical distinction was made between special GBs with a fixed GB plane (e.g., Σn-twist, Σn-twin or (abc)-(de f ))
and those that do not specify its orientation (e.g., misorientation or Σn). In the former case, additional geometrical
inputs in the form of GB planes were needed and provided by the model generation software Neper.

It is important to note that same grain topology and finite element mesh (see Fig. 1(a)) were employed in all
considered aggregate models from Tab. 2. In this way the effects of using different special GB types were isolated
from other possible finite size effects studied separately in Appendix B.

2.4. Intergranular normal stress calculation

Intergranular normal stress (INS) distributions were calculated over all special GBs of one particular type in order
to evaluate their response in comparison to random GBs. The used methodology for the calculation of INS has been
successfully implemented before (Hure et al., 2016; El Shawish and Hure, 2018; El Shawish et al., 2020).

For each pair i of quadratic (C3D10) tetrahedral elements touching a GB plane k with their two facets, a GB
facet area Ak

i and GB normal nk were identified first. In both elements, six Cauchy stress tensors, σi,1 . . .σi,6, were
then obtained at the corresponding Gauss points located closest to the GB plane. These were then used to calculate
one single normal stress value per element pair, σk

i,nn = 1/6
∑6

j=1 nk.σi, j.nk. As elements of different size were
used in the finite element mesh, the occurrence of σk

i,nn in the computation of the INS distribution was weighted by
the surface Ak

i of the GB facet on which it was obtained. Finally, the first two statistical moments, the mean and
the standard deviation, were calculated to characterize the distribution using the following two relations 〈σnn〉 =∑

k
∑

i Ak
iσ

k
i,nn/

∑
k
∑

i Ak
i and s(σnn) =

√
〈σ2

nn〉 − 〈σnn〉
2, respectively. Here, the summation k was performed over all

special GBs of a non-random aggregate (unless stated differently) or over all GBs of a random aggregate. The two
statistical quantities were further normalized by macroscopic tensile stress Σ = Σ11 to obtain 〈σnn/Σ〉 and s(σnn/Σ)
shown hereafter.

In Appendix B the above method is shown to be robust and accurate enough to provide converged s(σnn/Σ) upon
refining the finite element mesh.

Before addressing the results of the study, it may be useful to mention all relevant sources that may contribute to
the width of INS distribution when evaluated on one particular GB type:

• The main source is expected to be coming from the random orientation of special GB planes. In an ideal case of a
sufficiently large aggregate, special GB normals n would be distributed uniformly on a sphere. In the absence of
material anisotropy, INS can be expressed as σnn/Σ = cos2 θ where θ denotes the angle between GB normal and
applied uniaxial loading direction. The corresponding probability density function is 1/(2

√
σnn/Σ) where σnn

is trivially bounded by Σ, and first two statistical moments are 〈σnn/Σ〉 = 1/3 and s(σnn/Σ) = 2/(3
√

5) ≈ 0.298.
Irrespective of the material anisotropy, largest INS is expected to appear on GBs with GB normal closely aligned
with the applied uniaxial loading direction (θ ∼ 0).3

• Another important source of distribution width is the already mentioned material elastic anisotropy. When
the mismatch effects between adjacent grains become important, the INS distribution adopts a bimodal shape
with largest INS exceeding the upper bound Σ. As explained in (El Shawish and Hure, 2018), the distribution
broadening, measured by s(σnn/Σ), becomes well correlated with the elastic anisotropy of the grains, implying
that universal elastic anisotropy index (Ranganathan and Ostaja-Starzewski, 2008) can be used to assess the
potential susceptibility of random aggregates to IGSCC. The effect of material anisotropy on s(σnn/Σ) in non-
random aggregates is discussed in more detail in Sec. 4.

• The last important source is related to the special GB type, which has, by definition, at least one fixed DOF.
Since the remaining DOF are left random, it is expected that special GBs with fewer random DOF would
provide larger effect on INS distribution. In fact, it is the goal of this study to identify a possible statistical
correlation between the specific GB type and the corresponding INS distribution. Such information would be
valuable to various fields of research and engineering, including material characterization and GB engineering.

3Local stress concentrations are expected also on other GBs in close proximity to geometric discontinuities such as grain edges or triple points.
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3. Analysis of γ-Fe grains

This section presents INS distributions and corresponding statistical moments calculated on various special GBs
using finite element simulations of random and non-random polycrystalline aggregates composed of γ-Fe grains under
tensile loading.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
σ

nn
/ Σ

0

PD
F

random (random aggregate)
Σ3-twist (non-random aggr.)
random  (non-random aggr.)

〈σ
nn

/ Σ〉

〈σ
nn

/ Σ〉 + s(σ
nn

/ Σ)

Figure 2. Probability density functions (PDF) of normalized INS σnn/Σ calculated in two geometrically equivalent Voronoi aggregate models
composed of γ-Fe grains under tensile stress Σ. A comparison is shown between an aggregate with purely random GBs and an aggregate with 17%
GB area corresponding to Σ3-twist GBs (and the remaining 83% GB area to random GBs). In the former case, the distribution is calculated on all
GBs, whereas in the latter case two distributions are calculated on either Σ3-twist GBs or random GBs (due to poorer statistics PDF of Σ3-twist
GBs is less smooth). To characterize the distributions, the corresponding mean values and standard deviations are depicted on a graph by square
symbols and horizontal error bars.

Figure 2 thus juxtaposes the distribution of INS on random GBs with that obtained on Σ3-twist GBs. Here, Σ3-
twist GB was chosen to be a representative special GB because it is a well-known GB found in face-centered cubic
metals that has a very low GB energy (An et al., 2018; Fujii et al., 2019). It is often called a coherent Σ3 twin GB
as all atoms at the boundary belong to both crystals.4 Because all lattice sites on the GB are coincidence sites and
there is no lattice strain or excess volume associated with the GB, coherent Σ3 twin GBs show very high corrosion
resistance (An et al., 2018).

It is rather surprising to observe on Fig. 2 that probability density function of σnn/Σ is considerably wider for
Σ3-twist GBs than for random GBs. Wider distribution also implies there is a higher fraction of Σ3-twist GBs with
larger INS (for the same applied stress Σ), which may seem counterintuitive as these GBs are known for their high
cracking resistance. However, it needs to be noted that GB crack initiation depends not only on local GB stress σnn but
also (or mostly) on local GB strength. In a simple picture, crack initiation starts when σnn > σc, where critical local
stress σc is associated with GB strength. As only the loading part is addressed here, the knowledge of GB strength
of Σ3-twist GBs should resolve this seeming inconsistency. Namely, very low energy of GBs is generally associated
with their enhanced strength, therefore an increase of σnn due to specific GB type does not necessarily increase its
propensity for cracking.

4As already pointed out, a coherency of GBs relates to atomistic DOF which are excluded from the current continuum framework.
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3.1. Density of special grain boundaries
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Figure 3. Mean value 〈σnn/Σ〉 and standard deviation s(σnn/Σ) of normalized INS, plotted as a function of GB area fraction of Σ3-twist GBs (with
the remaining area fraction corresponding to random GBs). Results in (a) are calculated on Σ3-twist GBs only and in (b) on all GBs. Insets show
the same information but on a different scale. Material properties of γ-Fe were used.

The effect of area fraction η of Σ3-twist GBs is studied in Fig. 3, where first two statistical moments 〈σnn/Σ〉 and
s(σnn/Σ) are plotted as a function of η (with ηmax = 0.17 and the remaining 1 − η GB area corresponding to random
GBs) in a Voronoi aggregate under elastic tensile stress Σ. A comparison is shown between the two cases where the
two moments are calculated either only on Σ3-twist GBs (Fig. 3(a)) or on all GBs (Fig. 3(b)). In the former case, both
〈σnn/Σ〉 and s(σnn/Σ) show oscillations at smaller fractions η . 0.08. These oscillations are attributed to insufficient
number of special GBs present in the model, which constitute a non-uniform distribution of GB normals. Note that
η = 0.05 and η = 0.10 correspond to respectively 88 and 202 special GBs in an aggregate with a total of 7762 GBs.
Observed fluctuations are therefore finite size effects that should diminish with growing aggregate size.

The fact that both statistical moments, calculated solely on special GBs, seem to converge (or at least do not
change significantly) with increasing fraction of special GBs (η & 0.08), suggests that elastic interactions between
GBs are relatively short ranged. In particular, even at a given maximal fraction of η = 0.17, special GBs seem to be
placed sufficiently far apart (with enough random GBs placed in between) to have a negligible impact on each other.

Short range interactions between (special) GBs are further confirmed in Fig. 3(b), where the effect of adding more
Σ3-twist GBs into the model results in a slight linear increase of s(σnn/Σ) when calculated on all GBs. However, the
overall effect is expectedly small because the main contribution still comes from random GBs.

From Fig. 3 it also appears that 〈σnn/Σ〉 ≈ 1/3 for any sufficiently high η. As will be evident later on, this obser-
vation actually holds for all considered special GBs. As a practical implication, one may thus focus predominantly on
INS fluctuations measured by s(σnn/Σ).

Since the fraction of special GBs η has no significant effect (except at very low η . 0.08 due to finite size effects)
on the first two statistical moments calculated on special GBs, all the following results are shown for ηmax (either
0.17 or 0.28) in order to get statistically more relevant results. In the following, the effect of different special GBs is
analyzed and compared.
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3.2. Coincidence site lattice grain boundaries
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Figure 4. Mean value and standard deviation of normalized INS, 〈σnn/Σ〉 and s(σnn/Σ), plotted for five simplest Coincidence Site Lattice GBs
Σn (n = 3, 5, 7, 9, 11) representing 28% (for Σn) and 17% (for Σn-twin/twist) GB area fractions. Dashed lines denote values obtained in the same
aggregate model but with purely random GBs. Material properties of γ-Fe were used.

Figure 4 shows the effect of five lowest Coincidence Site Lattice (CSL) GBs (n = 3, 5, 7, 9, 11) embedded in the
Voronoi aggregate model under tensile stress Σ. Besides the usual Σn GB that is defined by specific misorientation
axis and misorientation angle, also Σn-twin and Σn-twist GBs with the additional constraints on GB plane (see Tab. 2)
are included in the comparison. Since Σn GB has three fixed DOF (that have no connection to the GB normal) and
two random DOF, the corresponding standard deviation s(σnn/Σ) is similar to that of a random GB. On the contrary,
both Σn-twin and Σn-twist GBs have all five DOF fixed, which makes their responses substantially different from that
of a random aggregate. Nevertheless, the largest effects among the two GB types are observed for Σn-twist GBs,
where Σ3-twist and Σ7-twist GBs produce considerably larger INS fluctuations with s(σnn/Σ) ≈ 0.42 and Σ5-twist
GBs considerably smaller INS fluctuations with s(σnn/Σ) ≈ 0.20. As will be shown later, these two values represent
(approximately) the maximal and the minimal s(σnn/Σ) of a polycrystal composed of γ-Fe grains.
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3.3. Grain boundaries with fixed plane
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Figure 5. Mean value and standard deviation of normalized INS, 〈σnn/Σ〉 and s(σnn/Σ), plotted as a function of (a) misorientation angle specifying
misorientation GBs, (b) symmetric tilt angle specifying <abc>-twin GBs, and (c) twist angle specifying <abc>-twist and twist GBs. Same Voronoi
aggregate model composed of γ-Fe grains and under tensile stress Σ is used in all calculations. Dashed lines in (a) denote values obtained in the
same aggregate but with purely random GBs.

In Fig. 5 the first two statistical moments are shown for various special GBs that depend on a misorientation angle
(Fig. 5(a)), symmetric tilt angle (Fig. 5(b)) or twist angle (Fig. 5(c)). Since only 1 DOF is fixed for a misorientation
GB, its response is almost identical to that of a random aggregate. In fact, the angular dependence of 〈σnn/Σ〉 and
s(σnn/Σ) is very weak for all considered cases, irrespective of the number of fixed DOF per GB. It can be observed
that GB normal direction, encoded in <abc>-twin and <abc>-twist GBs, has the largest influence on INS fluctuations
(where in the latter case the effect is slightly bigger, see Fig. 5(c)).

An explanation for this observation seems straightforward. It can be expected that the amplitude of GB normal
stress reduces if both grains surrounding the GB are softer (in the direction of GB normal) than the surrounding
neighborhood (also in the same direction of GB normal). In this way, the applied stress projected along the GB normal
would redistribute more over the stiffer bulk than over the softer grains. For γ-Fe grains, this is indeed the case: <001>
and <111> directions are respectively the softest and the stiffest crystal directions. As a result, <001>-twist GBs
should exhibit the lowest INS fluctuations, while <111>-twist GBs should exhibit the largest INS fluctuations. Both
are confirmed in Fig. 5. Note also that Σ3-twist and Σ7-twist GBs belong to a subgroup of <111>-twist GBs (with a
twist angle fixed to 60.0o and 38.2o, respectively), while Σ5-twist GB to a subgroup of <001>-twist GBs (with a twist
angle fixed to 36.9o) confirming results in Fig. 4. In this respect, the behavior of Σn-twist GBs is therefore dependent
mostly on the twist axis (or GB plane) and not on the twist angle.
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Figure 6. Standard deviation of normalized INS s(σnn/Σ) in the Voronoi aggregate model under tensile stress Σ, calculated on embedded (abc)-
(de f ) GBs (17% GB area fraction). Each colored dot (i, j) denotes a response of an aggregate with special GB planes expressed as i = (abc) in
one grain and as j = (de f ) in other grain. 120 such (i, j) dots are shown as a result of selecting i and j among 15 predefined GB planes from the
standard stereographic triangle shown in the inset (with their directions i–xv listed in the same order in the bottom-most row of Tab. 2). Due to
symmetry (i, j) → ( j, i), only half of the plane is shown. Note that dots on the diagonal with (abc)-(abc) GBs correspond to <abc>-twist GBs
(ignoring the effect of a twist angle). Material properties of γ-Fe were used.

Since GB plane has seemingly the largest impact on INS fluctuations, special (abc)-(de f ) types of GBs are intro-
duced and analysed in Fig. 6. According to the definition given in Tab. 2, four fixed DOF are associated with each
(abc)-(de f ) GB with an additional twist angle between the two grains (fifth DOF) assumed random. As shown in
Fig. 5(c), fixing the angle would not contribute significantly to the overall response, leading to

s(σnn/Σ) = F (a, b, c, d, e, f , φ) ≈ F (a, b, c, d, e, f ). (2)

Here, F denotes only a functional dependence of s(σnn/Σ) and does not refer to any particular mathematical function.
It can be observed in Fig. 6 that aggregates with increased share of (abc)-(de f ) GBs show very different responses,

with INS fluctuations ranging from s(σnn/Σ) ≈ 0.20 to s(σnn/Σ) ≈ 0.42. Both values were already encountered before
for <001>-twist GBs (e.g., Σ5-twist) and <111>-twist GBs (e.g., Σ3-twist or Σ7-twist), respectively. The reason is
that <abc>-twist GB actually corresponds to (abc)-(abc) GB if the effect of the twist angle is ignored (colored dots
on the diagonal of Fig. 6).

The results of Fig. 6 confirm that the smallest INS fluctuations are expected on (001)-(001) GBs and the largest
INS fluctuations on (111)-(111) GBs. This is in agreement with the explanation given above since (001)-(001) GBs
and (111)-(111) GBs in γ-Fe denote GBs with GB normals oriented along the softest and the stiffest crystal directions
of both grains, respectively.
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Figure 7. Similar to Fig. 6 but replacing each (i, j) pair by a corresponding pair of Young’s moduli (Eabc, Ede f ) calculated along the i = [abc]
direction in one grain and j = [de f ] direction in the other grain. The analytical expression for Eabc is detailed in Eq. (3). The columns are reshuffled
with respect to (arbitrary) indexed directions in stereographic triangle used in Fig. 6 resulting in points above the diagonal. Note also that some of
the 120 points overlap due to degeneracy of Eabc (here E101 = E112 = E314) whose origin is the degeneracy in the orientation-dependent part of
Eabc specified in Eq. (4).

Since the above claim is valid for the two extreme directions, it is tempting to rewrite the results obtained on
(abc)-(de f ) GBs in terms of Young’s moduli of the two neighboring grains Eabc and Ede f , see Fig. 7. Here, Young’s
modulus Eabc is a measure of grain stiffness for a uniaxial stress applied along the GB normal direction [abc] and can
be expressed as (Zhang et al., 2007)

1
Eabc

=
C11 + C12

C2
11 + C11C12 − 2C2

12

+

(
1

C44
−

2
C11 −C12

)
Φ(a, b, c), (3)

where

Φ(a, b, c) =
(ab)2 + (ac)2 + (bc)2

(a2 + b2 + c2)2 , (4)

can assume values between 0 and 1/3. Interestingly, the results of Fig. 7 indeed indicate that s(σnn/Σ) calculated on
(abc)-(de f ) GBs depends (mostly) on the corresponding Young’s moduli Eabc and Ede f , which measure the stiffness
of GB immediate neighborhood. For a given material, therefore INS fluctuations can be further approximated by

s(σnn/Σ) ≈ F (a, b, c, d, e, f ) ≈ F (Eabc, Ede f ), (5)

using two instead of four independent parameters (since normals [abc] are of unit length). Moreover, due to symmetry
F (Eabc, Ede f ) = F (Ede f , Eabc), it is furthermore tempting to check if s(σnn/Σ) can be viewed as a function of one
single parameter that would denote an effective or average stiffness of GB neighborhood. In this respect, the following
simplified bicrystal model is considered.
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3.3.1. Bicrystal model approximation

Figure 8. A 2D bicrystal model embedded in elastic aggregate under macroscopic tensile stress Σ. To estimate the local stress acting on the
bicrystal neighborhood, the macroscopic stress tensor is first dressed up with fluctuations ( f ) to account for the anisotropy of far-field grains, then
rotated onto a GB plane by angle θ and finally rewritten as a superposition of three simpler cases: two with a uniaxial and one with a shear stress
state (with 2D stress amplitudes denoted above). In 3D the same stress decomposition would provide three uniaxial and three shear stress states,
with the amplitude of the uniaxial stress mode acting along the GB normal being the same as in 2D, namely Σ cos(θ)2 + f . Following the principle
of linearity, the solution for INS is obtained as a sum of the three partial solutions, σnn = σ(1)

nn + σ(2)
nn + σ(3)

nn .

It is assumed that the immediate neighborhood of the (abc)-(de f ) GB can be described within a bicrystal model
embedded in an elastic media, which resembles a far-field neighborhood of a polycrystal. A simplified version of
the model in 2D is depicted in Fig. 8 with the proposed strategy for INS estimation using the principles of linearity
and superposition. It is easy to realize that for small θ the biggest contribution to INS is coming from the uniaxial
stress mode acting along the GB normal, σnn ∼ σ(1)

nn . While the contribution of the second uniaxial stress mode is
negligible (for small θ), σ(2)

nn ∼ 0, the contribution of the shear mode is generally non-zero, σ(3)
nn , 0, whereas its

average should vanish, 〈σ(3)
nn 〉 ∼ 0. Note that similar conclusion holds also in 3D but with different expressions for the

stress amplitudes (except for the uniaxial stress mode acting along the GB normal).
Focusing on the first uniaxial stress mode in Fig. 8 for small θ (and omitting the superscript (1)), the continuity of

GB normal stress imposes
σnn = Eabcεnn,1 = Ede f εnn,2, (6)

where εnn,1 and εnn,2 are respectively the local strains in grains 1 and 2 along the GB normal direction. In the simplest
picture, it can be assumed that both εnn,1 and εnn,2 are uniform within the grains and that they recover an average strain
of the bicrystal neighborhood,

l1εnn,1 + l2εnn,2 = (l1 + l2)εnn, (7)

where l1 and l2 are the lengths of the grains (assumed to be equal, l1 = l2), and

εnn =
Σ cos(θ)2 + f
〈E〉

(8)

is the average strain applied on the bicrystal neighborhood along the GB normal direction. The introduced 〈E〉 and
f represent respectively the Young’s modulus of an aggregate and (unknown) stress fluctuations, which arise due to
the anisotropy of the grains surrounding the bicrystal neighborhood. From Eqs. (6), (7) and (8), the GB normal stress
finally follows as

σnn =
2(EabcEde f )

(Eabc + Ede f )〈E〉
(Σ cos(θ)2 + f ). (9)

The prefactor 2(EabcEde f )/(Eabc +Ede f ) in the above equation can be seen as an average stiffness measure of the (abc)-
(de f ) GB neighborhood. With further normalization by Emax denoting the maximum value of Eabc over all possible
directions [abc], the following effective Young’s modulus is finally defined5

E12 =
2EabcEde f

(Eabc + Ede f )Emax
. (10)

5Although normalization by aggregate Young’s modulus 〈E〉 is equivalent and may even seem more natural, the normalization by Emax is chosen
to provide an exact upper bound, 0 ≤ E12 ≤ 1.

13



/ 00 (2020) 1–29 14

It is important to highlight that parameter E12 does not only depend on the geometry (a, b, c, d, e, f ) but also on
material properties (C11, C12, C44).

The derived relation σnn = F (Σ, E12, 〈E〉, θ, f ) in Eq. (9) is a useful tool to estimate INS despite the fact that
stress fluctuations f of the introduced bicrystal model are in principle unknown at a particular GB. However, when
integrating over all GB planes (defined by θ) of one particular GB type (defined by E12), the fluctuations should
average out in a large untextured aggregate, 〈 f 〉 = 0, yielding 〈σnn〉 = Σ〈cos θ2〉〈E12〉Emax/〈E〉 = Σ/3, which is indeed
observed numerically for all E12.

The situation is, however, less clear when calculating INS fluctuations on a given GB type. In this case the
contribution of f to s(σnn/Σ) may be substantial and further research is needed to provide the analytical estimate
(which may also require to consider shear stress modes, as depicted in Fig. 8 for a 2D bicrystal model). In spite
of the uncertainties, the introduced E12 is nevertheless found to be a key parameter contributing to the s(σnn/Σ) as
demonstrated below.

3.3.2. Grain boundary stiffness parameter
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Figure 9. (a) Standard deviation of normalized INS s(σnn/Σ) in the Voronoi aggregate model calculated on embedded (abc)-(de f ) GBs expressed as
a function of effective Young’s modulus E12, see Eq. (10). Same calculated data are shown as presented in Fig. 7. (b) Probability density functions
(PDF) of σnn/Σ calculated on different (abc)-(de f ) GBs corresponding to equidistant E12 values (plotted on top of each other).

In Fig. 9(a) the results s(σnn/Σ) of Fig. 7 are replotted as a function of the newly introduced parameter E12,
showing almost a perfect correlation that can be accurately described by an arctan function,

s(σnn/Σ) ≈ F (E12) = A1 arctan
(
A2EA3

12

)
, (11)

using three fitting parameters Ak (see Appendix C for more details). Equations (10) and (11) represent the first main
result of this study. Although the selection of the fitting function seems rather arbitrary, it nevertheless shows several
strengths especially when used in combination with other materials (see Sec. 4). Also, by design, it naturally implies
that s(σnn/Σ) = 0 when E12 = 0. This limit corresponds to a GB plane facing a void which has zero stiffness; as
stresses are identically zero on such GBs also fluctuations are vanishing there.

Figure 9(b) shows probability density functions of σnn/Σ calculated for 14 equidistant E12 values corresponding
to 14 (abc)-(de f ) GBs. It is clear from the plot that not only s(σnn/Σ) but also the distribution of σnn/Σ is more or
less uniquely determined by E12 in a given material. Further analysis of the distribution shape evolution with varying
E12 is left for future studies.
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4. Results for general cubic material

To this end, the analysis of elastic γ-Fe polycrystalline aggregates loaded uniaxially has shown that the mean value
of INS is independent of GB type on which it is calculated, leading to 〈σnn/Σ〉 ≈ 1/3.

It has also been demonstrated that the amplitude of INS fluctuations, s(σnn/Σ), when evaluated on GBs of one
particular type, depends merely on the orientation of GB plane relative to the two adjoining crystal lattices, with a
negligible influence of the corresponding twist angle. In this respect, special GBs with undefined GB plane (e.g.,
misorientation or Σn), have been shown to behave practically as random GBs, see Fig. 5(a).

However, a quite different response has been observed on special GBs with a fixed GB plane (e.g., Σn-twist,
Σn-twin or (abc)-(de f )). There, s(σnn/Σ) has been shown to depend merely on the effective stiffness E12 of the
two neighboring grains measured along the GB normal direction, leading to s(σnn/Σ) ≈ A1 arctan(A2EA3

12 ). For γ-Fe
grains in particular, the amplitude has been shown to range between s(σnn/Σ) ≈ 0.20, when calculated on GBs whose
normals are oriented along the softest direction <001> in both adjoining grains, and s(σnn/Σ) ≈ 0.42, when calculated
on GBs whose normals are oriented along the stiffest direction <111> in both adjoining grains. To generalize the
above results, γ-Fe grains are in this section replaced by various other materials.

4.1. Material effect and Zener anisotropy index
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Figure 10. Mean value and standard deviation of normalized INS, 〈σnn/Σ〉 and s(σnn/Σ), plotted for various cubic materials from Tab. 1 and with
either purely random, (001)-(001) or (111)-(111) GBs (both with 17% GB area fraction) embedded in the Voronoi aggregate model under tensile
stress Σ. Insets show distributions of normalized INS calculated for three selected materials.

The influence of various cubic materials from Tab. 1 is analyzed in Fig. 10, showing the responses of random
GBs and the two most extreme cases measured on (001)-(001) and (111)-(111) GBs. As different materials are
ordered vertically according to their universal elastic anisotropy index Au (Ranganathan and Ostaja-Starzewski, 2008)
(see also Tab. 1), two opposite trends can be observed in Fig. 10. The first group of materials (e.g., Al, Pt, Ni, . . . )
behaves qualitatively the same as γ-Fe analyzed in the previous section. The corresponding s(σnn/Σ) seems to strongly
correlate with Au, which implies that elastic grain anisotropy is the main contributor to the INS fluctuations. While
s(σnn/Σ) increases monotonically with Au on (111)-(111) GBs, the trend reverses on (001)-(001) GBs. Note that a
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similar monotonically increasing relation between s(σnn/Σ) and Au was rationalized and derived in (El Shawish and
Hure, 2018) for random GBs in all polycrystalline materials. This relation can also be recognized here in Fig. 10 for
all 15 polycrystals.
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Figure 11. Positions of various cubic materials from Tab. 1 in C12/C11 −C44/C11 plane. Isotropic line marks the region of isotropic grain behavior
with Zener anisotropy index A = 1. Inset shows the evolution of Young’s moduli of single-crystal Nb-like materials with increasing C12/C11
(circles along horizontal line) or increasing C44/C11 (circles along vertical line). Young’s moduli E100 and E111 are calculated respectively along
[100] and [111] crystal directions using Eq. (3).

The second group of materials in Fig. 10 (e.g., Mo, Cr, Nb) also shows strong dependence on Au, however, the
trend is switched between the (111)-(111) and (001)-(001) GBs. The reason for this is analyzed in detail in Fig. 11,
where all investigated materials from Tab. 1 are positioned on the C12/C11 −C44/C11 plane. In addition, the isotropic
line is added to the plane which represents the isotropic crystals with Zener anisotropy index equal to one, A = 1. It
is clear from this plot that all materials from the second group are placed below the isotropic line where A < 1, while
all the crystals of the first group lie in the region with A > 1.

The inset of Fig. 11 shows the evolution of single-crystal Young’s moduli, E100 and E111, calculated respectively
along [100] and [111] directions, when going from the Nb position in the parameter plane towards (and over) the
isotropic line A = 1 using two different paths. Stiffness values shown in the inset demonstrate that E100 > E111 for
A < 1 and E100 < E111 for A > 1. In other words, the isotropic line represents the border where the stiffest and the
softest tensile directions switch in a cubic crystal. Since the two directions for Nb and other materials from the second
group are switched (relative to cubic materials of the first group), also the responses on (001)-(001) and (111)-(111)
GBs are qualitatively switched as shown in Fig. 10.
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Figure 12. Standard deviation of normalized INS s(σnn/Σ) computed on various GB types as a function of Zener anisotropy index A. Results
are calculated for all cubic materials from Tab. 1 using either purely random, (001)-(001), (101)-(101) or (111)-(111) GBs (all with 17% GB area
fraction) embedded in the Voronoi aggregate model under elastic tensile stress Σ. The modelling function shown can be fitted to all four data sets.
The inset compares the results obtained in a purely random Voronoi aggregate model when using either 419 GBs (17% GB area fraction) or 7762
GBs (100% GB area fraction) for the calculation of s(σnn/Σ) where the isotropic case (denoted by a blue star) serves as a benchmark point. Error
bars denote a relative error of 6%, which can be attributed to the statistically smaller sample.

Following the above discussion, it seems more natural to employ a functional dependence of s(σnn/Σ) on Zener
anisotropy index A rather than on universal elastic anisotropy index Au. The proposed correlation between s(σnn/Σ)
and A is finally shown in Fig. 12 for random GBs and three different special GB types. Indeed, a smooth continuous
dependence of s(σnn/Σ) on A is utilized for each GB type, showing a switching behavior at the crossing point A = 1
as expected. In a similar manner as in Fig. 9, an empirical fitting function can be introduced for each GB type as a
function of Zener index A to account for different materials (see Appendix C for more details).

At this point, it is important to highlight that the amplitude of GB normal stress fluctuations, s(σnn/Σ), when
evaluated on random GBs or special GBs with undefined GB plane (e.g., misorientation or Σn), depends solely on
Zener anisotropy index A,

srandom(σnn/Σ) ≈ F (A). (12)

Note that a similar relation between s(σnn/Σ) and universal anisotropy index Au was rationalized and derived in
(El Shawish and Hure, 2018).
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4.2. Zener anisotropy index and grain boundary stiffness parameter
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Figure 13. (a) Standard deviation of normalized INS s(σnn/Σ) calculated on (abc)-(de f ) GBs embedded in the Voronoi aggregate model for four
selected materials and expressed as a function of effective Young’s modulus E12. The modelling function shown can be fitted to all four data sets.
In the isotropic limit, A = 1, the whole E12 domain shrinks to a single point at E12 = 1 due to orientational invariance of Eabc. (b) A comparison
of s(σnn/Σ) results obtained from finite element simulations and Eq. (14) for four selected materials shown in (a).

The combined effect of using different materials and different (abc)-(de f ) GB types is finally demonstrated in
Fig. 13(a). In the same way as in Fig. 9(a), the results of s(σnn/Σ), calculated for four different materials, are plotted
as a function of the effective stiffness parameter E12. It is clear from the plot that the accuracy of the assumed relation
s(σnn/Σ) ≈ F (E12) can be confirmed for all considered materials, regardless of the fact that substantial reduction in
the number of independent variables from five to one was employed.

To summarize the results obtained on (abc)-(de f ) GBs, the statistical behavior of GB normal stresses, evaluated
as standard deviation s(σnn/Σ) in different polycrystalline materials of cubic lattice symmetry, depends merely on
two (derived) variables: Zener index A, which characterizes the material elastic anisotropy, and effective stiffness
parameter E12, which characterizes the stiffness of GB neighborhood along the GB normal direction,

s(abc)−(de f )(σnn/Σ) ≈ F (A, E12). (13)

For the assumed uniaxial macroscopic loading, the relation has been further shown to be well-fitted by

s(abc)−(de f )(σnn/Σ) ≈ A1(A) arctan
(
A2(A)EA3(A)

12

)
, (14)

where E12 can be computed analytically for arbitrary GB plane direction (a, b, c, d, e, f ) of any chosen material (C11,
C12, C44) by Eqs. (3), (4) and (10), and Ak are three material dependent fitting parameters that can be determined
numerically for a given A determined by Eq. (1) (see Appendix C for more details). The quality of the proposed fit in
Eq. (14) is finally shown in Fig. 13(b).

Finite element results presented in this study have been additionally supported by predictions of a simplified
model defined in Appendix D. The model is very similar to the bicrystal model introduced in Sec. 3.3.1, apart from
including a full tensorial treatment of the involved quantities. The results of the model show accurate predictions for
INS distributions on random GBs as a function of elastic anisotropy and loading conditions, and correct trends for the
evolution of standard deviations restricted to special GBs. In this respect, the model can be used as a tool to quickly
estimate INS distributions without having to rely on fitting functions.

5. Discussion

5.1. Practical implications
The established relations, Eqs. (12)–(14), enable an accurate estimation of the amplitude of GB normal stress fluc-
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tuations on arbitrary GB type embedded in a uniaxially loaded polycrystalline material with cubic lattice symmetry.
Three examples of immediate use and one potential application can be given.

5.1.1. Classification of materials
To estimate in which material, for a given uniaxial loading Σ, there is a higher probability of finding a GB with

normal stress larger than some critical stress, σnn ≥ σc, one should compare the srandom(σnn/Σ) values, obtained on
random GBs, given in Fig. 12 at the corresponding Zener index A of materials in question. Since 〈σnn/Σ〉 ≈ 1/3 for all
materials, a material with bigger srandom(σnn/Σ) should provide also a bigger fraction of GBs with σnn ≥ σc.6 In this
respect, looking only at the materials shown in Fig. 10, polycrystalline Mo, Al, Cr and Pt should provide the smallest
fraction, while polycrystalline Li and Na (deliberately omitting the fictitious Nb∗∗) the biggest fraction of such GBs.
It is good to note that universal elastic anisotropy index Au is an equivalent measure for srandom(σnn/Σ). It is important
to mention that such kind of analysis can be applied not only to cubic crystals but also to any cubic compound (e.g.,
NaCl, KCl, LiF, MgO, TiC).

5.1.2. Classification of grain boundaries
The second example focuses on a classification of GBs according to their propensity to exhibit large normal

stresses. Again, a cubic material under elastic (uniaxial) loading is assumed. For this task to be reasonable, it is
important to compare GB types within the same group of GBs (e.g., Σn, Σn-twist, Σn-twin, (abc)-(de f )), in order
to avoid possible misinterpretations of the results due to overlapping definitions. As already pointed out, GB types
that are not defined by GB plane but only by lattice orientations (e.g., misorientation, Σn) yield s(σnn/Σ) practically
equal to srandom(σnn/Σ) of random GBs. For such GB types, therefore, the aforementioned classification is trivial as
the relative occurrence of highly stressed GBs is practically identical in all of them.7 To classify GB types within a
given group of GBs that accounts for a GB plane (e.g., (abc)-(de f )), it is merely enough to arrange GBs according to
their effective stiffness parameter E12, which can be calculated analytically using Eq. (10). Since s(abc)−(de f )(σnn/Σ)
is an increasing function of E12, larger E12 means also larger probability for having large normal stresses. In this
respect, as already mentioned several times, the smallest and largest fraction of highly stressed GBs can be found
among (001)-(001) and (111)-(111) GBs, respectively (or vice versa if A < 1).

This kind of E12 ordering may be quite easily implemented in any visualization software relevant for material
characterization. Of course, beforehand a knowledge of material elastic properties and all relevant GB DOF (lattice
orientations and/or GB plane) would be necessary, which can be extracted by, e.g., using Diffraction Contrast Tomog-
raphy (Ludwig et al., 2008; Johnson et al., 2008) or serial sectioning combined with Electron BackScatter Diffraction
(Liang et al., 2020). As a result of such implementation, all GBs belonging to a specific GB type could be visualized
in a software by, e.g, using a specified color scheme denoting E12 values or even s(σnn/Σ) values for the assumed
uniaxial loading. In fact, the assumption of uniaxial loading condition would be necessary only when the fitting func-
tions for s(σnn/Σ) from this study would be used. In principle, GBs with larger E12 would be stiffer and thus larger
GB normal stress fluctuations would be expected there, irrespective of the loading type.

5.1.3. Cracking resistance of CSL grain boundaries
Different cracking susceptibilities of low-Σ CSL GBs observed experimentally may be related also to different

INS fluctuations calculated in Sec. 3.2. Restricting to γ-Fe grains, the observed minimum value of s(σnn/Σ) ≈ 0.20
on Σ5-twist GBs in Fig. 4 is considerably smaller than s(σnn/Σ) ≈ 0.30 for isotropic grains, which means that Σ5-twist
GBs exhibit very small INS relatively to other GBs. From the loading point of view, Σ5-twist GB should therefore be
very resistant to cracking, however, the actual resistance would be strongly influenced by its strength (associated here
with the critical stress σc), which may depend on many factors such as GB energy, GB diffusivity, GB precipitation
condition, oxidation kinetics, etc. Assuming that GB energy is the main contributor to the GB strength, atomistic
calculations for Ni (Olmsted et al., 2009) revealed that GB energy of Σ5-twist GB is ∼1.0 J/m2, which is a bit lower

6Whether this implies also a higher probability for intergranular crack initiation (due to IGSCC), depends also or primarily on the strength of a
particular GB.

7In this respect, the classification of, e.g., Σn GBs according to their propensity for intergranular cracking (due to IGSCC) should be determined
entirely by their GB strength.
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than the average energy ∼1.2 J/m2 of a random GB (that otherwise ranges from ∼0.7 to ∼1.5 J/m2 for Ni), but still
roughly two and ten times higher than the energies of Σ7-twist GB (∼0.50 J/m2) and Σ3-twist GB (.0.1 J/m2),
respectively.8 In this respect, Σ5-twist GB seems to be weaker than both Σ3-twist and Σ7-twist GBs but stronger, on
average, than a random GB. Therefore, in combination with minimal INS fluctuations, Σ5-twist GB should potentially
be resistant to cracking (IGSCC).

In a similar way, the maximum value of s(σnn/Σ) ∼ 0.42 obtained for Σ3-twist and Σ7-twist GBs implies that
these two GB types exhibit largest INS relatively to other Σn-twist GBs. As already discussed above, a well-known
cracking resistance of Σ3-twist GB (coherent Σ3 twin GB in face-centered cubic metals) must originate in very high
GB strength, mostly due to very low GB energy (e.g., .0.1 J/m2 for Ni (Olmsted et al., 2009)). Obviously, the
corresponding critical stress is very large so that σnn < σc. However, since GB energy of Σ7-twist GB is about five
times higher and INS fluctuations are largest possible, Σ7-twist GB could be potentially (very) prone to cracking.

5.1.4. Grain boundary engineering
Finally, another possible application of the results is mentioned in connection to Grain Boundary Engineering. In

case a redistribution of different GB types would be possible in a given specimen or component, one could implement
a higher fraction of softest GBs (e.g., (001)-(001) for A > 1) near a free surface, where IGSCC initiation is more likely
to occur, and correspondingly a higher fraction of stiffest GBs (e.g., (111)-(111) for A > 1) in the remaining bulk. Of
course, for realistic applications, an additional knowledge of GB strengths would be needed to decide for the optimal
strategy. Namely, following the well-known cracking resistance of the coherent Σ3 twin GB in face-centered cubic
materials, which is actually a subgroup of the (111)-(111) GBs, obviously not all (111)-(111) GBs should be removed
from the free surface for this purpose.

In a similar way, one may try to reduce the risk for crack coalescence (formation of a macroscopic crack) in a
desired part of a component by adding a sufficient number of special GBs that have a good cracking resistance (either
due to smaller s(σnn/Σ) and/or larger GB strength).

5.2. Possible extensions

The empirical relation in Eq. (14) has been derived assuming uniaxial loading condition and polycrystalline ma-
terials with cubic crystal structure. In principle, similar relations can be formulated for other types of loading and/or
polycrystals with lower crystal symmetries. However, it is expected that qualitative behavior of GB normal stress fluc-
tuations should remain unchanged: stiffer GBs, characterized by the larger values of the newly introduced effective
Young’s modulus E12, should produce larger s(σnn/Σ).

Another possible direction of future research is to include plastic effects in the evolution of s(σnn/Σ) with Σ.
Although distributions of INS obtained at the onset of plasticity deviate very gradually from those calculated under
purely elastic loads (El Shawish and Hure, 2018), plastic effects become crucial for loads well above the yield stress.
In effect, plastic anisotropy of the grains starts to dominate the behavior of the polycrystal so that A (or Au) becomes
insufficient.

An interesting topic to be further addressed is also the evolution of σnn/Σ distribution with E12 and A. So far,
only the evolution of the corresponding first two statistical moments, 〈σnn/Σ〉 and s(σnn/Σ), has been examined.
Since 〈σnn/Σ〉 is practically constant in all materials, the value of s(σnn/Σ) has been used, as a first approximation, to
measure the occurrence of GBs with large GB normal stresses (e.g., σnn > σc). However, as σnn/Σ distributions are
non-Gaussian (see Fig. 9(b)), higher statistical moments would be required to better estimate the distribution shape
and thus the fraction of highly stressed GBs.

Finally, additional theoretical work would be needed to derive an accurate expression for local INS on a given GB
type (similar to Eq. (9) but for arbitrary θ), which would allow to predict INS distributions quickly without relying on
fitting parameters.

8It is important to emphasize that GB energy does not only depend on 5 macroscopic DOF of a GB but very much also on the alloying elements
present in the vicinity of a GB. Therefore, the above relative comparison of GB energies for pure Ni does not apply to all materials.
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6. Conclusions

In this study, finite element analysis of intergranular normal stresses has been performed in order to identify a
possible statistical correlation between the intergranular normal stresses and the corresponding grain boundary type
embedded within a polycrystalline aggregate. The analysis has been limited to elastic continuum grains of cubic
lattice symmetry and uniaxial macroscopic loading. To obtain meaningful results, first two statistical moments - the
mean value and standard deviation - have been analyzed from the calculated intergranular normal stresses obtained on
various grain boundary types. The following conclusions have been reached:

• The mean value of intergranular normal stress, 〈σnn/Σ〉, normalized by applied uniaxial stress Σ, has been shown
analytically within a simplified bicrystal model and confirmed numerically to be independent of the material
and grain boundary type on which it is calculated, leading to 〈σnn/Σ〉 ≈ 1/3.

• The amplitude of intergranular normal stress fluctuations, s(σnn/Σ), when evaluated on one particular grain
boundary type, has been shown and explained in simple terms to depend merely on the orientation of the grain
boundary plane relative to the two adjoining crystal lattices. In this respect, two groups of grain boundaries have
been distinguished: those that have a fixed grain boundary plane, which can thus be expressed as (abc)-(de f )
grain boundaries (e.g., Σn-twist, Σn-twin), and those that do not (e.g., misorientation, Σn). The response of the
latter ones has been shown to be practically identical to the response of random grain boundaries, which - to a
good approximation - depends solely on Zener anisotropy index A, srandom(σnn/Σ) ≈ F (A).

• The value of s(abc)−(de f )(σnn/Σ), when evaluated on the (abc)-(de f ) grain boundaries, has been shown and
explained in simple terms to depend merely on two variables: Zener anisotropy index A and a newly introduced
effective stiffness parameter E12, which measures the average stiffness of grain boundary neighborhood along
the grain boundary normal direction. As the main result, the analytical expression, E12 = F (Ci j, a, b, c, d, e, f ),
and the empirical relation, s(abc)−(de f )(σnn/Σ) ≈ F (A, E12), have been derived.

• Following the above result, the classification of (abc)-(de f ) grain boundaries according to their propensity to
exhibit large normal stresses has been trivially reduced to the calculation of the corresponding effective stiffness
parameter E12: larger E12 means larger s(abc)−(de f )(σnn/Σ), which implies larger probability for the occurrence
of highly stressed grain boundaries. A possible implementation of the result to a grain boundary visualization
software relevant for material characterization has been proposed.

• Two qualitatively different behaviors have been identified on cubic lattices. For crystals with Zener anisotropy
index A > 1, the minimum amplitude of intergranular normal stress fluctuations smin is obtained on grain
boundaries whose normals are oriented along the softest direction <001> in both adjoining grains (e.g., Σ5-
twist, <001>-twist, (001)-(001)) corresponding to the minimal E12, and the maximum amplitude smax on grain
boundaries whose normals are oriented along the stiffest direction <111> in both adjoining grains (e.g., Σ3-
twist, Σ7-twist, <111>-twist, (111)-(111)) corresponding to the maximal E12. For crystals with Zener anisotropy
index A < 1, the trend is reversed.

• Few practical implications have been discussed relevant to IGSCC of Coincidence Site Lattice grain boundaries.
Although the cracking susceptibility of coherent Σ3 twin grain boundary in face-centered cubic metals is very
low, it has been highlighted that this grain boundary nevertheless exhibits the largest intergranular normal
stresses, s(σnn/Σ) ≈ smax.
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Appendix A. Visualization of special grain boundaries

(a) 0o misorientation (b) 60o misorientation (c) Σ3-twin (d) Σ3-twist

(e) Σ5-twin (f) Σ5-twist (g) Σ7-twin (h) Σ7-twist

(i) Σ9-twin (j) Σ9-twist (k) Σ11-twin (l) Σ11-twist

(m) 30o <001>-twin (n) 30o <001>-twist (o) 30o <101>-twin (p) 30o <101>-twist

(q) 30o <111>-twin (r) 30o <111>-twist (s) (001)-(001) (t) (101)-(001)

(u) (101)-(101) (v) (111)-(001) (w) (111)-(101) (x) (111)-(111)

Figure A.14. Orientations of the two grains denoting a special GB. Local axes: [100] (blue), [010] (yellow), [001] (red). GB plane and GB normal
n are indicated in (a). 22
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Appendix B. Convergence analysis
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Figure B.15. Standard deviation of normalized INS s(σnn/Σ) calculated in a 1000-grain Voronoi aggregate on embedded Σ3-twist GBs (17% GB
area fraction) as a function of (a) grain topology and (b) finite element mesh density. The aggregate used in the main study is marked with star
symbol. Insets show similar comparisons for the same aggregates but with purely random GBs. Material properties of γ-Fe were used.

In Fig. B.15 finite size effects are estimated on s(σnn/Σ) when calculated within a 1000-grain aggregate. In
particular, the effects of grain topology (by using different variations of the aggregate shown in Fig. 1(a)) and finite
element mesh density are shown. It is observed that dominant finite size effects can be attributed to the (insufficient)
aggregate size, manifesting as ∆s/〈s〉 ≈ 0.01/0.41 . 0.03 for Σ3-twist GBs and ∆s/〈s〉 ≈ 0.003/0.343 . 0.01 for
random GBs. The values differ because different number of GBs are considered in the calculation: 419 of Σ3-twist
GBs and 7762 of random GBs. Note that the effect of special GBs on s(σnn/Σ) is much bigger, providing values
between ∼0.20 and ∼0.42 (see Sec. 3).

Appendix C. Estimation of fitting parameters for uniaxial loading

In Figs. 9 and 13 the numerical results for s(σnn/Σ) have been shown to be accurately described by an arctan
function of Eq. (14). The corresponding fitting parameters Ak are listed in Tab. C.3.

Material A1 A2 A3

Nb 0.302 4.34 1.96
Au 0.297 6.17 1.92
γ-Fe 0.297 6.35 1.94
Li 0.350 15.8 1.59

Table C.3. Fitting parameters Ak of the assumed fit y = A1 arctan(A2 xA3 ) applied to the data presented in Figs. 9 and 13.

The accuracy of the assumed relation s(σnn/Σ) ≈ F (E12), due to substantial reduction in the number of inde-
pendent variables from five to one, can be estimated from Fig. 13 for a given material. By visual inspection of the
most scattered Li data, an estimated error of ∆s . 0.02 can be attributed conservatively to the proposed arctan fitting
function.

23



/ 00 (2020) 1–29 24

In a similar manner, the numerical results for s(σnn/Σ) in Fig. 12 can be accurately described by the following
empirical fitting function applicable to each GB type (labeled l),

s(σnn/Σ) ≈ F (A, l) = 2/(3
√

5) − B1,l − B2,l + B1,lAB3,l + B2,lAB4,l , (C.1)

using four fitting parameters Bk,l listed in Tab. C.4. Note that Bk,l were obtained on the 0.1 ≤ A ≤ 10 range.

GB type l B1,l B2,l B3,l B4,l

random 9.68 102 5.75 10−1 1.94 10−4 −3.15 10−1

(001)-(001) 1.64 103 1.08 101 4.13 10−4 −7.21 10−2

(101)-(101) 8.76 102 1.87 10−1 1.52 10−4 −5.23 10−1

(111)-(111) 9.77 102 8.20 10−2 1.42 10−4 −7.19 10−1

Table C.4. Fitting parameters Bk,l of the assumed fit y = 2/(3
√

5) − B1,l − B2,l + B1,l xB3,l + B2,l xB4,l applied to the data associated with GB type l
presented in Fig. 12.

To estimate the accuracy of the proposed fitting function, two aspects can be addressed. The first aspect deals
with the modelling error due to finite size effects in an aggregate with 1000 grains. In the isotropic limit, A = 1,
the value of s(σnn/Σ) = 0.309 is obtained in the finite element simulation, which is 0.011 (or 3.7%) bigger than the
theoretical value 2/(3

√
5) ≈ 0.298. The difference comes from the fact that s(σnn/Σ) is evaluated on 419 special GBs

(out of 7762 GBs), which is statistically insufficient to obtain special GB normals distributed uniformly on a sphere
(see Fig. 1(d)). In the inset of Fig. 12 a similar comparison is performed in a purely random Voronoi aggregate model
when using either 419 GBs or 7762 GBs for the calculation of s(σnn/Σ). In the latter case, already a very accurate
value of s(σnn/Σ) = 0.298 is obtained for A = 1. On a given range of A, however, the results obtained on either 419
GBs or 7762 GBs are shown to deviate by a maximum of 6%. This finite size error, ∆s/s ∼ 0.06, can be conservatively
attributed also to the proposed fitting function in Eq. (C.1). Note that numerical error due to applied finite element
mesh is estimated to be much smaller, see Appendix B.

The second aspect regarding the accuracy of the proposed fitting function is of physical nature. Although the func-
tional dependence of s(σnn/Σ) on A seems smooth and continuous for all practical considerations, it is nevertheless
only approximate. As cubic material is characterized by three independent elastic parameters, C11, C12 and C44, (or
effectively by two, C12/C11 and C44/C11, when using normalized quantities), it cannot be uniquely described by only
one (derived) parameter such as A. The estimated error due to s(σnn/Σ) ≈ F (A) assumption is obtained visually from
Fig. 12, by observing the scatter of data points along the imagined smooth line, of the order of the point size, which
amounts to ∆s ∼ 0.02. Both, the intrinsic error, ∆s ∼ 0.02, and numerical finite size error, ∆s/s ∼ 0.06, dictate the
accuracy of the proposed fitting function.

Empirical expression in Eq. (14) for s(abc)−(de f )(σnn/Σ) calculated on (abc)-(de f ) GBs for the assumed uniaxial
macroscopic loading contains three material-dependent fitting parameters Ak(A) whose values for four selected mate-
rials are listed in Tab. C.3. They can be determined numerically, for any given A, from the following three relations
(using short GB type notation GB1 ≡ (001)-(001), GB2 ≡ (101)-(101) and GB3 ≡ (111)-(111))

A1 arctan
(
A2EA3

12,GB1

)
= 2/(3

√
5) − B1,GB1 − B2,GB1 + B1,GB1AB3,GB1 + B2,GB1AB4,GB1

A1 arctan
(
A2EA3

12,GB2

)
= 2/(3

√
5) − B1,GB2 − B2,GB2 + B1,GB2AB3,GB2 + B2,GB2AB4,GB2 (C.2)

A1 arctan
(
A2EA3

12,GB3

)
= 2/(3

√
5) − B1,GB3 − B2,GB3 + B1,GB3AB3,GB3 + B2,GB3AB4,GB3

with Bk,l listed in Tab. C.4, and

E12,GB1 =
(C11 −C12)(C11 + 2C12 + C44)

3(C11 + C12)C44

E12,GB2 =
4(C11 −C12)(C11 + 2C12 + C44)

3(C2
11 − 2C2

12 + C11(C12 + 2C44))
(C.3)

E12,GB3 = 1
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if A > 1 or

E12,GB1 = 1

E12,GB2 =
4(C11 + C12)C44

C2
11 − 2C2

12 + C11(C12 + 2C44)
(C.4)

E12,GB3 =
3(C11 + C12)C44

(C11 −C12)(C11 + 2C12 + C44)

if A < 1, respectively. The need to distinguish between the two cases follows from the fact that qualitative behavior
of s(σnn/Σ) is switched at the isotropic point, yielding Emax = E111 for A > 1 and Emax = E001 for A < 1 in Eq. (10).
Consequently the values of E12 for a chosen material can only range between E12,GB1 and 1 (if A > 1) or between
E12,GB3 = 1/E12,GB1 and 1 (if A < 1).
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Figure C.16. Fitting parameters Ak as a function of Zener anisotropy index A. Ak are obtained by numerically solving Eqs. (C.2) for 0 < C12/C11 <
1 and 0 < C44/C11 < 1. For a given A, a range of solutions is obtained which is marked by a symbol (denoting an average) and error bars (denoting
a range). For comparison, also Ak for four materials from Tab. C.3 are included.

For convenience, the fitting parameters Ak(A), obtained numerically by solving Eqs. (C.2) and using Bk,l from
Tab. C.4, are shown in Fig. C.16 for the assumed range of elastic properties, 0 < C12/C11 < 1, 0 < C44/C11 < 1 and
0.1 ≤ A ≤ 10. Since s(σnn/Σ) is not uniquely determined by A for a given GB type, due to existence of materials with
same Zener index but different elastic constants resulting in different values of E12 for the same GB type, a range of
solutions for Ak is obtained at fixed A. However, this range should not be mistaken for an error of Ak; as soon as the
elastic constants Ci j are known, a unique set of Ak should follow easily from Eqs. (C.2).

Appendix D. Simplified model

Finite element simulations have shown that, in the elastic regime, INS arise mostly from short-range interactions
(Fig. 3). This observation opens the way to simplified models for estimating distributions of INS. Let us consider
two neighboring grains in a polycrystalline aggregate with grain boundary normal n (Fig. D.17). The fourth-order
elasticity tensors of each grain in the GB frame {n, t1, t2} are noted K1 and K2, respectively. The average strain of this
bicrystal is equal to Eb. The mechanical equilibrium imposes that strain tensors E1 and E2 are constant in each grain,
and the components are set by the following equations ensuring stress continuity and strain compatibility across the
grain boundary, as well as to recover the average strain of the bicrystal:

Stress continuity (K1 : E1).n = (K2 : E2).n
Strain compatibility ti.E1.t j = ti.E2.t j

Average strain V1E1 + V2E2 = (V1 + V2)Eb

(D.1)

25



/ 00 (2020) 1–29 26

where V1 and V2 are the volumes of each grain. The system of equations (Eqs. D.1) allows to compute all components
of the strain tensors, and to finally compute the INS as:

σnn = n.(K1 : E1).n = n.(K2 : E2).n (D.2)

Average strain Eb

n

t1

t2

Average strain E

Figure D.17. Polycrystalline aggregate subjected to an average stress Σ and strain E. Two adjacent grains sharing a boundary of normal n are
subjected to an average strain Eb.

An assumption should be made for the bicrystal average strain tensor Eb which is set equal to the macroscopic
strain of the polycrystalline aggregate E. This assumption can be seen as a Voigt-like assumption (Voigt, 1928) but at
the bicrystal scale. As distributions of INS are searched for given applied stress conditions, the last ingredient is the
relation between stresses and strains at the aggregate scale. Restricting to untextured elastic polycrystalline aggregate,
isotropic Hooke’s law holds at the aggregate scale:

E =
1 + ν

Y
Σ −

ν

Y
(traceσ) I (D.3)

where Y and ν are the Young’s modulus and Poisson ratio, respectively. The compression K and shear G elastic moduli
can be estimated by the self-consistent approach (Kröner, 1958) that is known to lead to accurate results. For cubic
materials they are: 3K = C11 + 2C12

8G3 + (5C11 + 4C12)G2 −C44(7C11 − 4C12)G −C44(C11 −C12)(C11 + 2C12) = 0
(D.4)

and can be used to compute the Young’s modulus Y = 9KG/(3K+G) and the Poisson’s ratio ν = (3K−2G)/(2G+6K).
For a given material and stress conditions, Eqs. (D.1)–(D.4) can be used to estimate the normal stress at the boundary
between two grains. Assuming distributions for the orientation of the normal n and the crystallographic orientations
of the grains, a Monte-Carlo like simulation can be done to obtain the distribution of INS of a polycrystalline aggre-
gate. The implementation of the model has been done using the MTEX toolbox (Bachmann et al., 2010) of the Matlab
software, in particular to compute the rotation of the elasticity tensors from the crystallographic frame to the GB frame.

This simplified model is compared to the results of the finite element simulations assuming randomly distributed
GB normal for three different materials, Al, γ-Fe and Na, and two different stress loading conditions, uniaxial
Σ = Σex ⊗ ex and equibiaxial Σ = Σ(ex ⊗ ex + ey ⊗ ey). Figure D.18 shows that this simplified model is able to capture
quantitatively the INS distributions for random GBs as a function of both elastic anisotropy and loading conditions.
Such agreement is an important result as it allows to estimate INS distributions quickly without having to perform
finite element simulations. The approach is however more costly than the analytical formulae proposed and calibrated
in this study.
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Figure D.18. Comparisons of probability density functions (PDF) of normalized INS of untextured polycrystalline aggregates obtained with finite
element simulations and the simplified model for (a) uniaxial and (b) equibiaxial stress loading conditions.

For special GBs, e.g., Σn twist or twin, the model is however not able to capture quantitatively the shape of the
INS distributions. Still, the trends for the dependence of standard deviations with respect to anisotropy and special
GB type are recovered, as shown in Fig. D.19 where for example the low values of standard deviations for Σ5-twist
and twin GBs are captured by the model.
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Figure D.19. First and second moments of normalized INS distributions as a function of (a) CSL GB type for γ-Fe and (b) different GB types for
various materials. For comparison see Figs. 4 and 10.

The simplified model defined by Eqs. (D.1)–(D.4) leads to accurate predictions on random GBs as a function of
elastic anisotropy and loading conditions, and to correct trends for the evolution of standard deviations restricted to
special GBs. Therefore, this model can be used as a tool to quickly estimate INS distributions without having to
perform finite element simulations and appears as an alternative to the formulae derived and calibrated in this study.
Besides, the justification of the validity of the model and its improvement from a theoretical point of view is an
interesting question which is left for future research.
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