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Body-centered cubic metals and alloys irradiated by energetic particles form highly mobile prismatic
dislocation loops witha/ 2�111� -type Burgers vectors. We show how to simulate thermal diffusion of prismatic
loops using a discrete dislocation dynamics approach that explicitly includes the stochastic forces associated with
ambient thermal �uctuations. We �nd that the interplay between stochastic thermal forces and internal degrees
of freedom of loops, in particular the reorientation of the loop habit planes, strongly in�uences the observed loop
dynamics. The loops exhibit three fundamental types of reactions: coalescence, repulsion, and con�nement by
elastic forces. The con�nement reactions are highly sensitive to the internal degrees of freedom of the loops.
Depending on the orientation of the loop habit planes, the barrier to enter an elastically con�ned bound state is
lowered substantially, whereas the lifetime of the bound state increases by many orders of magnitude.

DOI: 10.1103/PhysRevMaterials.3.073805

I. INTRODUCTION

Metals exposed to irradiation develop a highly complex
microstructure, involving a mixture of mobile and immobile
defects of both interstitial and vacancy type. The defect and
dislocation network develops under the effect of internal
and external stresses, and temperature, generating its own
�uctuating stress �eld. This leads to a variety of changes
in mechanical properties, such as hardening and the loss
of ductility, having a detrimental effect on the longevity of
structural reactor components in a radiation environment.

Predicting the dynamics of evolution of microstructure
is a major challenge to computer modeling because of the
broad spectrum of activation energies characterizing defect
and dislocation networks. Defect cluster migration barriers
vary from meVs to eVs. The binding energy of elastically
con�ned defect structures spans a similar range of energy
scales [1], and the magnitude of elastic interaction depends on
the size of defects and their spatial distribution. Simulating the
temperature dependent dynamics of microstructure requires
the treatment of intrinsic thermally activated Brownian motion
of defects and dislocations, as well as correlated motion of
defects and dislocations mediated by elastic interactions.

Highly glissile prismatic dislocation loops are produced by
irradiation [2,3] together with sessile cavities, as evidenced by
in situ transmission electron microscopy (TEM) observations
[4,5]. The correlated motion of dislocation loops, often ob-
served experimentally, is an elementary process leading to the
formation of rafts of defects and their eventual coalescence
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[6–9]. In other words, the spatial ordering of dislocation
loops stems from their elastic interaction, whereas the loop
motion itself is a thermally activated process, fundamentally
the same as stochastic Brownian motion of individual defects
[9–14]. The subject of this paper is the simulation of stochas-
tic glide motion of prismatica/ 2�111� dislocation loops in
body-centered cubic (bcc) iron, with a particular emphasis
on the analysis of elementary reactions between the loops,
treated as dislocation line objects, and modeled using discrete
dislocation dynamics.

Molecular dynamics and lattice type simulations per-
formed over the past two decades investigated the stochas-
tic diffusion of prismatic loops over a range of sizes and
temperatures [10–12,15–18], elementary loop and dislocation
reactions [1,9], as well as energies of binding of loops to
other defects [19]. However, a direct atomistic simulation of
an ensemble of interacting dislocation loops still remains a
challenge because of the constraint imposed by the simulation
cell size accessible to a molecular dynamics simulation, and
the relatively short timescale of such a simulation. While
the more recent atomistic approaches involving the use of
kinetic Monte Carlo [20–23] have reached the experimentally
relevant timescale when exploring the relaxation of radiation
cascade damage in thin �lms, the identi�cation of pathways of
migration and reaction between interacting dislocation loops
containing more than a few dozen interstitials remains a
largely unexplored problem.

Discrete dislocation dynamics (DDD) provides a com-
pelling alternative approach to modeling complex dislocation
microstructures, offering highly ef�cient computation of long-
range elastic interactions. Furthermore, dislocation dynamics
enables the treatment of dislocation reactions, simultaneously
simulating internal and collective dislocation loop dynamics,
and enabling the investigation of complex networks and junc-
tions within the same methodological framework. We note
that bringing dislocation core properties on par with atomistic
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simulations remains a challenge, and there have been recent
extensive developments addressing this issue [24–32].

The objective of this work is to include thermal stochastic
forces in DDD through the Langevin stochastic formalism,
to enable modeling the Brownian motion and diffusion of
dislocations. The stochastic dislocation dynamics [33,34] ap-
proach is formulated and applied to the treatment of diffusion
of loops and elementary reactions between interacting loops
as an essential step towards modeling thermal evolution of
complex dislocation ensembles.

Langevin dynamics has been applied earlier to the treat-
ment of collective dynamics of dislocation loops on a coarse-
grained level, where the loops were treated as pointlike objects
interacting through long-range elastic �elds described in the
elastic dipole tensor approximation [1,9,35,36]. Extending
the treatment to the case where loop dynamics involves also
the relaxation of their internal degrees of freedom, such as
tilting of the loop habit plane, we �nd that this strongly in-
creases the lifetime of con�gurations where pairs of loops are
bound together by their attractive elastic �elds. Furthermore,
the barriers to entering such bound states are strongly reduced,
explaining why dislocation loop rafts are able to form so easily
in many materials, as con�rmed byin situ TEM observations
[1,9,37].

The paper is organized as follows. In Sec.II we de-
rive an expression for thermal stochastic forces acting on
a dislocation line. In Sec.III the diffusion coef�cient of a
single prismatic loop is evaluated and examined as a func-
tion of temperature, and the DDD analysis is benchmarked
against molecular dynamics simulations. We also discuss
the �uctuation-dissipation theorem, relating the amplitude
of stochastic thermal forces to the magnitude of dissipative
drag experienced by a dislocation moving through a crystal.
Next, the concept of the loop-loop interaction potential energy
surface is introduced, and the elementary loop-loop reactions
are simulated, with particular attention devoted to the inves-
tigation of internal degrees of freedom of the loops. Finally,
in Sec.IV we evaluate the lifetime of an elastically con�ned
loop-loop con�guration, which is a functional of the loop-loop
interaction potential energy surface.

II. SIMULATION METHOD

A. Stochastic force in dislocation dynamics

All the simulations described in this paper were performed
using the 3D nodal dislocation dynamics codeNUMODIS [38].
In NUMODIS, continuous dislocation lines are discretized into
a series of nodes linked by straight dislocation segments.
The internal elastic stress is then computed according to the
nonsingular isotropic elasticity theory [39]. The Langevin
equation of motion for every point on a dislocation segment
is based on the dynamic equation of motion, taken here in the
overdamped limit [40]:

B · v = f tot + f s, (1)

wherev is the velocity of the dislocation line, B is the viscous
drag tensor per dislocation line unit length depending on the
slip system and temperature, andf s is the stochastic force
per unit length. The presence of a stochastic force introduces
time-dependent thermal �uctuations in the dynamics of the

dislocation network, resulting from the coupling between
mobile dislocations and the heat bath.

The total con�gurational force per unit lengthf tot exerted
on a dislocation segment equals

f tot = f el Š � Ecore. (2)

In the absence of external body and image forces, the elastic
driving force f el reduces to the well-known Peach-Koehler
(PK) force. The core energyEcore is a phenomenological
correction describing the effect of nonlinear interactions in
the dislocation core region, which is not taken into account
in the linear elasticity approximation. The core energy is also
required to yield a net positive line tension for small-scale
line �uctuations [29,41], which are expected to arise from the
action of stochastic force. The core energy per unit length of a
dislocation line here is given in the line tension approximation
as [42]

Ecore =
�µ b2

4� (1 Š � )
(1 Š � cos2 � (l )), (3)

where� is the core strength parameter,� is the angle between
the dislocation tangent and the Burgers vector, andl is the
coordinate of a point on a dislocation line.

Consider the intrinsic mobility of an individual prismatic
loop with perimeterL in an in�nite medium in the absence
of external forces. Without loss of generality, assume that the
Burgers vector of the loop is collinear with thez direction of
the Cartesian system of coordinates. In the absence of climb
forces, the motion for a dislocation line is one dimensional:

B
� z(l , t )

� t
= f tot

z (l , t ) + f s(l , t ), (4)

whereB is the viscous drag coef�cient for the given slip sys-
tem and the stochastic forcef s is assumed to be uncorrelated
in time and space:

� f s(l , t )� = 0,

� f s(l , t ) f s(l �, t � )� = � 2
s � (l Š l � )� (t Š t � ), (5)

where� s sets the scale of the stochastic force, and� (x) is the
Dirac delta-function

� (x) = 0, � x �= 0,
� �

Š�
dx � (x) = 1. (6)

To �nd the amplitude of stochastic force, the effective
diffusion coef�cient for the center-of-position (COP) of the
prismatic loop is matched to a 1D Einstein diffusion law [18].
The projection of the COP on the Burgers vector direction
is given byzCOP = LŠ1

� L
0 dl z(l , t ). After a rearrangement,

Eq. (4) becomes

� zCOP

� t
=

1
BL

� L

0
dl f s(l , t ). (7)

The effect of internal elastic force on the COP vanishes due
to the boundary conditionz(l + L, t ) = z(l , t ). Assuming that
the initial position of the loop center iszCOP(0) = 0, the
solution to Eq. (7) at time	 is

zCOP(	 ) =
1

BL

� L

0
dl

� 	

0
dt f s(l , t ). (8)
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Since the stochastic forcef s(l , t ) is de�ned in terms of
its correlation function, the mean square displacement of the
COP can be expressed as

�
z2

COP(	 )
�
=

�
1

BL

� 2 � L

0
dl

� L

0
dl �

×
� 	

0
dt

� 	

0
dt�� f s(l , t ) f s(l �, t � )� . (9)

Substituting Eq. (5) into Eq. (9) yields

�
z2
COP(	 )

�
=

� � s

BL

	 2
� L

0
dl

� L

0
dl �

×
� 	

0
dt

� 	

0
dt�� (l Š l � )� (t Š t � ). (10)

Evaluating the above integral, we arrive at

�
z2

COP(	 )
�
=

� � s

BL

	 2
L	 	 2DCOP	. (11)

This equation is a mere corollary of the 1D Einstein
diffusion law, whereDCOP is the corresponding diffusion
coef�cient of the center-of-position [43]. Substituting the
�uctuation-dissipation theorem [44]

DCOP =
kBT
BL

(12)

into Eq. (11), which holds under the assumption that the
dislocation loop is in thermodynamic equilibrium with the
thermostat, we �nd the amplitude of the stochastic force

� s =



2kBT B, (13)

wherekB is the Boltzmann constant andT is absolute temper-
ature.

As NUMODIS is a nodal dislocation dynamics code, the total
force per unit length is converted into an effective nodal force
by integrating over the neighboring segments [40]. The same
rule is applied to convert the stochastic force per unit length
into a stochastic force acting on a node. However, care must
be taken when rescaling the force, as the randomly applied
force must remain consistent with the choice of the segment
length and the integration time step. For a straight segment of
length 
 l indexed byn, the scaled stochastic force per unit
length is found using the stochastic average:

f s
n (t ) =

1

 l

� ln+ 
 l / 2

lnŠ
 l / 2
dl f s(l , t ). (14)

Using Eq. (5), for the� -correlated force generated by thermal
�uctuations, the nodal correlation function acquires the form

�
f s
n (t ) f s

n� (t � )
�
=

� 2
s

(
 l )2

� ln+ 
 l / 2

lnŠ
 l / 2
dl

� ln� + 
 l / 2

ln� Š 
 l / 2
dl �

× � (l Š l � )� (t Š t � )

=
� 2

s


 l
� n,n� � (t Š t � ). (15)

Similarly, assuming an integration time step of
 t ,
the scaled stochastic force per unit length can be �nally

expressed as

f s
n =

�
2kBT B

 l 
 t

N(0, 1), (16)

whereN(0, 1) is a random number sampled from the standard
normal distribution, and the direction of the force is collinear
with the Burgers vector of the dislocation loop.

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were per-
formed assuming an in�nite elastic medium. The coordinate
system is chosen as orthogonal with axes parallel tox =
[ 112], y = [110], andz = [111] directions. Initially, a hexag-
onal prismatic�111� dislocation loop is positioned at the ori-
gin. The loop radius is chosen as� = 4.5 nm, corresponding
to the loop perimeter ofL = 27 nm. The hexagonal loop shape
was chosen out of convenience as this has an almost negligible
effect on its dynamics. A circular loop of equivalent size
would have the radius of 4.09 nm, representing an inclusion
containing the same amount of matter.

The three parameters included in the stochastic force (16)
require further clari�cation.

The viscous drag coef�cientB characterizes the drag force
acting on a dislocation line. In bcc metals it is generally
assumed thatB(T ) = B0 + B1T, whereB0 andB1 are inde-
pendent of temperature [24,45,46]. MD simulations of glissile
prismatic loops and self-interstitial clusters in bcc metals
show thatB(T ) = B0 and is independent ofT over a wide
temperature range. Given that the simulations performed in
this study address prismatic dislocation loops of very small
size, it is appropriate to treatB as a temperature-independent
constant. The numerical value ofB used in this work has
been evaluated from the atomistic study by Derletet al. [18]
using the �uctuation-dissipation relation (12). The resulting
value of the drag coef�cientB = 0.08 MPa ns describes the
effective mobility of edge dislocations at temperatures above
T = 200 K, but underestimates the magnitude of drag at lower
temperatures, as shown in Fig.1. At low temperatures, the
Peierls barrier [47,48] and quantum effects [49,50] play an
important part, affecting dislocation mobility, but are not
considered in this study. The chosen value ofB = 0.08 MPa ns
agrees well with previous parametrizations derived from the
analysis of dislocation-defect interactions in bcc iron [51,52].

Since the simulations were performed by splitting dislo-
cation loops into straight segments, and involved solving the
equations of motion by means of a �nite difference time inte-
gration algorithm, it would be appropriate to assess the effect
of discretization length
 l and time step
 t on the computed
diffusion coef�cient. Thermal diffusion of a single prismatic
loop at 300 K was simulated using three discretization lengths,

 l = 5, 10, and 15 Å, and three time steps,
 t = 0.2, 0.5,
and 1.0 fs. Simulations were run over the interval of 6 ns,
with the loop con�guration data recorded every 0.6 ps. Loop
diffusion coef�cients were computed using the drift diffusion
correction method [18], in which the diffusion trajectory was
split into multiple uncorrelated sub-trajectories. The velocity
autocorrelation function�vCOP(t )vCOP(t + 	 )� yields the cor-
relation time of	 
 2 ps, in broad agreement with atomistic
estimates [13,29]. The velocity correlation time is longer
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FIG. 1. Viscous drag coef�cientB for a prismatic dislocation
loop in bcc iron extracted from molecular dynamics simulations [18]
(dots). The viscosity is well described by a non-Arrhenius relation
(line), see Derletet al. [18] for the choice of parameters in the
functional expression. The dashed line corresponds to the constant
value ofB = 0.08 MPa ns used here, which is valid for temperatures
above 200 K.

than the stochastic force correlation time [45] derived from
atomistic simulations, and represents the low limit for the time
length of a subtrajectory, which here was chosen as 6 ps. The
diffusion coef�cient is then found by ensemble averaging over
the subtrajectories, with the uncertainty characterized by the
standard error of the mean.

Figure2 shows a selection of simulated COP trajectories,
which are similar in terms of their statistical properties. The
values of diffusion coef�cient derived from these trajectories
remain within their respective error bounds, independent of
the selected values of
 l and 
 t , in agreement with the
theoretical analysis by Derletet al. [18].

Following Scattergood and Bacon [53], the elastic moduli
µ and� are chosen by matching the isotropic and anisotropic
elasticity energies of in�nitea/ 2�111�{ 110} edge and screw
dislocations. Earlier comprehensive studies [54–56] con�rm
that this method leads to highly accurate predictions of
dislocation loop shapes and stress �elds. In this work, the
anisotropic moduli used as input were chosen following
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� l, � t = 10 ûA, 1.0 fs

FIG. 2. Random walk trajectories of a prismatic loop with radius
� = 4.5 nm undergoing Brownian motion at 300 K simulated using
the same viscous drag coef�cient, and several different discretization
lengths
 l and time steps
 t . The diffusion behavior of the loop is
independent of the choice of discretization parameters.

TABLE I. Simulation parameters for pure bcc iron [51,58].

Parameter Symbol Value

Burgers vector b 2.47 Å
Shear modulus µ 63 GPa
Poisson’s ratio � 0.43
Drag coef�cient B 0.08 MPa ns
Dislocation core radius Rc 1.4 Å
Core strength parameter � 0.257
Time step 
 t 0.5 fs
Discretization length 
 l 10 Å

Ackland et al. [57] as C11 = 225 GPa,C12 = 124 GPa, and
C44 = 101 GPa, leading to the corresponding isotropic moduli
of µ = 63 GPa and� = 0.43.

The dislocation core radiusRc, which here has the same
meaning as the delocalization parameter of the nonsingu-
lar elasticity theory [39], and the core strength parameter
� were evaluated in earlier studies [51,58] from atomistic
simulations.

Isotropic elasticity theory represents an effective approxi-
mation for bcc iron, which is an elastically anisotropic mate-
rial. The numerical results presented in this work should there-
fore be interpreted qualitatively. This is a foregone conclusion
if we acknowledge the fact that the commonly accepted
models for the dislocation core energy do not capture the
complex anisotropic con�gurational energy landscape found
in atomistic simulations. The stochastic forces formalism
itself is directly applicable to DDD simulations in elastically
anisotropic materials.

All the further simulations presented in Sec.III were
carried out using the simulation parameters given in TableI,
unless speci�ed otherwise. The integration time step scales
approximately as a cube of the dislocation discretization
length, see AppendixA. We have opted to use a �ne time step
and small discretization length, as computational ef�ciency
and performance was not a concern in the simulations pre-
sented here.

III. RESULTS

A. Stochastic dynamics of an individual dislocation loop

Using stochastic dislocation dynamics, we performed a
series of simulations, investigating the dynamics of a single
prismatic loop at temperatures ranging from 100 to 800 K,
with temperature increments of 100 K. No external stress was
applied.

Consider �rst the internal degrees of freedom of the pris-
matic loop. It is readily seen from simulations that the initially
purely prismatic [111] loop with its Burgers vector normal
to its habit plane, within a few picosecond adopts a tilted
con�guration, see Fig.3(a). If the shape of the loop is de�ned
by its dislocation countourC, the vectorarea of the loop is
given by [36,59]

A =
1
2

�

C
r × dl , (17)
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(deg)

FIG. 3. (a) Snapshots from a stochastic dislocation dynamics
simulation of a hexagonal initially pure prismatic loop of 4.5 nm
radius at 100 K show that the loop habit plane becomes tilted within
a few picoseconds. (b) The tilt angle� is de�ned as the angle between
the normal vector (red arrow) and the Burgers vector (black arrow).
(c) The prismatic loop adopts a tilted con�guration on the glide
cylinder to minimize its potential energy.

and the effective loop normal unit vector is

n̂ =
1

2||A||

�

C
r × dl . (18)

The angle between the Burgers vector and the effective loop
normal shall be referred to as the tilt angle� , with the
azimuthal angle
 de�ned in full analogy with the spherical
system of coordinates, see Fig.3(b) for illustration. Following
this de�nition and depending on the nature of the loop (va-
cancy or interstitial), the loop is pure prismatic ifn̂ · b̂ = ± 1
corresponding to� = 0 or 180� . We note that the elastic
relaxation volume of a loop is given by the scalar product of
the Burgers vector and the loop vector area� rel = b · A [36].

The elastic potential energy of a prismatic loop is mini-
mized for con�gurations tilted away from the perfect pris-
matic loop orientation, with the resulting tilt angle� de-
termined by the competition between the elastic self-energy
associated with interaction between dislocation segments and
the core energy proportional to the length of the perimeter of
the loop, see Fig.3(c). The potential energy is invariant with
respect to rotations around the Burgers vector, allowing the
loop to rotate freely with respect to
 in a DD simulation.

The mean value of the tilting angle� � � decreases at higher
temperatures, re�ecting the anharmonicity of the potential
self-energy of the loop. Indeed, it takes comparatively less
energy for the loop normal to tilt towards the Burgers vector
than away from it, hence on average smaller values of� are
favored at higher temperature.

In addition to the tilting degrees of freedom, the loop
shape also develops transient �uctuations on a smaller scale.
However, any part of the loop is constrained to remain on the

FIG. 4. Top: Random walk trajectories of a hexagonal prismatic
loop of radius� = 4.5 nm simulated for 200 and 600 K. Bottom:
Plots of diffusion coef�cients as a function of temperature for differ-
ent loop sizes� . Dashed lines are analytical predictions derived from
the �uctuation-dissipation theoremDCOP = kBT/ (BL).

glide cylinder, as the relaxation volume of the loop� rel =
b · A is conserved throughout the simulation.

Consider next the diffusion behavior of the entire loop.
The prismatic loop trajectories exhibit a characteristic pattern
of Brownian motion, with higher temperature inducing a
more pronounced loop displacement per unit time. The single
loop COP trajectories for 200 and 600 K, and the diffusion
coef�cients calculated with the drift diffusion correction [18],
are given in Fig.4. Globally, the temperature dependence
of the diffusion coef�cient is found to be consistent with
the �uctuation-dissipation theorem, regardless of the loop
radius� .

Moreover, for � = 4.5 nm andT < 400 K the diffusion
coef�cients derived from simulations are consistently lower
than expected from the linear interpolation from higher tem-
perature (dashed line) because the tilting of the loop results in
the elongation of its perimeter, see Fig.3(b). According to the
�uctuation-dissipation theorem,DCOP � 1/ L, and therefore
the reorientation of the habit plane gives rise to a lower value
of the diffusion coef�cient. This effect is found to become
less pronounced at higher temperature as the mean tilt angle
� � � decreases with temperature.

The stochastic DD simulations performed in this work de-
scribe thermally induced Brownian motion of prismatic loops,
which for T > 200 K is consistent with molecular dynamics.
The simulations further reveal that the prismatic loop habit
plane becomes tilted with respect to the Burgers vector, while
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FIG. 5. (a) Two prismatic loops de�ned using the coordinate
system introduced in Sec.III B , with identical Burgers vectorsb
parallel toz direction. Loop con�guration (line) is free to deviate
from the pure prismatic form (dashed) on the glide cylinder, as
indicated by the loop normal vectorsn̂. (b) A selection of represen-
tative metastable con�gurations of interacting loops extracted from
dislocation dynamics simulations, also showing the loop normal and
Burgers vectors. Con�gurations are ordered from top to bottom in the
order of increasing stability, and hence in the order of descending to-
tal potential energy. Con�guration 3 is the most stable con�guration.

remaining highly mobile with respect to rotations around the
Burgers vector.

The tilting behavior of prismatic loops in atomistic simu-
lations is possibly dominated by singular orientation effects
in the core energy [60]. Considering that the core energy
scales linearly with the loop radius� � , whereas the elastic
self-energy varies superlinearly as� � log � [61], one would
expect the core energy to become less signi�cant for larger
loops. However, the singular nature of the core energy in com-
bination with atomic discreteness would break the cylindrical
symmetry of the system, subsequently introducing energy
barriers in relation to its rotation around the Burgers vector.

B. Diffusion of interacting dislocation loops

The question about thermal evolution of interacting dis-
location loops has recently attracted attention in the context
of dipole tensor formalism as an ef�cient approximation for
the long range elastic interaction between the loops [35,62].
Here we show that the internal degrees of freedom of loops,
not explicitly treated by the dipole tensor formalism, have a
profound effect on the stochastic dynamics of loops, particu-
larly where the loops form bound con�gurations con�ned by
attractive elastic interactions.

Consider a pair of prismatic loops with unit Burgers vectors
b̂1 = b̂2 = ẑ. The loop centers are separated by distances in
the glide direction and by
 x in the direction perpendicular to
the Burgers vector direction, see Fig.5(a). In the absence of

climb force, either loop can move or distort only in the glide
direction.

While the stochastic simulations involve an explicit treat-
ment of internal degrees of freedom of the loops, it is also
instructive to consider the static properties of a simpli�ed
system of two loops. Following the discussion in Sec.III A ,
the internal degrees of freedom of the simpli�ed system are
reduced to the tilting modes only, thus keeping the loops
otherwise �at and of ellipsoidal shape.

For a single loop the potential energy is invariant with
respect to rotations around its Burgers vector. For a pair of
loops the invariance is lifted by their elastic interaction: for a
loop-pair separation constrained ats, the system has multiple
tilting con�gurations corresponding to local energy minima,
giving rise to a complex potential energy surface (PES)
with several branches and crossing points. In full analogy
to the Born-Oppenheimer approximation [63], the internal
degrees of freedom of loops evolve signi�cantly faster (on
the timescale of
 ps) than the loop-pair separation (varying
on the
 ns timescale), and thus the notion of PES describes
the system of interacting loops in the adiabatic approxima-
tion. Each PES branch represents a metastable tilting state
for a given reaction coordinates. Transitions between PES
branches occur by the rotation of loop habit planes, which are
therefore separated by energy barriers.

The energy of interaction between pairs of prismatic loops
is computed in the order of ascending accuracy: in the dipole
tensor approximation for a pair of pure prismatic loops, as
exact elastic interaction between a pair of pure prismatic
loops, and as exact elastic interaction between prismatic loops
with internal degrees of freedom relaxed to metastable con-
�gurations. Note that in the dipole tensor approximation the
expression for the loop-loop interaction in the pure prismatic
case reduces to the Foreman-Eshelby expression [1,2,64].
The treatment of internal relaxation is explained in detail in
AppendixB. The energy of interaction between the loops is
de�ned as the energy difference between the total energy of
two loops minus the energy of isolated loops with the same
orientation of the Burgers vector:

Wint(s) = Wtot(s) Š lim
s��

Wtot(s). (19)

Energies of elastic interaction are compared in Fig.6 for
the various loop separations
 x using an example of two
round loops with radii� = 4.09 nm. Note that the choice of
radii is consistent with loops being hexagonal and having the
same area, as discussed in Sec.II B.

The exact interaction energy trend for pure prismatic pairs
of loops broadly follows the PES trend, but does not re�ect
the full complexity of interaction between internally relaxed
loops. The dipole approximation is consistent with the exact
treatment, but only for loop separations several times larger
than the sum of loop radii. The dipole tensor formalism
becomes inaccurate for smaller separations, resulting in a
qualitatively incorrect predicted interaction behavior, see the
top two panels in Fig.6.

A major effect of internal relaxation is found when we
follow how the loops approach an elastically con�ned bound
state from in�nite separation. This reaction is fundamental
to the formation of dislocation loop rafts. From Fig.6 it is
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(a)

(b)

(c)

(d)

FIG. 6. Comparison of energies of elastic interaction of two pure
prismatic dislocation loops of radius� = 4.09 nm, obtained by exact
integration (solid, blue) and computed in the dipole tensor approxi-
mation using the Foreman-Eshelby equation [1,2,64] (dashed, red).
Allowing the loops to tilt, and thus to acquire a mixed character,
reveals a complex potential energy surface (solid, gray). Plots (a) to
(d) represent loop pairs with increasing separation
 x perpendicular
to the glide cylinders.

evident that loop interaction energy at large separations is
positive. Therefore an energy barrier �rst has to be overcome
before the loops can enter a bound state. This barrier is
here given by the maximum value of the chosen potential
energy branch. In the pure prismatic loop picture the barrier
is substantial, ranging from 8, 2, and 0.4 eV for separations

 x of 8, 12, and 20 nm, respectively. In contrast, the lowest
PES branches have dramatically reduced barriers to trapping
of 2, 0.5, and 0.1 eV, respectively, and as such may eventually
be overcome by diffusion. In our earlier work based on a pure
prismatic loop picture, where elastic interaction between the
loops was described by the Foreman-Eshelby equation [2,64],
the trapping barrier had to be arti�cially lowered to facilitate
elastic con�nement of loops, as otherwise no formation of
loop rafts would occur [1].

We also note that in the limit of large separations, only
three PES branches form. The corresponding fundamental
con�gurations of pairs of loops are shown in Fig.5(b), and

their energy ordering is consistent with the separations
 x
studied here.

This comparison demonstrates that the energy of inter-
action between prismatic loops is strongly affected by the
internal degrees of freedom of the loops. Consequently, the
competition between the elastic energy and the core energy
plays a pivotal role in determining the landscape of binding
energies of loops. This subtlety is neglected in any physical
approximation where the dislocation loops are treated as being
purely prismatic, or where they are treated as pointlike objects
de�ned only by their position in real space and involving no
consideration of their internal degrees of freedom.

In what follows, we carry out stochastic dislocation dy-
namics simulations of interacting pairs of loops. The simu-
lations start from large initial separations
 x ands at 200 K
in an attempt to emulate various elementary interactions ob-
served in experiment, see Sec.I, namely coalescence, repul-
sion, and mutual elastic con�nement of interacting loops.

Case A: Coalescence of dislocation loops

The coalescence of dislocation loops was observed using
TEM and was found to involve loops of comparable size
[8], with diameters larger than 4 nm. To match experimental
observations, two pure prismatic hexagonal�111� loops with
� = 4.5 nm are introduced in a simulation cell with separa-
tions of 
 x = 8 nm ands = 5 nm, giving rise to a mutually
attractive elastic force, see Fig6. Note that the glide cylinders
of the loops overlap slightly. Sequential snapshots taken dur-
ing simulations are shown in Fig.7(a). The loops coalesce into
a larger prismatic loop, with small debris released and ejected
by a strong repulsive elastic force.

The corresponding time evolution of the diffusion coef�-
cient of the resulting large loop is shown in Fig.7(b). We
observe that the diffusion coef�cient becomes constant over
the interval of a few nanoseconds and converges to a notably
smaller value than the diffusion coef�cient of a single loop
with � = 4.5 nm. Using theDCOP � 1/ L scaling relation, the
equivalent loop size of the loop produced by the coalescence
of a pair of loops equals� eq 
 7 nm. This is consistent with
an estimate of the equivalent loop size obtained by removing a
quarter of each loop’s circumference, leading to� eq 
 3/ 2� .
While the relaxation volume of the loops is a conserved
quantity, the length of the loop circumference is not; this
example demonstrates clearly that the effective diffusivity of
an ensemble of prismatic loops may reduce over time as a
result of coalescence of loops.

Case B: Repulsion between the loops

An example of repulsive interaction between diffusing
dislocation loops is obtained by placing the loops with sepa-
rations of
 x = 5 nm ands = 7 nm, using the different initial
con�gurations shown in Fig.5(b). Note that con�guration 1
was placed at a separation ofs = 12 nm, as its corresponding
PES branch vanishes at closer separations. Figure8 shows the
evolution of the corresponding interaction energies during the
simulation performed without stochastic forces (T = 0 K) and
with stochastic forces (T = 200 K) included, in comparison
with the theoretical prediction derived from examining the
corresponding potential energy surface.
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FIG. 7. (a) Shapshots taken from stochastic dislocation dynamics
simulations of a loop coalescence reaction, for the initial loop-pair
separations of
 x = 8 nm ands = 5 nm, viewed at an angle from
the Šŷ direction. Note the occurrence of ejection of debris during
loop coalescence. (b) Plot of the effective diffusion coef�cient as a
function of time. The dotted line is a reference value computed for a
single loop with size� = 4.5 nm.

As expected for repulsive con�gurations, we �nd that
the distance between the loops gradually increases over the
interval of time spanned by the simulation. Inspection of the
loop-pair con�guration shows that the cold (T = 0 K) systems
retain their initial orientation of the habit plane, which is
consistent with the energy trajectories propagating along the
distinct PES branches. On the other hand, the trajectories
of the heated system (T = 200 K) soon start overlapping,
starting froms 
 20 nm, eventually becoming indistinguish-
able. The stochastic force supplies additional thermal energy
to the loops, which is evidently suf�cient to overcome the
energy barrier between the different PES branches, enabling
the loops to rotate and thus oscillate between various tilting
con�gurations.

Case C: Elastic conÞnement of loops

Prismatic loops may exhibit strong elastic attraction and
form an elastically con�ned con�guration as seen in Fig.6.
Depending on loop size and loop separation, the binding
energy can vary from meVs to eVs, potentially surpassing
the binding energy of dislocations to substitutional defects.
Therefore it can be reasoned that elastic con�nement of
loops represents the key step leading to the stabilization of
experimentally observed rafts of dislocation loops.

We adopt the initial setup corresponding to
 x = 12 nm
and s = 12 nm, for which the pair of loops exhibit mutual
attraction. As in the repulsive case investigated above, the sim-
ulations were run for three initial loop con�gurations shown in

(a) (b)

FIG. 8. Dislocation dynamics simulation of two prismatic loops
in a repulsive arrangement without (a) and with stochastic forces at
T = 200 K (b) included. The initial loop con�gurations (conf.) are
taken from Fig.5. Trajectories in (b) are shifted down by an estimated
amount of additional thermal energy supplied by the thermostatWth

for better comparison. In the absence of stochastic forces the system
of two loops moves along the PES branches, see conf. 1 and conf.
3 in (a). On the other hand, the trajectories of the heated system
eventually become indistinguishable, oscillating between various
tilting con�gurations.

Fig. 5(b), corresponding to distinct branches of the potential
energy surface. The evolution of the energy of interaction
between the two loops as a function of their separation in
comparison with the idealized PES is shown in Fig.9.

In the absence of stochastic forces, the two-loop system
is hindered from reaching the lowest energy state because
it is unable to overcome the energy barrier associated with
the rotation of the loop habit planes. In contrast, the addi-
tion of stochastic forces supplies the loops with additional
energy, enabling the system to explore the potential energy
landscape more freely to the point where it even oscillates
around the global energy minimum. As in the loop repulsion
case investigated above, the interaction energy derived using
simulations involving elevated temperature is found to be
shifted upwards by about 1.5 eV compared to the PES, as the
Langevin thermostat adds additional energy to the system.

The COP trajectories of the two loops corresponding to
conf. 1 state are shown in Fig.10. After a brief initial relax-
ation time, the loops become mutually trapped in their relative
frame by attractive elastic interaction, with their COP trajecto-
ries becoming strongly spatially correlated. The loop separa-
tion distance in the elastically con�ned state �uctuates around
the global potential energy minimum as a result of the effect of
stochastic force, in agreement with experimental observations
and simulations reported in Figs. 3–5 of Ref. [1]. Interestingly,
the simulated trajectories suggest that the two bound loops
oscillate on a
 0.5 ns timescale, thus evolving signi�cantly
slower than the tilt angle of the isolated loop, see Fig.3.
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