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Diffusion and interaction of prismatic dislocation loops simulated by stochastic
discrete dislocation dynamics
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Body-centered cubic metals and alloys irradiated by energetic particles form highly mobile prismatic
dislocation loops withe/ 2 111 -type Burgers vectors. We show how to simulate thermal diffusion of prismatic
loops using a discrete dislocation dynamics approach that explicitly includes the stochastic forces associated with
ambient thermal uctuations. We nd that the interplay between stochastic thermal forces and internal degrees
of freedom of loops, in particular the reorientation of the loop habit planes, strongly in uences the observed loop
dynamics. The loops exhibit three fundamental types of reactions: coalescence, repulsion, and con nement by
elastic forces. The con nement reactions are highly sensitive to the internal degrees of freedom of the loops.
Depending on the orientation of the loop habit planes, the barrier to enter an elastically con ned bound state is
lowered substantially, whereas the lifetime of the bound state increases by many orders of magnitude.

DOI: 10.1103/PhysRevMaterials.3.073805

I. INTRODUCTION [6-9]. In other words, the spatial ordering of dislocation
loops stems from their elastic interaction, whereas the loop
motion itself is a thermally activated process, fundamentally
e same as stochastic Brownian motion of individual defects
9-14]. The subject of this paper is the simulation of stochas-

Metals exposed to irradiation develop a highly complex
microstructure, involving a mixture of mobile and immobile
defects of both interstitial and vacancy type. The defect an
dislocation network develops under the effect of mternal,[iC glide motion of prismatica/2 111 dislocation loops in

irl(:ugi(i:]ernglresst;eseslzs,Ta;]r?g Ifgjgetrgtgriéﬁeetne{)&;“gﬁa'r:se(;vﬁ%dy-centered cubic (bcc) iron, with a particular emphasis
9 ’ Y 9€S o the analysis of elementary reactions between the loops,

n mec_hamcal properties, such as hardening and t_he Io%?eated as dislocation line objects, and modeled using discrete
of ductility, having a detrimental effect on the longevity of dislocation dynamics

ructural r r components in a radiation environment. . . . .
structural reactor components in a radiation environme Molecular dynamics and lattice type simulations per-

. Predipting the dynamics of evolution .Of microstructure formed over the past two decades investigated the stochas-
is a major challenge to computer modeling because of th?c diffusion of prismatic loops over a range of sizes and
broad spectrum of activation energies characterizing defe : .

and dislocation networks. Defect cluster migration barriers({ mperatureslp-12,15-18], elementary loop and dislocation

vary from meVs to eVs. The binding energy of elasticall reactions 1,9], as well as energies of binding of loops to
Y : g energy Y other defects19. However, a direct atomistic simulation of
con ned defect structures spans a similar range of energ

scales 1], and the magnitude of elastic interaction depends o?]én ensemble of interacting dislocation loops still remains a
the size of defects and their spatial distribution. Simulating thechallenge because of the constraint imposed by the simulation

i . . tell size accessible to a molecular dynamics simulation, and
temperature dependent dynamics of microstructure requIrege relatively short timescale of such a simulation. While

g;e dtgs(t:?;e:;gfé?g'oncse'lgézirmailIzvzﬁt';/gtﬁgr?élc;"tvgéarr:]?t?g:?gﬁwe more recent atomistic approaches involving the use of
defects and dislocations me7diated by elastic interactions inetic Monte Carlo 20-23) have reached the experimentally
y ;... relevant timescale when exploring the relaxation of radiation

irraHdIig?ilc))lnggss’s]llti péltsfg?\tl:/(i:tﬁISS(L()S(;?it(:,'OCnaI\(/)igg: ergvr%%ﬁee% ?)ycascade damage in thin Ims, the identi cation of pathways of
. o 109 . ’ ) ymigration and reaction between interacting dislocation loops
in situ transmission electron microscopy (TEM) observations

) ; . containing more than a few dozen interstitials remains a
[4,5]. The correlated motion of dislocation loops, often ob- largely unexplored problem.

served experimentally, is an elementary process leading to the Discrete dislocation dynamics (DDD) provides a com-

formation of rafts of defects and their eventual coalescencepeIIing alternative approach to modeling complex dislocation

microstructures, offering highly ef cient computation of long-
range elastic interactions. Furthermore, dislocation dynamics
enables the treatment of dislocation reactions, simultaneously
simulating internal and collective dislocation loop dynamics,
*christian.robertson@cea.fr and enabling the investigation of complex networks and junc-
Slaurent.dupuy@cea.fr tions within the same methodological framework. We note
sergei.dudarev@ukaea.uk that bringing dislocation core properties on par with atomistic

“yang.li@cea.fr
Tmax.boleininger@ukaea.uk
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simulations remains a challenge, and there have been recatislocation network, resulting from the coupling between
extensive developments addressing this is&4e32]. mobile dislocations and the heat bath.

The objective of this work is to include thermal stochastic  The total con gurational force per unit lengtH®* exerted
forces in DDD through the Langevin stochastic formalism,on a dislocation segment equals
to enable modeling the Brownian motion and diffusion of (ot fel & peore @
dislocations. The stochastic dislocation dynamg3%34] ap- B '

proach is formulated and applied to the treatment of diffusionn the absence of external body and image forces, the elastic
of loops and elementary reactions between interacting loopgriving force f¢ reduces to the well-known Peach-Koehler
as an essential step towards modeling thermal evolution C(fPK) force. The core energﬁcore is a phenomeno|0gica]
complex dislocation ensembles. correction describing the effect of nonlinear interactions in
Langevin dynamics has been applied earlier to the treatthe dislocation core region, which is not taken into account
ment of collective dynamics of dislocation loops on a coarsein the linear elasticity approximation. The core energy is also
grained level, where the loops were treated as pointlike objectgquired to yield a net positive line tension for small-scale
interacting through long-range elastic elds described in theline uctuations [29,41], which are expected to arise from the
elastic dipole tensor approximatior,9,35,36]. Extending  action of stochastic force. The core energy per unit length of a

the treatment to the case where loop dynamics involves alsgislocation line here is given in the line tension approximation
the relaxation of their internal degrees of freedom, such ags py2]

tilting of the loop habit plane, we nd that this strongly in-
creases the lifetime of con gurations where pairs of loops are core — H tjz (18 cog (1)) 3)
bound together by their attractive elastic elds. Furthermore, 4 (1S ) '

the barriers to entering such bound states are strongly reduc€glore s the core strength parameteris the angle between
gxplamlng Why_dlslocanon loop ra_fts are able to form SO eas'Iythe dislocation tangent and the Burgers vector, kil the
in many materials, as con rmed by situ TEM observations coordinate of a point on a dislocation line

[1,9,37]. . _ Consider the intrinsic mobility of an individual prismatic

_ The paper is organized as follows. In Sdt.we de- 5 with perimeterl. in an in nite medium in the absence
fivé an expression for thermal St.OChfiSt'c forcgs acting oRyt external forces. Without loss of generality, assume that the
a dislocation line. In Sedll the diffusion coefcient of & g,yers vector of the loop is collinear with taadirection of

smglef prismatic loop |sdevr?lugt|§% and Iex?‘”.“”gd ai a fukn the Cartesian system of coordinates. In the absence of climb
tion of temperature, and the DDD analysis Is benchmarke orces, the motion for a dislocation line is one dimensional:
against molecular dynamics simulations. We also discuss

the uctuation-dissipation theorem, relating the amplitude B (I, t) = £OU1 )+ £5(,1) (4)
of stochastic thermal forces to the magnitude of dissipative t z T

drag experienced by a dislocation moving through a crystalyhereB is the viscous drag coef cient for the given slip sys-
Next, the concept of the loop-loop interaction potential energitem and the stochastic fordé is assumed to be uncorrelated
surface is introduced, and the elementary loop-loop reactiong, time and space:

are simulated, with particular attention devoted to the inves-

tigation of internal degrees of freedom of the loops. Finally, f5(1,t) =0,
in Sec.lV we evaluate the lifetime of an elastically con ned S0, 0f5(0,t) = 2(081) tSt), (5)
loop-loop con guration, which is a functional of the loop-loop S
interaction potential energy surface. where s sets the scale of the stochastic force, ad is the
Dirac delta-function
Il. SIMULATION METHOD =0  x=0 dx ()= 1 ©)
A. Stochastic force in dislocation dynamics S

All the simulations described in this paper were performed To nd the amplitude of stochastic force, the effective
using the 3D nodal dislocation dynamics codeviopis [38].  diffusion coef cient for the center-of-position (COP) of the
In NUMODIS, continuous dislocation lines are discretized intoprismatic loop is matched to a 1D Einstein diffusion la\g][

a series of nodes linked by straight dislocation segmentsthe projection of the COP on the Burgers vector direction
The internal elastic stress is then computed according to thig given byzcop= LS 0" dl z(I,t). After a rearrangement,
nonsingular isotropic elasticity theonB9. The Langevin Eg. @) becomes

equation of motion for every point on a dislocation segment L

is based on the dynamic equation of motion, taken here in the Zcop _ i dl £5(,1). @)
overdamped limit40]: t BL
B.v= flol4 fS (1)  The effect of internal elastic force on the COP vanishes due

to the boundary condition(l + L, t) = z(l, t). Assuming that
the initial position of the loop center igcop(0) = 0, the
Qolution to Eq. 7) attime is

wherev is the velocity of the dislocation line, B is the viscous
drag tensor per dislocation line unit length depending on th
slip system and temperature, amd is the stochastic force
per unit length. The presence of a stochastic force introduces _
time-dependent thermal uctuations in the dynamics of the Zcor( ) = BL

a de £, 1). 8)
0 0
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Since the stochastic forc€®(l,t) is de ned in terms of

its correlation function, the mean square displacement of the

COP can be expressed as

1 2 L L
Zoel )= gr o dl i
x dt dt f5(,0)f5(0,t). (9)
0 0
Substituting Eq.%) into Eq. Q) yields
s 2 L L
= — I I
Zoel )= g dl d
x dt  dt (1S1) ({tSt). (10)
0 0
Evaluating the above integral, we arrive at
2
Zop( ) = ﬁs_ L 2Dcop. (11)

expressed as

2kgTB
|t

whereN(0, 1) is a random number sampled from the standard
normal distribution, and the direction of the force is collinear
with the Burgers vector of the dislocation loop.

fa

N(O, 1), (16)

B. Simulation setup, parameters, and statistics

All the dislocation dynamics (DD) simulations were per-
formed assuming an in nite elastic medium. The coordinate
system is chosen as orthogonal with axes parallex to
[112],y = [110], andz = [111] directions. Initially, a hexag-
onal prismatic 111 dislocation loop is positioned at the ori-
gin. The loop radius is chosen as= 4.5 nm, corresponding
to the loop perimeter df = 27 nm. The hexagonal loop shape
was chosen out of convenience as this has an almost negligible
effect on its dynamics. A circular loop of equivalent size
would have the radius of 4.09 nm, representing an inclusion

This equation is a mere corollary of the 1D Einstein containing the same amount of matter.

diffusion law, whereDcop is the corresponding diffusion
coefcient of the center-of-position4@3]. Substituting the
uctuation-dissipation theoremf]

kg T
Dcopr= —

BL (12)

The three parameters included in the stochastic fat6g (
require further clari cation.

The viscous drag coef cierB characterizes the drag force
acting on a dislocation line. In bcc metals it is generally
assumed thaB(T) = By + B, T, whereBy andB; are inde-
pendent of temperaturg4,45,46]. MD simulations of glissile

into Eq. (L1), which holds under the assumption that thePrismatic loops and self-interstitial clusters in bcc metals
dislocation loop is in thermodynamic equilibrium with the Show thatB(T) = Bo and is independent of over a wide

thermostat, we nd the amplitude of the stochastic force

s= 2kgTB, (13)
wherekg is the Boltzmann constant afidis absolute temper-

ature.

temperature range. Given that the simulations performed in
this study address prismatic dislocation loops of very small
size, it is appropriate to tre@® as a temperature-independent
constant. The numerical value & used in this work has
been evaluated from the atomistic study by Deeleal. [18]
using the uctuation-dissipation relatiori?). The resulting

As NumoDis is a nodal dislocation dynamics code, the totalyalue of the drag coef cienB = 0.08 MPa ns describes the
force per unit length is converted into an effective nodal forceeffective mobility of edge dislocations at temperatures above

by integrating over the neighboring segmert§][ The same

T = 200K, but underestimates the magnitude of drag at lower

rule is applied to convert the stochastic force per unit lengthemperatures, as shown in Fig. At low temperatures, the
into a stochastic force acting on a node. However, care mustejerls barrier 47,48] and quantum effects4p,50] play an

be taken when rescaling the force, as the randomly appliegnportant part, affecting dislocation mobility, but are not
force must remain consistent with the choice of the segmenfonsidered in this study. The chosen valuBef 0.08 MPa ns
length and the integration time step. For a straight segment gfgrees well with previous parametrizations derived from the
length | indexed byn, the scaled stochastic force per unit analysis of dislocation-defect interactions in bcc irb,$2].

length is found using the stochastic average:

1 I V2
ffO)= —
LS 12

dl £5(, t). (14)

Using Eq. ), for the -correlated force generated by therma
uctuations, the nodal correlation function acquires the form

I+ 1/2

dl dl

WS 12

2 I+ 1/2
S

( |)2 S 112

x (1381)tSt)

fa® 3 (t)

nn (EST). (15)

o

Similarly, assuming an integration time step oft,

Since the simulations were performed by splitting dislo-
cation loops into straight segments, and involved solving the
equations of motion by means of a nite difference time inte-
gration algorithm, it would be appropriate to assess the effect

Iof discretization length | and time step t on the computed

diffusion coef cient. Thermal diffusion of a single prismatic
loop at 300 K was simulated using three discretization lengths,
| = 5, 10, and 15 A, and three time steps;, = 0.2, 0.5,
and 1.0 fs. Simulations were run over the interval of 6 ns,
with the loop con guration data recorded every 0.6 ps. Loop
diffusion coef cients were computed using the drift diffusion
correction method§], in which the diffusion trajectory was
split into multiple uncorrelated sub-trajectories. The velocity
autocorrelation functionveop(t)veop(t + ) yields the cor-
relation time of 2 ps, in broad agreement with atomistic

the scaled stochastic force per unit length can be nallyestimates 13,29]. The velocity correlation time is longer

073805-3
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TABLE I. Simulation parameters for pure bcc irdsil[58].

06 T T T T T T T
@ — B = keT E_
S B ok exp(kB 7) Parameter Symbol Value
o
= 04} . Burgers vector b 2.47 A
m Shear modulus ] 63 GPa
g Poisson’s ratio 0.43
©° 02 B 0.08 MPans Drag coef cient B 0.08 MPa ns
g ’ l Dislocation core radius R: 1.4 A
2 Core strength parameter 0.257
s Time step t 0.5fs
0.0 160 2(')0 3(')0 4(')0 560 660 760 860 Discretization length I 10A

Temperature T (K)

FIG. 1. Vi d fcienB f ismatic dislocati
iscous drag coef cienB for a prismatic dislocation Ackland et al. [57] as Cyy = 225GPaCy, = 124 GPa, and

loop in bee iron extracted from molecular dynamics simulatidi@ [ = ) . . .
(dots). The viscosity is well described by a non-Arrhenius relationC44 = 101 GPa, leading to the corresponding isotropic moduli

(line), see Derletet al. [18] for the choice of parameters in the Of M = 63GPaand = 0.43. .
functional expression. The dashed line corresponds to the constant 1he dislocation core radiug;, which here has the same

value ofB = 0.08 MPans used here, which is valid for temperaturesmeaning as the delocalization parameter of the nonsingu-

above 200 K. lar elasticity theory 39], and the core strength parameter
were evaluated in earlier studieS1[58] from atomistic
simulations.

than the stochastic force correlation tim&5] derived from

atomistic simulations, and represents the low limit for the time Isotropic elasticity theory represents an effective approxi-
™ p mation for bcc iron, which is an elastically anisotropic mate-
length of a subtrajectory, which here was chosen as 6 ps. The

diffusion coef cient is then found by ensemble averaging over”al' The numerical results presented in this work should there-

) - : . ; fore be interpreted qualitatively. This is a foregone conclusion
the subtrajectories, with the uncertainty characterized by thlef we acknowledge the fact that the commonly accepted
standard error of the mean.

Figure2 shows a selection of simulated COP trajectories,mOde'S for the dislocation core energy do not capture the

which are similar in terms of their statistical properties. The.Complex anisotropic con gurational energy landscape found

values of diffusion coef cient derived from these trajectories atomistic simulations. ‘The stochastic forces formalism
oo X . ; J iftself is directly applicable to DDD simulations in elastically
remain within their respective error bounds, independent o

the selected values of | and t, in agreement with the anisotropic materials.
) . ’ 9 All the further simulations presented in Sel¢l were
theoretical analysis by Derlet al.[18].

Following Scattergood and Bacosd], the elastic moduli carried out using the simulation parameters given in Table

wand are chosen by matching the isotropic and anisotropicunless speci ed otherwise. The integration time step scales

elasticity energies of in nitea/ 2 111{11G edge and screw Iaé%prtc;]x;r:r;ztil\y 2?] d?kc\llj\?e ehg\f/etze tgés,:gzagéog rt]delzstcirrﬁgzs?gon
dislocations. Earlier comprehensive studiBd6] con rm g, bp y P P

) . - nd small discretization length, as computational ef ciency
that this method leads to highly accurate predictions OT:Lnd performance was not a concern in the simulations pre-

dislocation loop shapes and stress elds. In this work, the
. X . ; . sented here.
anisotropic moduli used as input were chosen following

Ill. RESULTS

A. Stochastic dynamics of an individual dislocation loop

Using stochastic dislocation dynamics, we performed a
series of simulations, investigating the dynamics of a single
prismatic loop at temperatures ranging from 100 to 800 K,
with temperature increments of 100 K. No external stress was
applied.

Consider rst the internal degrees of freedom of the pris-
matic loop. Itis readily seen from simulations that the initially
purely prismatic [111] loop with its Burgers vector normal
to its habit plane, within a few picosecond adopts a tilted
con guration, see Fig3(a). If the shape of the loop is de ned
by its dislocation countou€, the vectorarea of the loop is

Loop position zcop (Nm)

(923

e

N
T

Simulation time t (ns)

FIG. 2. Random walk trajectories of a prismatic loop with radius
= 4.5nm undergoing Brownian motion at 300 K simulated using 9Ven by 86,59
the same viscous drag coef cient, and several different discretization
lengths | and time steps t. The diffusion behavior of the loop is
independent of the choice of discretization parameters.

A:} rx dl, a7)
2 ¢
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t=0ps t=6ps t=12ps t=18ps t=24ps

LEEREG

6 =0.0° 0 =5.5° 6=17.3° 6=23.0° 60=237°

— T'=200K

(a) stochastic dislocation dynamics snapshots

— T =600K

0 1 2 3 4 5 6
|‘ A Simulation time ¢ (ns)

Loop position zcop (nm)

':D,IE
Z 406.5 2 140 T T T T T T T T
g |
— A I p=4.5nm .
g = 120r ¥ p=20mm /,{’/ |
o 4043 S 100f } 1
0.0 27.0 Q gt I i
Tilt angle 6§ (deg) = }
=
(b) habit plane angles 6 and ¢ (c) energy versus tilt angle 0 ‘S 60 ’ b
& 3 K
FIG. 3. (a) Snapshots from a stochastic dislocation dynamicsS 40 | I o $-- .
simulation of a hexagonal initially pure prismatic loop of 4.5 nm = 4 T
radius at 100 K show that the loop habit plane becomes tilted Within'g 20 ;/’ _______ & 1
afew picoseconds. (b) The tilt anglés de ned as the angle between £ ,‘:f_f_’f—f """ f . . . . . .
the normal vector (red arrow) and the Burgers vector (black arrow).D 00 100 200 300 400 500 600 700 800
(c) The prismatic loop adopts a tilted con guration on the glide Temperature 7 (K)

cylinder to minimize its potential energy.
FIG. 4. Top: Random walk trajectories of a hexagonal prismatic
loop of radius = 4.5nm simulated for 200 and 600 K. Bottom:

and the effective loop normal unit vector is Plots of diffusion coef cients as a function of temperature for differ-
ent loop sizes . Dashed lines are analytical predictions derived from
fi = m rx dl. (18) the uctuation-dissipation theorelcop = kg T/ (BL).
c

The angle between the Burgers vector and the effective looglide cylinder, as the relaxation volume of the looge =
normal shall be referred to as the tilt angle with the b A is conserved throughout the simulation.
azimuthal angle de ned in full analogy with the spherical ~ Consider next the diffusion behavior of the entire loop.
system of coordinates, see F&fb)for illustration. Following  The prismatic loop trajectories exhibit a characteristic pattern
this de nition and depending on the nature of the loop (va-of Brownian motion, with higher temperature inducing a
cancy or interstitial), the loop is pure prismatidiif b=+ 1  more pronounced loop displacement per unit time. The single
corresponding to = 0 or 180. We note that the elastic loop COP trajectories for 200 and 600 K, and the diffusion
relaxation volume of a loop is given by the scalar product ofcoef cients calculated with the drift diffusion correctiohd],
the Burgers vector and the loop vector arga = b- A [36]. are given in Fig.4. Globally, the temperature dependence
The elastic potential energy of a prismatic loop is mini- of the diffusion coef cient is found to be consistent with
mized for con gurations tilted away from the perfect pris- the uctuation-dissipation theorem, regardless of the loop
matic loop orientation, with the resulting tilt angle de-  radius .
termined by the competition between the elastic self-energy Moreover, for = 4.5nm andT < 400K the diffusion
associated with interaction between dislocation segments arabef cients derived from simulations are consistently lower
the core energy proportional to the length of the perimeter ofthan expected from the linear interpolation from higher tem-
the loop, see Fig3(c). The potential energy is invariant with perature (dashed line) because the tilting of the loop results in
respect to rotations around the Burgers vector, allowing théhe elongation of its perimeter, see Figb). According to the
loop to rotate freely with respect toin a DD simulation. uctuation-dissipation theoremDcop 1/L, and therefore
The mean value of the tilting angle decreases at higher the reorientation of the habit plane gives rise to a lower value
temperatures, re ecting the anharmonicity of the potentialof the diffusion coef cient. This effect is found to become
self-energy of the loop. Indeed, it takes comparatively lessess pronounced at higher temperature as the mean tilt angle
energy for the loop normal to tilt towards the Burgers vector  decreases with temperature.
than away from it, hence on average smaller values afe The stochastic DD simulations performed in this work de-
favored at higher temperature. scribe thermally induced Brownian motion of prismatic loops,
In addition to the tilting degrees of freedom, the loop which for T > 200K is consistent with molecular dynamics.
shape also develops transient uctuations on a smaller scal@he simulations further reveal that the prismatic loop habit
However, any part of the loop is constrained to remain on thelane becomes tilted with respect to the Burgers vector, while
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climb force, either loop can move or distort only in the glide

& direction.
: While the stochastic simulations involve an explicit treat-
k ment of internal degrees of freedom of the loops, it is also

1
Zégp

instructive to consider the static properties of a simpli ed
system of two loops. Following the discussion in SkicA ,
the internal degrees of freedom of the simpli ed system are
reduced to the tilting modes only, thus keeping the loops
conf. 2: otherwise at and of ellipsoidal shape.
\4 For a single loop the potential energy is invariant with
respect to rotations around its Burgers vector. For a pair of
loops the invariance is lifted by their elastic interaction: for a
\4 loop-pair separation constrainedsathe system has multiple
tilting con gurations corresponding to local energy minima,
giving rise to a complex potential energy surface (PES)
\4" with several branches and crossing points. In full analogy
(a) Two interacting loops (b) metastable to the Born-Oppenheimer approximatio3], the internal
configurations of degrees of freedom of loops evolve signi cantly faster (on
loops the timescale of ps) than the loop-pair separation (varying
) ) ) . on the ns timescale), and thus the notion of PES describes
FIG. 5. (a) Two prismatic loops de ned using the coordinate the system of interacting loops in the adiabatic approxima-
system introduced in Sedll B, with identical Burgers vectorb tion. Each PES branch represents a metastable tilting state
parallel toz direction. Loop con guration (line) is free to deviate for a given reaction coordinate Transitions between PES
from the pure prismatic form (dashed) on the glide cylinder, as, o ches occur by the rotation of loop habit planes, which are
indicated by the loop normal vectoiis (b) A selection of represen- therefore separated by energy barriers. '

tative metastable con gurations of interacting loops extracted from . . . . .
. ) S . . The energy of interaction between pairs of prismatic loops
dislocation dynamics simulations, also showing the loop normal and

Burgers vectors. Con gurations are ordered from top to bottom in the> computed in the order of ascending accuracy: in the dipole

order of increasing stability, and hence in the order of descending tot-ensor approximation for a pair of pure prismatic loops, as

tal potential energy. Con guration 3 is the most stable con guration. exact elastic |nteract|on_ b_etween_ a pair of pur_e prl_smatlc
loops, and as exact elastic interaction between prismatic loops

with internal degrees of freedom relaxed to metastable con-

- . S . gurations. Note that in the dipole tensor approximation the
remaining highly mobile with respect to rotations around the ion for the | | . ion in th . .
Burgers vector. expression for the loop-loop interaction in the pure prismatic

The tilting behavior of prismatic loops in atomistic simu- case reduces o the Foreman-Eshelby expressicho].

. . . : . ; X The treatment of internal relaxation is explained in detail in
lations is possibly dominated by singular orientation effects

in the core energy60]. Considering that the core ener AppendixB. The energy of interaction between the loops is
. gy Ting 9 de ned as the energy difference between the total energy of
scales linearly with the loop radius , whereas the elastic

self-energy varies superlinearly as log [61], one would two loops minus the energy of isolated loops with the same

- orientation of the Burgers vector:
expect the core energy to become less signi cant for larger

loops. However, the singular nature of the core energy in com- Wint(s) = W©l(s) § lim WPY(s). (19)
bination with atomic discreteness would break the cylindrical s

symmetry of the system, subsequently introducing energy
barriers in relation to its rotation around the Burgers vector.

Energies of elastic interaction are compared in Bidor

the various loop separationsx using an example of two
round loops with radii = 4.09 nm. Note that the choice of
radii is consistent with loops being hexagonal and having the
same area, as discussed in SEB.

The question about thermal evolution of interacting dis- The exact interaction energy trend for pure prismatic pairs

location loops has recently attracted attention in the contexsf loops broadly follows the PES trend, but does not re ect
of dipole tensor formalism as an ef cient approximation for the full complexity of interaction between internally relaxed
the long range elastic interaction between the lo@#6P].  loops. The dipole approximation is consistent with the exact
Here we show that the internal degrees of freedom of loopsreatment, but only for loop separations several times larger
not explicitly treated by the dipole tensor formalism, have athan the sum of loop radii. The dipole tensor formalism
profound effect on the stochastic dynamics of loops, particubecomes inaccurate for smaller separations, resulting in a
larly where the loops form bound con gurations con ned by qualitatively incorrect predicted interaction behavior, see the
attractive elastic interactions. top two panels in Fig6.
A Copsiderapair of prismatic loops with unit Burgers vectors A major effect of internal relaxation is found when we
b; = b, = 2 The loop centers are separated by distasite  follow how the loops approach an elastically con ned bound
the glide direction and by x in the direction perpendicular to state from in nite separation. This reaction is fundamental
the Burgers vector direction, see Fiifa). In the absence of to the formation of dislocation loop rafts. From Fig.it is

B. Diffusion of interacting dislocation loops
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60 T T

their energy ordering is consistent with the separatioms
studied here.
Pure prismatic; exact This comparison demonstrates that the energy of inter-
Pure prismatic, dipole action between prismatic loops is strongly affected by the
PES . internal degrees of freedom of the loops. Consequently, the
competition between the elastic energy and the core energy
plays a pivotal role in determining the landscape of binding
: : energies of loops. This subtlety is neglected in any physical
(b) Ax=8nm approximation where the dislocation loops are treated as being
purely prismatic, or where they are treated as pointlike objects
. de ned only by their position in real space and involving no
consideration of their internal degrees of freedom.
== | Pure brismatic. dibol In what follows, we carry out stochastic dislocation dy-
> prismatic, dipole ) ) A ) A N )

PES - namics simulations of interacting pairs of loops. The simu-
: . ; : lations start from large initial separationsx ands at 200 K
(©) Ax=12nm] in an attempt to emulate various elementary interactions ob-
served in experiment, see Sécnamely coalescence, repul-
= sion, and mutual elastic con nement of interacting loops.

(a) Ax — 5nm

40

20

|
Y
S

= Pure prismatic, exact -

|
B
=)

|
=)
S

(23
T

(==
T

Interaction energy W (eV)

Pure prismatic, exact |

|
o
T

; R Case A: Coalescence of dislocation loops
=== Pure prismatic, dipole

PES The coalescence of dislocation loops was observed using
~10F - - : - 1 TEM and was found to involve loops of comparable size
N ~——_(d) Ax=20nm] [8], with diameters larger than 4 nm. To match experimental
: observations, two pure prismatic hexagorill loops with

- = 4.5nm are introduced in a simulation cell with separa-
tions of x= 8nm ands= 5nm, giving rise to a mutually
attractive elastic force, see FigNote that the glide cylinders

of the loops overlap slightly. Sequential shapshots taken dur-

—— Pure prismatic, exact |
=== Pure prismatic, dipole

PES RO ; g ;
-2r , , , , ] ing simulations are shown in Fig(a) The loops coalesce into
0 10 20 30 40 50 alarger prismatic loop, with small debris released and ejected
Loop pair separation in glide direction s (nm) by a strong repulsive elastic force.

_ _ o _ The corresponding time evolution of the diffusion coef -
FIG. 6. Comparison of energies of elastic interaction of two puregiant of the resulting large loop is shown in Fig(b). We
prismatic dislocation loops of radius= 4.09 nm, obtained by exact  ghgerye that the diffusion coef cient becomes constant over
integration (solid, blue) and computed in the dipole tensor approxi-the interval of a few nanoseconds and converges to a notably
mation using the Foreman-Eshelby equatity2,p4] (dashed, red). g qer value than the diffusion coef cient of a single loop

Allowing the loops to t||t,. and thus to acquire a mixed character,With = 45nm. Using thDeop 1/ L scaling relation, the
reveals a complex potential energy surface (solid, gray). Plots (a) t0

(d) represent loop pairs with increasing separatiorperpendicular equwalfant loop size of the loop produc_:ec_i by the_ coales_cence
: : of a pair of loops equalse; 7 nm. This is consistent with
to the glide cylinders. ; _ V€ . : )
an estimate of the equivalent loop size obtained by removing a
quarter of each loop’s circumference, leading g 3/2 .
. . . . \While the relaxation volume of the loops is a conserved
evident that loop interaction energy at large separations is . . . T
L ; guantity, the length of the loop circumference is not; this
positive. Therefore an energy barrier rst has to be overcome . e
) .~ .example demonstrates clearly that the effective diffusivity of
before the loops can enter a bound state. This barrier i ; : .
. ; ._an ensemble of prismatic loops may reduce over time as a
here given by the maximum value of the chosen potennaf71
. i ) . _result of coalescence of loops.
energy branch. In the pure prismatic loop picture the barrier
is substantial, ranging from 8, 2, and 0.4 eV for separations _ .
x of 8, 12, and 20 nm, respectively. In contrast, the lowest Case B: Repulsion between the loops
PES branches have dramatically reduced barriers to trapping An example of repulsive interaction between diffusing
of 2, 0.5, and 0.1 eV, respectively, and as such may eventuallgislocation loops is obtained by placing the loops with sepa-
be overcome by diffusion. In our earlier work based on a purgations of x = 5nm ands= 7 nm, using the different initial
prismatic loop picture, where elastic interaction between theon gurations shown in Fig5(b). Note that con guration 1
loops was described by the Foreman-Eshelby equaiéd]]  was placed at a separationsof 12 nm, as its corresponding
the trapping barrier had to be arti cially lowered to facilitate PES branch vanishes at closer separations. Figjshews the
elastic con nement of loops, as otherwise no formation ofevolution of the corresponding interaction energies during the
loop rafts would occur]]. simulation performed without stochastic forcé&s£ 0K) and
We also note that in the limit of large separatignonly  with stochastic forcesT(= 200K) included, in comparison
three PES branches form. The corresponding fundamentalith the theoretical prediction derived from examining the

con gurations of pairs of loops are shown in Fig(b), and  corresponding potential energy surface.
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t=0ps t=12ps t = 24ps t = 36ps (@ T=0K (b) T =200K
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L e conf.2
(a) snapshots illustrating the dynamics of coalescence of loops E 30r e conf.3 I 1
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NI IS SO s N SO S U g
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LTl Trrae] #y -
S 8k i
5
s
o
r£ 0 1 1 1 - 1 1 1
& 10 20 30 10 20 30
A 0 1 2 3 " 5 5 Loop pair separation in glide direction s (nm)

Simulation time ¢ (ns
(ns) FIG. 8. Dislocation dynamics simulation of two prismatic loops

in a repulsive arrangement without (a) and with stochastic forces at

S . . T = 200K (b) included. The initial loop con gurations (conf.) are
FIG. 7. (a) Shapshots taken from stochastic dislocation dynamic : : o . ;
simulations of a loop coalescence reaction, for the initial Ioop-pairianlf‘i::toc:? gé%i'i;:zjﬁﬁtg:rf;Izr(,g)rg;if.g;?sdds;v trtlwz);i?grfnsﬁtf;gtw

i f x= = i le f . .
sep@r?tpns o X 8nm ands = 5nm, wev_ved_at an angie Wom ¢ hetter comparison. In the absence of stochastic forces the system
the S§ direction. Note the occurrence of ejection of debris during of two loops moves along the PES branches, see conf. 1 and conf

loop coalescence. (b) Plot of the effective diffusion coef cient as a__ .

function of time. The dotted line is a reference value computed for a3 in (a). On the other hand, the trajectories of the heated system

. T eventually become indistinguishable, oscillating between various
single loop with size = 4.5nm. S :
tilting con gurations.

(b) diffusion coefficient as a function of time

As expected for repulsive con gurations, we nd that g 5(h) corresponding to distinct branches of the potential
the distance between the loops gradually increases over thgergy ‘surface. The evolution of the energy of interaction
interval of time spanned by the simulation. Inspection of theyatween the two loops as a function of their separation in
loop-pair con guration shows that the col@ & 0 K) systems comparison with the idealized PES is shown in Fig.

retain their initial orientation of the habit plane, which is In the absence of stochastic forces, the two-loop system
consistent with the energy trajectories propagating along thg, hindered from reaching the lowest energy state because

distinct PES branches. On the other hand, the trajectorigg js ynable to overcome the energy barrier associated with
of the heated systeml (= 200K) soon start overlapping, he rotation of the loop habit planes. In contrast, the addi-
starting froms 20 nm, eventually becoming indistinguish- (i, of stochastic forces supplies the loops with additional
able. The stochagtlc force_ supplies addmonal thermal energd¥nergy, enabling the system to explore the potential energy
to the loops, which is evidently suf cient to overcome the |3ngscape more freely to the point where it even oscillates
energy barrier between the different PES branches, enabling nq the global energy minimum. As in the loop repulsion
the Ioops_to rotate and thus oscillate between various tilting. e investigated above, the interaction energy derived using
con gurations. simulations involving elevated temperature is found to be
shifted upwards by about 1.5 eV compared to the PES, as the
Langevin thermostat adds additional energy to the system.
Prismatic loops may exhibit strong elastic attraction and The COP trajectories of the two loops corresponding to
form an elastically con ned con guration as seen in Fi§).  conf. 1 state are shown in Fi§0. After a brief initial relax-
Depending on loop size and loop separation, the bindingtion time, the loops become mutually trapped in their relative
energy can vary from meVs to eVs, potentially surpassingrame by attractive elastic interaction, with their COP trajecto-
the binding energy of dislocations to substitutional defectsries becoming strongly spatially correlated. The loop separa-
Therefore it can be reasoned that elastic con nement ofion distance in the elastically con ned state uctuates around
loops represents the key step leading to the stabilization dhe global potential energy minimum as a result of the effect of
experimentally observed rafts of dislocation loops. stochastic force, in agreement with experimental observations
We adopt the initial setup corresponding tx = 12nm  and simulations reported in Figs. 3—5 of Ré. [nterestingly,
and s= 12 nm, for which the pair of loops exhibit mutual the simulated trajectories suggest that the two bound loops
attraction. As in the repulsive case investigated above, the sinoscillate on a 0.5 ns timescale, thus evolving signi cantly
ulations were run for three initial loop con gurations shown in slower than the tilt angle of the isolated loop, see Big.

Case C: Elastic conbnement of loops
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