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Directly computing linear mass transport coefficients in stochastic models entails integrating over time the
equilibrium correlations between atomic displacements. Here, we show how to improve the accuracy of kinetic
Monte Carlo simulations via correlation splitting and conditioning, which statistically amounts to estimating the
mass transport coefficients through a law of total diffusion. We illustrate the approach with kinetic path sampling
simulations of atomic diffusion in a random alloy model in which percolating solute clusters trap the mediating
vacancy. There, Green functions serve to generate first-passage paths escaping the traps and to propagate the
long-time dynamics. When they also serve to estimate mean-squared displacements via conditioning, colossal
reductions of statistical errors are achieved.
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I. INTRODUCTION

Mass transport is the natural phenomenon that governs
both the time evolution of thermodynamic systems towards
equilibrium and the diffusion of chemical species at equi-
librium. Its understanding is fundamentally important and
challenging in many engineering applications, ranging from
biophysics to materials science. Equilibrium correlations be-
tween particle displacements play a crucial role because they
allow characterizing transport coefficients close to equilib-
rium owing to linear response theory [1,2]. Hence, chemical
currents in solid solutions can be expressed as products of
diffusion matrices and negative gradients of chemical con-
centrations considered as small thermodynamic forces. In
crystalline solids, atomic transport is mediated by defects
[3,4], most often by vacancies exchanging with neighboring
substitutional atoms. Interstitial atoms jumping to adjacent in-
terstitial sites also contribute to atomic diffusion, in irradiated
alloys especially [5,6]. Usually, atomic hops are thermally
activated processes occurring at rates that are well predicted
by transition state theory and its extensions [7]. There, states
correspond to local minima of the potential energy surface.
They span a discrete space embedded into the continuous
space which the dynamical system evolves in. Transition rates
computed at the atomic scale possibly include anharmonic
[8], quantum [9], and dynamical [10] corrections, whose re-
spective contributions depend on temperature T . Dynamical
corrections are to be included to account for memory ef-
fects when state-to-state transitions depend on past transitions
[10]. They may be significant in simulations of dynamical
systems evolving on complicated potential energy surfaces
over long timescales when the encountered barrier heights
�E are similar or lower than the thermal energy kBT (kB

stands for Boltzmann’s constant). This specific situation oc-

curs, for example, at moderately high temperatures in pure
α-iron, where the activation energies for the migration of
glissile clusters of self-interstitial atoms may be particularly
small, on the order of tens of meV [11,12]. When the im-
posed temperature is low enough, the atomic dynamics in
the basin of attraction of every visited state reaches a local
quasistationary distribution prior to transitioning to another
state and the system becomes memoryless [13]. This entails
that the transition rates do not depend any more on which
transition occurred previously. Such transitions are said to be
Markovian. In solid solution alloys and compounds, the tem-
peratures of interest are usually low enough so that transitions
be considered Markovian. Atomic scale modeling of mass
transport then relies on the ability to evaluate an exhaustive
list of the important elementary transition rates [14]. This
makes it possible to construct realistic discrete-space models
satisfying the Markov property. Such a description does not
preclude complex transport mechanisms to involve concerted
atomic displacements [15]. Generic models based on master
equations are also very useful as they allow investigating the
interplay between transition rates and transport properties by
varying their physical parameters in a systematic manner [3].

Kinetic Monte Carlo (kMC) [16,17] provides a direct
method to estimate transport coefficients in physical systems
governed by high-dimensional master equations. However,
the method is hindered by the low occurrence of important
events. A considerable amount of computations are often
needed to collect sufficient statistics in many systems of in-
terest [18,19], including basic models of defect migration
through homogeneous media [15]. Besides, low-complexity
models are amenable to nonstochastic master-equation ap-
proaches [20–23] that may yield accurate predictions at much
lower cost. These methods involve integrating fundamental
matrices [20,22,24] or equivalently evaluating lattice Green
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functions [25,26] that either minimize a variational problem
[27–29] or satisfy a Poisson equation [30–33]. The dimension
of the linear systems to solve and the viability of approx-
imations made to handle exponentially increasing numbers
of configurations limit the applicability of nonstochastic ap-
proaches.

Here, we develop a correlation splitting and conditioning
scheme aiming to facilitating the estimation of linear mass
transport coefficients at thermodynamic equilibrium using
conventional and advanced kinetic Monte Carlo simulations.
The approach alleviates the aforementioned issues: scarcity
of harvested important events and combinatorial explosion
in numerical algebra. It furthermore leads us to formulate
a law of total diffusion (LTD) that relates to the laws of
total expectation (LTE) and variance (LTV) considered so far
to compute thermodynamic expectations and their statistical
variance via conditioning [32–41]. We illustrate the approach
on a random alloy model [29] exhibiting dynamical trapping
and percolation by estimating the diffusion matrix, denoted
below by D[d] and defined as half the asymptotic variance of
the vector d of chemical displacements.

II. DIFFUSION MATRIX FOR REVERSIBLE
MARKOV CHAINS

To monitor the displacements of each of the c chemical
species along each of the s space dimensions, any state χ is
mapped onto a descriptor r ∈ Rsc. Component ri represents
here the coordinate sum of all α-type atoms in space direction
a, the descriptor index being encoded as i = a + s(α − 1),
where a ∈ N�

s and α ∈ N�
c . Then, displacement d(χ, χ ′) from

state χ to state χ ′ is computed using the minimum image
representation of r′ − r.1 The variance matrix of vector r
over a Markov chain reads as V [r] = E[r2] − E[r]2, with
r2 standing for tensorial square r ⊗ r and E[·] denoting the
expectation operator. The successive states of the chain are
denoted by χh with h ∈ N or Z. The displacement vector after
� transitions,

∑�−1
h=0 d(χh, χh+1), is simply written r0→� in the

following. The expected square displacement divided by twice
the elapsed time is written

D�[d] = 1

2

E[r0→� ⊗ r0→�]

E[t0→�]
= 1

2

V [r0→�]

E[t0→�]
. (1)

The asymptotic limit yields the diffusion matrix, i.e., D[d] =
lim�→∞ D�[d]. The variance amounts to squaring here
because the expected displacement E[r0→�] is zero at equilib-
rium. The Markov chain obeys detailed balance with respect
to an equilibrium stationary distribution ρ

eq
χ . Fulfillment of

this strong condition entails the invariance of expectations
under arbitrary translation of chain indices and under chain
reversal. Expected autocorrelations are thus invariant after
interchange of displacements: E[r0→1 ⊗ rh→h+1] is succes-
sively equal to E[r−1−h→−h ⊗ r−1→0], E[rh+1→h ⊗ r1→0],
and eventually E[rh→h+1 ⊗ r0→1], displacements being an-
tisymmetrical under chain reversal: rh+1→h = −rh→h+1, ∀ h.

1d(χ, χ ′) equals r′ − r + arg min ‖r′ − r + m‖, where the compo-
nents mi of argument m run over the multiples of the simulation
supercell periods.

Hence, D[d] is symmetric non-negative. Translational invari-
ance also entails that the expected elapsed time is � multiplied
by the mean elapsed time before the next event τ̄ = E[t0→1].
The autocorrelation symmetry properties enable us to split the
diffusion matrix into two parts:

D[d] = D1[d] + 1

τ̄

∑∞
h=1

E[r0→1 ⊗ rh→h+1]. (2)

For uncorrelated Markov chains, the uncorrelated part
D1[d] = E[r0→1 ⊗ r0→1]/2τ̄ contributes to diffusion exclu-
sively since the correlated part encompassing the summation
vanishes. For low-dimensional spaces, τ̄ and D1[d] can be
readily evaluated from the knowledge of ρ

eq
χ via conditioning

on the states. Let E[ f (χk, χk+1)|χ0] denote the conditional
expectation of function f (χk, χk+1) given χ0 and integer
k � 0. The mean first-passage time (MFPT) from χ0 then
writes τ0 = E[t0→1|χ0] and its mean yields τ̄ = E[τ0]. Term
E[r0→1 ⊗ r0→1] can be similarly evaluated, yielding the un-
correlated part. Evaluating the correlated part is, however,
more difficult because it requires formulating and solving a
Poisson equation. For this purpose, define the mean displace-
ment from χ1 as

e(χ1) = E[r1→2|χ1] = −E[r0→1|χ1], (3)

and the associated relaxation vector ε(χ1) =∑+∞
h=1 E[e(χh)|χ1] whose knowledge will give access to

the correlated part of the diffusion matrix. The relaxation
vector is a particular solution of the following discrete Poisson
equation:

ε(χ1) = E[ε(χ2)|χ1] + e(χ1), (4)

where χ1 runs over the state space. The solution ε is fully
determined by additionally imposing E[ε] = E[e] = 0. It
characterizes the expected correlations

E[r0→1 ⊗ ε(χ1)] =
∑∞

h=1
E[E[r0→1 ⊗ rh→h+1|χ0, χ1]]

=
∑∞

h=1
E[r0→1 ⊗ rh→h+1]. (5)

Combining (2) and (5) then yields the diffusion matrix

D[r0→1] = D1[r0→1] + 1

τ̄
E[r0→1 ⊗ ε(χ1)]

= 1

2τ̄
E[[r0→1 + ε(χ1)]2 − ε2], (6)

where the first equality is similar to Green-Kubo formulas
[27,28] and symmetry is formally recovered in the second
equality. Expressions in (6) are the cornerstone of variational
approaches to mass transport [27–29] and serve here the pur-
pose of improving kMC estimations via correlation splitting
and conditioning.

III. CORRELATION SPLITTING AND CONDITIONING

We proceed by first writing the LTV for displacement r1→2

with conditioning on χ1 and rescaling with 2τ̄ ,

D1[r1→2] = E[D1[r1→2|χ1]] + D1[E[r1→2|χ1]], (7)

where D1[r1→2|χ1] = V [r1→2|χ1]/2τ̄ and the conditional
variance is V [r1→2|χ1] = E[(r1→2)2|χ1] − e(χ1)2. Further
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splitting the diffusion matrix (6) is then obtained through
(i) inserting the LTV (7) in (6) and conditioning the expec-
tation of r0→1 ⊗ ε(χ1) on χ1; (ii) inserting the reversibility
property (3); (iii) plugging the Poisson equation (4); (iv) sim-
plifying the plugged expectation E[E[e(χ1) ⊗ ε(χ2)|χ1]] into
E[e(χ1) ⊗ ε(χ2)] using the LTE; (v) regrouping like quanti-
ties D1[e] = E[e2]/2τ̄ ; (vi) identifying the diffusion matrix
of the conditionally expected displacements

D[e(χ1)] = D1[e(χ1)] + 1

τ̄
E[e(χ1) ⊗ ε(χ2)]

= 1

2τ̄
E[[e(χ1) + ε(χ2)]2 − ε2] (8)

by analogy to expressions of Eq. (6). Both contributions (6)
and (8) are measurable by kMC simulations. The resulting
splitting yields the LTD

D[r1→2] = E[D1[r1→2|χ1]] − D[E[r1→2|χ1]], (9)

in which the diffusion matrix is expressed as the differ-
ence between two symmetric non-negative contributions, the
intracorrelated and extracorrelated diffusion matrices, respec-
tively. Intracorrelations involve consecutive displacements ex-
clusively since E[D1[r1→2|χ1]] = D2[r0→1]. The remaining
correlations contribute to the extracorrelated part D[e(χ0)] =
−E[r0→1 ⊗ (r1→2 + 2

∑∞
h=2 rh→h+1)]/2τ̄ . The former equal-

ity arises as the particular case � = 2 of a more general
relationship

D�[d] = E[D1[d|χ ]] + 1
�
D1[E[d|χ ]] − � − 1

�
D�−1[E[d|χ ]],

(10)

derived from the reversibility property (3) and the law of total
covariance [42], where χ ≡ χ1 and d ≡ r0→1. Relationship
(10) bridges between the LTV at the lower extremity and
the LTD obtained for � → ∞. The LTD entails that the dif-
fusion matrix can be estimated from mean local quantities,
by plugging the expected displacements and their conditional
variances given the visited states into its extracorrelated and
intracorrelated parts. Besides, the LTD and bridging law are
meaningful for reversible Markov chains and for any stochas-
tic variable that is antisymmetric under chain reversal. Laws
(7) and (9) also yield a Löwner partial ordering:

D[d] � E[D1[d|χ ]] � D1[d],

entailing that D[d] is better approximated by its intracor-
related part D2[d] than its uncorrelated part D1[d]. Further
increasing � provides a decaying sequence (D�[d])��1 of
upper-bound approximates of D[d] [29]. We then estimate
D[d] via D�[d] in (10) over a sample of l trajectories of
L = �max steps each. For statistical errors to be small, l must
be large enough, standard deviations decaying as 1/

√
l [43].

Letting χi,h denote state h of trajectory i and V(χi,h) stand
for V [ri,h→h+1|χi,h], the LTD-based conditioned estimator of
D�[d] writes

Dcnd
l,� = 1

2̂τ

1

lL

∑l

i=1

∑L−1

h=0

[
V(χi,h) + 1

�
e(χi,h)2

]

− 1

2̂τ

1

l�

∑l

i=1

[∑�−1

h=1
e(χi,h)

]2

, (11)

where τ̂ is an estimate of τ̄ obtained via LTE-based condition-
ing, i.e., by averaging the MFPTs [44,45]:

τ̂ = 1

lL

∑l

i=1

∑L−1

h=0
E[ti,h→h+1|χi,h]. (12)

Note that information about the lL gathered states is included
in the estimation of static expectations in (11) and (12). Con-
ditioned estimator in (12) has a statistical variance that is
lower than that of the plain estimator

∑l
i=1 ti,0→�, a property

guaranteed by the LTV [33,35,40]. The conditioning over time
is traditionally done in the standard estimator of D�[d]:

Dstd
l,� = 1

2̂τ

1

l�

∑l

i=1
ri,0→� ⊗ ri,0→�. (13)

While estimators (11) and (13) are both valid, their statistical
variances usually differ. Hereafter, the optimal linear com-
bination of the standard and conditioned estimators will be
employed as a third estimator, as in waste-recycling Monte
Carlo [32,38], because it provides maximum reduction of the
statistical variance via a control variate [43].

Consider a mobile defect evolving randomly on a flat
potential energy surface. Its conditional mean displacements
e(χ ) are all zero and its conditional variances V(χ ) all equal
a same constant matrix Ṽ. For all generated trajectories, the
conditioned estimator yields Ṽ/2τ̄ , the exact diffusion matrix
of the defect. In this trivial situation, the conditioned estimator
is the perfect zero-variance estimator whereas the standard
estimator has nonzero statistical variance. Statistical errors
of the conditioned estimator occur when the transition rates
of mobile defects differ and their atomic environment also
evolves. Thus, the interesting question to address is how the
three estimators behave when the spectrum of the hopping
rates is extremely broad, that is, when severe kinetic trapping
of the mobile defect is observed in the Monte Carlo simula-
tions.

IV. AUXILIARY ABSORBING MARKOV CHAINS

Correlation splitting and conditioning can be employed in
conventional or advanced kMC simulations. Here, we present
simulations of severe kinetic trapping using the kinetic path
sampling (kPS) algorithm [46–48]. kPS is an accelerated
kMC algorithm developed upon theories of absorbing Markov
chains (AMC) and graph transformation [49]. It performs non-
local displacements avoiding the most trapping states. Those
are formally pooled together into a prespecified set, called
transient set using AMC terminology and denoted by T. More-
over, kPS algorithm is able to generate first-passage paths and
times efficiently based on matrix factorizations or inversions.
Other AMC-kMC algorithms rely either on matrix diagonal-
izations [50–55], a mean rate ersatz [44,45] based on Eq. (12),
or an on-the-fly modification of the hopping rates [56]. The
kMC and kPS stochastic matrices, respectively denoted by Po

and P, satisfy the conditions Po
χχ = 0 and Pχζ = 0, ∀ χ , ∀ ζ ∈

T ∪ {χ}. The probabilities of not transitioning are always zero
from any state and the respective MFPTs, denoted by τ o

χ and
τχ , are state dependent. Matrix P is constructed from Po and
an absorbing stochastic matrix, Pa coinciding with Po over T
and with identity matrix I over T̄, the complement of T. This
entails that transitions from T̄ are canceled, making T states
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transient and T̄ states absorbing:

Pa
χχ ′ = 1T(χ )Po

χχ ′ + 1T̄(χ )Iχχ ′ , (14)

where indicator function 1S is 1 if χ ∈ S and 0 otherwise.
Resorting to AMC theory [44–53], the mean number of
visits of transient state ζ ′ is defined as the conditional ex-
pectation of the indicator function 1{ζ ′} given initial state
χ1 ∈ T. It corresponds to the Green function χ1 �→ Ga

χ1ζ ′ =∑∞
k=0 E

a[1{ζ ′}(χk+1)|χ1] solution of the Poisson equation over
T:

Ga
χ1ζ ′ = Ea

[
Ga

χ2ζ ′ |χ1
] + 1{ζ ′}(χ1), (15)

entailing Ga
ζ ζ ′ = ∑

ξ∈T Po
ζ ξ Ga

ξζ ′ + Iζ ζ ′ , while Ga
χχ ′ is set to

zero whenever χ or χ ′ lies outside T. Thus, Ga and I − Pa are
two singular matrices, pseudoinverse of each other, whereas
Ga

ζ ζ ′ is the regular inverse of Iζ ζ ′ − Pa
ζ ζ ′ for ζ , ζ ′ ∈ T. For an

absorbing Markov chain starting from ζ , the knowledge of
the number of visits of state ζ ′ enables one to deduce the
probability of being absorbed at χ ′ ∈ T̄ and the mean time for
being absorbed in T̄:

Π a
ζχ ′ =

∑
ζ ′ Ga

ζ ζ ′Pa
ζ ′χ ′ + Iζχ ′ ,

τ a
ζ =

∑
ζ ′ Ga

ζ ζ ′τ
o
ζ ′ . (16)

The overlying transition probability from χ to χ ′ 
= χ and the
MFPT from χ eventually write

Pχχ ′ =
∑

ζ
Po

χζ Π
a
ζχ ′

/
πχ,

τχ =
∑

ζ
Po

χζ

(
τ o
χ + τ a

ζ

)/
πχ, (17)

where rescaling of both transition probabilities and elapsed
times by probability πχ = 1 − ∑

ζ Po
χζ Π

a
ζχ serves to cancel

the flicker probability, thus, Pχχ = 0. Besides, if Po
χχ ′ obeys

detailed balance with respect to its stationary probability dis-
tribution ρo

χ over T̄ ∪ T, then so does Pχχ ′ with respect to
ρχ ∝ ρo

χπχ over T̄. The scaled probability distribution ρ
eq
χ ∝

ρo
χτ o

χ ∝ ρχτ o
χ/πχ then corresponds to the thermodynamic

equilibrium. Fulfilment of the reversibility property allows
conditioning to be performed. The conditioned estimator (11)
can thus be used. Note that the kPS algorithm reverts to the
conventional kMC algorithm when none of the states are made
transient.

V. RANDOM ALLOY MODEL

We illustrate the approach by computing the mass transport
coefficients in a random binary alloy on a square lattice with
periodic conditions. Diffusion is mediated by a single vacancy
V exchanging with A or B nearest-neighbor atoms [3,29,57].
As aforementioned, transition rates are usually computed in
the framework of transition state theory [7]. They have the
classical form νX = ν� exp[−EX /(kBT )] where EX > 0 is the
energy barrier that neighboring atom X jumping into the va-
cancy must cross and ν� is the attempt frequency for both
species. Here, transition rates are environment independent
and only depend on the type of the jumping atom. Conse-
quently, all states are equiprobable, and the system energy

(a)

(b)

(c)

FIG. 1. Transformation of transition networks: (a) physical net-
work wherein blue and black barriers map out exchanges of a
vacancy (empty squares) with bulk A atoms (not displayed) or solute
B atoms (red disks); (b) augmented network after inserting saddle
states along vacancy-A exchanges (empty diamonds represent vacan-
cies at saddle positions); (c) reduced network after eliminating stable
states

has same constant value for all stable states. No thermody-
namic transition occurs in the random solid solution [3]. In
particular, the site percolation threshold is independent of
the jumping frequencies νA and νB. Despite its simplicity,
the random alloy model is a nontrivial system and is thus
customarily used to study trapping and percolation [29,57].
Assuming EA > EB > 0, the frequency ratio νB/νA increases
with decreasing the temperature. Hence, low temperatures
result in dynamical trapping. Here, the jump rate of B atoms,
νB, will be much higher than the one of A atoms, νA. For the
sake of simplicity, we adopt νA units by setting this value to 1
in the following. To perform kPS simulations, the transient
graph is to be crafted as the union of many disconnected
subgraphs, so that relatively small blocks of I − Pa need being
numerically manipulated on the fly (for computing Π a and
τ a). We illustrate the construction of the simulated networks
on a square lattice in Fig. 1. Trapping is suppressed by making
transient all the states where the vacancy is located next to a
B atom. The difficulty is that vacancy-solute cluster shapes
are connected to each other [see Fig. 1(a)], rendering the size
of the local transient block so huge that its enumeration is
numerically impracticable except for small and isolated B
clusters. The problem is mitigated by first augmenting the
transition network through the insertion of saddle states along
AV exchanges to divide the trapping network into many dis-
connected subgraphs [see Fig. 1(b)]. Transition probabilities
from any added saddle state to its two adjacent stable states
both equal half. Besides, doubling the transition rates from
a stable state to its adjacent saddle states and nullifying the
residence times τ o at the added saddles compensates the effect
of the occasional flickers between stable and saddle states.
Finally, stable states are all turned transient, as diagramed
in Fig. 1(c). That is, set T is the space of stable states and
the simulated network T̄ exclusively consists of the inserted
saddle states. The augmentation or reduction of the network
leaves the distributions of the sequences of simulated events
and times unaffected.

Computing the conditional cumulants given the sampled
states in estimator (11) is strenuous when a solute clus-
ter, i.e., a subgraph of the transient network, percolates
through the periodically replicated supercell, as illustrated in
Fig. 2. Cumulants e(χ0) and V(χ0) must account for all the
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)b()a(

FIG. 2. A supercell (in bold) is periodically replicated horizon-
tally. The blue and green paths represent two distinct sequences
of atomic displacements through the percolating solute cluster (the
transient subgraph) between the same starting state in (a) and ending
state in (b).

displacements r0→1 possibly sampled by kPS algorithm. The
sampled displacements starting in χ0 and ending in χ1 ∈ T̄
are all congruent to d(χ0, χ1) modulo the cell periods along
the percolating directions [see Fig. 2(a)], and many among
them may differ from d(χ0, χ1). This consequent sampling
burden is avoided by analytically integrating the underlying
conditional expected displacements ea(χh) � Ea[ru

h→h+1|χh],
in a similar way to [15,47]. Letting Eo[·] denote expectation
with respect to Po, both cumulants of overlying displacement
r0→1 are determined by the underlying sequences ru

0→1 +
ru

1→∞ ≡ r0→1 associated with the successive states of the
AMC, {χu

h }h�1, and where χu
0 = χ0 and χu

∞ = χ1.
Conditioning after the Po transition within decomposition

(17) yields

e(χ0) = Eo
[
ru

0→1 + Ea
[
ru

1→∞|χ1
]∣∣χ0

]
/πχ0 , (18a)

V(χ0) = Eo[[ru
0→1 + Ea[ru

1→∞|χ1
] − e(χ0)

]2∣∣χ0
]/

πχ0 .

(18b)

The mean displacement Ea[ea] being null, the relaxation
vector εa(χ1) � Ea[r1→∞|χ1] = ∑+∞

h=1 E
a[ea(χh)|χ1], is null

outside T and satisfies a Poisson equation inside T:

εa(χ1) = Ea[εa(χ2)|χ1] + ea(χ1). (19)

The solution is unique, and reads as εa(ζ ) = ∑
ζ ′ Ga

ζ ζ ′ea(ζ ′)
for ζ ∈ T and cancels outside T. It serves to evaluate the two
conditional cumulants (18) for estimator (11). We resort to
their respective LTE and LTV expressions with conditioning
over the underlying absorbing chain initiated from ζ ≡ χ1 to
obtain a numerically tractable expression

e(χ ) =
∑

ζ
[d(χ, ζ ) + εa(ζ )]Po

χζ /πχ , (20a)

V(χ ) =
∑

ζ

{
Va(ζ ) + [d(χ, ζ ) + εa(ζ ) − e(χ )]2}Po

χζ

/
πχ,

(20b)

where χ ≡ χ0 in (18). The variance of the absorbing chain
conditioned on ζ ≡ χ1 is also computed using the Green func-
tion and relaxation vectors, resorting to relation (22) below:

Va(χ1) = Ea
[(∑∞

h=1
ru

h→h+1

)2∣∣∣χ1

]
− εa(χ1)2 (21)

=
∑∞

h=1
Ea

[
(ru

h→h+1 + εa(χh+1))2 − εa(χh)2
∣∣χ1

]
=

∑
χζ

Ga
χ1χ

{
Pa

χζ [d(χ, ζ ) + εa(ζ )]2 − εa(χ )2
}
. (22)

(at.%) (at.%) (at.%)

FIG. 3. Atomic diffusivities D�
X (X = A, B, and A + B) for ex-

treme dynamical trapping (νA = 1 and νB = 105), as a function of
CB, with corresponding variance reduction factor η, intracorrelation-
to-extracorrelation ratio φ, and optimal variate c�. The supercell size
is 16 × 16.

Note that quantities εa and Va are first and second derivatives
of a displacement cumulant generating function at its origin,
respectively [15].

VI. ESTIMATION OF THE DIFFUSION COEFFICIENTS

We perform a series of kPS simulations of extreme dynam-
ical trapping by setting νB = 105 and νA = 1 in a periodically
replicated square lattice of size 16 × 16. Compositions are
gradually increased from 1 to 254 B atoms. The atomic
concentration of X is denoted by CX , entailing that CA+B =
CA + CB is one. The diffusion matrix D[d] is estimated us-
ing Dstd

l,L and Dcnd
l,L estimators with L = �max = 200, l = 5 ×

105 for CB < 0.5, and l = 104 for CB � 0.5. Estimates Dstd
X

and Dcnd
X of the diffusion coefficients DX for both species

and the vacancy (X = A, B, and A + B) are then obtained
via Dstd

l,L and Dcnd
l,L by averaging the corresponding elements

over the two space directions. The optimal estimate is then
obtained as Dopt

X = (1 − c�)Dstd
X + c�Dcnd

X where the optimal
control variate is c� = −cov(Dstd

X , Dcnd
X − Dstd

X )/var(Dcnd
X −

Dstd
X ). We furthermore record the transient regimes Dcnd

X (�) =
Σ� + 1

�
Γ1 + 1−�

�
Γ�−1 from (10) where Σ� and Γ�−1 are esti-

mates of the corresponding intracorrelated and extracorrelated
parts. Last, we define and evaluate the intracorrelation-to-
extracorrelation ratio φ = ΣL/ΓL and the reduction factor of
the statistical variance η = var(Dstd

X )/var(Dopt
X ).

The atomic diffusivities D�
X = DX /CX evaluated using the

standard and optimal estimators for the entire composition
range are displayed in Fig. 3, together with η, φ, and c�. We
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FIG. 4. Time dependence of the estimated DX (�) with � = t/τ̄ ,
using standard (13) and conditioned (11) estimators, for X = A, B,
and A + B. Filled areas around the curves represent 95% confidence
intervals (CI). CIs around 1

�
Γ1 and 1−�

�
Γ� curves are too small to be

visible.

observe that the speedup measured in terms of η is consid-
erable whenever the intracorrelated contribution to diffusivity
dominates (φ � 1). In this situation, the optimal estimator
perfectly matches the conditioned estimator (c� = 1). The op-
timal estimator is relatively less efficient for the fast-diffusing
B atoms when the extracorrelated contribution to B diffusivity
is significant, at B concentration lower than 40%. The lowest
reductions of variance are about a factor of 2. To investigate
the origin of the relatively lower performance of the condi-
tioned estimator, we display in Fig. 4 the transient regime
estimated from Dstd

X (�), Dcnd
X (�), and Γ�−1 with estimates of

their standard errors for 0 � � � �max. The errors associated
with Γ�−1 terms are negligible compared to those with Σ�

terms and are attributed to the intermittent binding of the
vacancy to the B clusters. Removing this intermittency in
the kPS algorithm would require making additional states
transient and handling A-connected subgraphs similarly to B
clusters.

Interestingly, the negative contributions 1−�
�

Γ� in Fig. 4
undergo fast algebraic decays towards their plateau val-
ues δ. The three curves are very well fitted by a law of
the form g(� + �0)α + δ. Implementing the nonlinear least-
squares Marquardt-Levenberg algorithm with the four fitting
parameters g, �0, α, and δ yields the power-law exponents
α associated with A, B, and A + B diffusivities. The ob-
tained α values lie in the following 68%-confidence intervals:
−1.302 ± 0.091, −1.015 ± 0.008, and −1.015 ± 0.008, re-
spectively. The convergence features of the mean-squared
mean displacements entail that a standard diffusive regime
exhibiting short-range dependence is quickly reached as �

increases [58]. This property is related to the fast algebraic
decay of the autocorrelation function, as detailed in [42].
Note that the larger exponent associated with A diffusivity de-
creases as the frequency ratio is decreased [42]. This physical
trend results from a nontrivial interplay between composition,

FIG. 5. Diffusion coefficient DA+B as a function of composition
for various lattice sizes S using the kPS and kMC algorithms. The
optimized estimator is used in all calculations. The kPS simulations
are performed with same setup as in Fig. 3, but four additional
supercell sizes, S = 8, 12, 24, and 32. The conventional kMC sim-
ulations employ 104 trajectories of 106 steps. Their CPU costs are
almost independent of the system sizes. Note that the speedups η

obtained through conditioning are considerable in conventional kMC
simulations of dilute AxB1−x systems with x < 0.1.

transition rates, site interactions, and geometry. We refer to
the recent work of Settino et al. [59] who studied anomalous
diffusion in the Aubry-André model via the autocorrelation
functions and investigated the dependence of their power-law
decay on the model physical parameters.

Here, the extremely severe dynamical trapping of the va-
cancy with B atoms strongly impacts the monotonous increase
of B diffusivity with CB. The sudden sharp increase of D�

B
observed at CB ≈ 0.35 occurs at a concentration much lower
than ps = 0.592 745, the site percolation threshold [60]. This
dynamical transition is due to the cooperative motion of small
B clusters whose effectiveness increases considerably with
CB in small supercells. With increasing supercell sizes, the
transition further sharpens and occurs closer to the percolation
threshold, as shown in Fig. 5.

The kPS simulations for the two largest supercell sizes
in Fig. 5 became inefficient and were stopped before ter-
minating. The inefficiency results from the larger sizes of
the percolating solute clusters and to the cost of computing
the Green functions for the associated transient subgraphs,
a task involving matrix inversion or factorization. Here, a
direct nonoptimized dense solver was used whose complexity
scales cubically with the sizes of the transient subgraphs.
As a result, the approach starts consuming CPU time enor-
mously when supercell sizes and B concentrations are too
large. Nevertheless, dynamical trapping disappearing beyond
the percolation threshold, conventional kMC simulations can
be used instead. One then obtains reliable estimates of the
diffusion coefficients at much larger system sizes, as shown
in Fig. 5. The variance reduction factor η allowed by the
optimal estimator in kMC simulations increases from 1 below
the percolation threshold to 105 in pure B. For concentrated
alloy system A0.1B0.9, the factor of variance reduction η is 102,
yielding an appreciable speedup. However, the conditioned
estimator underperforms the standard one at the low-B con-
centrations, when trapping becomes important in conventional
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kMC simulations. Results obtained using the conventional
kMC algorithm in systems exhibiting moderate dynamical
trapping are also reported in [42], where it is shown that
significant variance reductions via conditioning are systemati-
cally observed. The conventional kMC algorithm outperforms
kPS algorithm with excessively large transient subgraphs be-
cause the trapping strength measured in number of steps the
vacancy remains attached to a solute cluster scales linearly
with the cluster size, while the factorization cost scales cu-
bically here. A smaller prefactor for the factorization costs
makes kPS advantageous for transient subgraphs smaller than
a certain threshold value. Hence, there are two complementary
ways to improve kPS simulations: (i) avoid turning a large
vacancy-solute cluster into a transient subgraph when its size
is above the threshold, (ii) resort to a sparse linear solver to
reduce the factorization and inversion costs. The latter costs
grow quadratically with the subgraph sizes for the direct mul-
tifrontal linear solver used in Ref. [47].

Nonetheless, an interesting trend emerges from the results
of the kPS simulations with severe trapping. We indeed ob-
serve that the extracorrelation-to-intracorrelation ratio φ−1

vanishes for all diffusion measurements reported in Fig. 3
when the solute concentrations are larger than the dynam-
ical percolation threshold values. This property means that
the correlations of the underlying process are well captured
by the auxiliary absorbing Markov chains. It entails that
the extracorrelated part of the diffusion matrix is negligi-
ble and justifies the use of the kinetic cluster expansion
(KineCluE) method [24] to solve this particularly difficult dif-
fusion problem. This method neglects the extracorrelated part
and similarly resorts to auxiliary absorbing Markov chains,
but these ones are constructed from a subgraph expansion.
To adapt the KineCluE method to concentrated alloys, the
absorbing Markov chains should be solved for a sample
of alloy configurations generated at thermodynamic equilib-
rium. Whenever the extracorrelated part containing the cluster
correlations is negligible, the transport coefficients may be
correctly estimated from their intracorrelated contributions
exclusively.

Concerning the transport properties of the slowly migrat-
ing solvent species, we observe that A diffusivity is almost
not impacted by dynamical trapping and remains constant.
Reproducing a sluggish diffusion behavior where A diffusivity
exhibits a minimum at intermediate compositions, as observed
experimentally in several concentrated solid solution alloys
[44] and highly debated in the literature on high-entropy
alloys [61–66], will necessitate to parametrize the exchange

rates νA and νB, for instance, by accounting for the binding
energies and entropies between alloying elements and vacan-
cies [14,18,19,67]. This would affect short-range ordering or
clustering, introduce a dependency of vacancy concentration
on alloy composition, and impact atomic diffusion.

VII. CONCLUSION

Splitting the diffusion matrix into its intracorrelated and
extracorrelated parts and conditioning the correlations en-
ables one to formulate a law of total diffusion. A conditioned
estimator then allows measuring atomic diffusivities with
considerably improved accuracy in absence of dynamical
trapping. The use of an optimized control variate guarantees
systematic variance reductions compared with standard com-
putations performed with conventional or advanced kinetic
Monte Carlo methods. Conditioning is particularly useful
when the latter methods employ auxiliary absorbing Markov
chains able to suppress trapping at the underlying scale, like
kinetic path sampling, as it leverages the Green functions that
are computed to generate the escaping first-passage paths.
However, the cost of computing these Green functions must
remain reasonable so that kinetic path sampling simulations
always outperforms conventional kinetic Monte Carlo simu-
lations. If this condition is not met, it is preferable to limit the
sizes of the transient subgraphs or to revert to conventional
kMC simulations. The conditioning approach is in principle
amenable to the numerous kMC simulations dealing with
realistic potential energy surface accounting for lattice distor-
tions [19] or describing amorphous structures [68]. In these
simulations, the computation of the transition rates is often so
costly that the number of simulated events is quite limited.
The variance reduction technique proposed here will certainly
be useful in this particular context. As the conditioning ap-
proach represents a small overhead, it can be readily applied
to estimate transport properties of any particles migrating
through thermally activated events in crystalline or noncrys-
talline solids. Its range of applicability encompasses surface
and bulk diffusion in presence of extended defects [47,69–71]
like cavities, clusters, dislocations, or grain boundaries, within
complex alloys or any material compounds.
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