Skip to Main content Skip to Navigation
Journal articles

Extreme ion irradiation of oxide nanoceramics: Influence of the irradiation spectrum

F. Garcia Ferre A. Mairov M. Vanazzia Yves Serruys 1 Frederic Lepretre 1 L. Beck 1 Laurent van Brutzel Alain Chartier M.G. Beghi K. Sridharan F. Di Fonzo 
SRMP - Service de recherches de métallurgie physique : DEN/DMN/SRMP
Abstract : Oxide nanoceramics combine the enhanced radiation tolerance of nanocrystalline materials with the chemical inertness of oxides, and are promising materials for highly corrosive and intense radiation environments. In this work, nanocrystalline Al2O3 thin films are irradiated at 600 °C with either 12 MeV Au5þþ18 MeV W8þ or 4 MeV Ni2þ ions. The radiation damage exposure exceeds 450 displacements per atom. A comprehensive analysis of the irradiated samples is accomplished by X-Ray Diffractometry (XRD), Transmission Electron Microscopy (TEM) and Scanning-TEM (STEM). Results are compared in an effort to establish correlations between the irradiation spectrum and the response of this class of materials to radiation environments. The results show that grain growth is the main microstructural change induced by ion irradiation in the material, regardless of the ion utilized in this work. The phase evolution may be depth-dependent, and depends strongly on the ion utilized and on the irradiation spectrum. 12 MeV Au5þþ18 MeV W8þ irradiations favor the formation of g-Al2O3 and a-Al2O3, while 4 MeV Ni2þ irradiations yield mainly d-Al2O3, accompanied by small a-Al2O3 centers. Molecular dynamics simulations of displacement cascades are used to support discussions on the mass effect brought about by the different ions.
Complete list of metadata
Contributor : Contributeur MAP CEA Connect in order to contact the contributor
Submitted on : Monday, July 11, 2022 - 3:26:45 PM
Last modification on : Wednesday, July 13, 2022 - 3:28:49 AM



F. Garcia Ferre, A. Mairov, M. Vanazzia, Yves Serruys, Frederic Lepretre, et al.. Extreme ion irradiation of oxide nanoceramics: Influence of the irradiation spectrum. Acta Materialia, Elsevier, 2018, 143, pp. 156. ⟨10.1016/j.actamat.2017.10.011⟩. ⟨cea-03719927⟩



Record views