Compatibility of UN with refractory metals (V, Nb, Ta, Cr, Mo, and W): an $ab\ initio$ approach to interface reactions and diffusion behavior
Abstract
Uranium mononitride (UN)-uranium dioxide (UO$_2$) composites are being considered as an innovative advanced technology fuel option for light water reactors, where an optimal balance between the chemical advantages of UO$_2$ and the thermal and neutronic properties of UN is struck. However, the effect and extent of chemical interactions between UN and UO$_2$ during sintering and operation are still open issues of importance. A possibility to avoid these interactions is to protect the UN phase
before sintering the UN-UO$_2$ composites by encapsulating the UN. This protective material must have a high melting point, high thermal conductivity, and reasonably low neutron cross-section. Among many candidates, the use of refractory metals is a promising option. In this study, density functional theory calculations (DFT) were performed to study the interactions and kinetics at the UN-X interfaces respectively (X=V, Nb, Ta, Cr, Mo, and W). The diffusion behaviors in UN and in the metal were studied using the self-consisted mean field (SCMF) theory. Generally, the diffusion of metal atoms in UN is slow compared to the diffusion of N atoms in the metals. Furthermore, the DFT calculations predict that Ta and V may react with UN to form UTaN$_2$ and V$_8$N at the UN-X interfaces, respectively. In some cases, the formation of these phases also promotes the formation of point defects in the UN and metal phases. The interaction between W and Mo with the UN phase is largely prohibited. According to this work, Mo and W can be regarded as highly promising candidate materials for fabrication of stable UN-UO$_2$ composite fuel.
Origin : Files produced by the author(s)