Synthesis and optical properties of rod-shaped graphene nanoparticles

Daniel Medina-Lopez, Thomas Liu, Christine Elias, Loïc Rondin, Jean-sébastien Lauret, Stéphane Campidelli

To cite this version:

HAL Id: cea-03687145
https://hal-cea.archives-ouvertes.fr/cea-03687145
Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

The scientific community has given much interest to graphene in recent years because of its good mechanical, thermal and electrical properties. Nonetheless, applications in optics and optoelectronics can be limited due to the absence of a bandgap. In order to engineer a bandgap, we can reduce the size of graphene into graphene quantum dots (GQDs). GQDs synthesis is primarily described via top-down methods (lithography, hydrothermal and electrochemical approaches).[1] Though effective, these methods do not allow accurate control of the size, shape and edges of the GQDs. On the other hand, bottom-up graphene materials have developed exponentially for the last decade with the synthesis of highly controlled graphene nanoribbon structures and moderately soluble graphene quantum dots.[2,3] Our group demonstrated that bottom-up GQDs could act as single-photon emitters exhibiting high brightness and stability.[4]

In order to investigate the structure-property relationship, we designed a series of rod-shaped graphene nanoparticles that differ only by their length, keeping the same morphology, symmetry and edge states (see figure). These nanoparticles are fully soluble, which facilitate their purification and individualization in solution and give rise to well-defined absorption spectra. Here we report on the synthesis of these GQDs, and we will present results on advanced characterization of their optical properties.[5]

Figure 1: Structures and absorption spectra of rod-shaped QDs: LC_{76} - 8t-Bu (yellow), LC_{96} - 8t-Bu (red) and LC_{114} - 10t-Bu (green).

Corresponding Author

Daniel Medina Lopez
CEA-Saclay

Authors

Thomas Liu
LUMIN ENS PARIS SACLAY

Christine Elias
LUMIN ENS PARIS SACLAY

Loïc Rondin
LUMIN ENS PARIS SACLAY

Js Lauret
ENS Paris Saclay

Stephane Campidelli
CEA Saclay

View Related
B05 - Nanocarbons

F. D'Souza (University of North Texas) and T. Torres (Autonoma University of Madrid)

📅 Tuesday, 31 May 2022
⏰ 19:00 - 21:20
📍 Vancouver Convention Center - West Meeting Room 202

B05 - Fullerenes - Endohedral Fullerenes and Molecular Carbon

Carbon Nanostructures and Devices

Similar

T. Liu (LUMIN ENS PARIS SACLAY), C. Tonnelé (MONS Univeristy), C. Elias, L. Rondin, B. Carles (LUMIN ENS PARIS SACLAY), D. Medina Lopez (CEA-Saclay), Y. Chassagneux (LPENS, ENS Paris), A. Narita (OIST), C. Voisin (Ecole Normale Supérieure - CNRS), S. Campidelli (CEA Saclay), D. Beljonne (MONS Univeristy), and J. Lauret (ENS Paris Saclay)

Top Down and Bottom Up Synthesized Graphene Quantum Dots As Nanothermometers For *In Vitro* Imaging

B. H. Lee, R. L. McKinney (Texas Christian University), M. T. Hasan (Tuskegee University), and A. V. Naumov (Texas Christian University)

(Invited) Synthesis and Characterizations of Highly Fluorescent Nanographene Molecules

A. Narita (Okinawa Institute of Science and Technology Graduate University, Max Planck Institute for Polymer Research)

Photoluminescence Brightening of Single-Walled Carbon Nanotubes Using Graphene Quantum Dots

S. H. Sajjadi, S. J. Wu, M. Reggente (École Polytechnique Fédérale de Lausanne), E. K. Goharshadi (Ferdowsi University Mashhad), N. Sharif (École Polytechnique Fédérale de Lausanne), H. Ahmadzadeh (Ferdowsi University Mashhad), and A. A. Boghossian (École Polytechnique Fédérale de Lausanne)

(Invited) CRISPR-Cas9-Based Cancer Therapy Delivery By Carbon Nanomaterials

A. V. Naumov (Texas Christian University)