Skip to Main content Skip to Navigation
Journal articles

(De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles

Abstract : Germanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined operando X-ray diffraction (XRD) and ex situ 7Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 versus Li metal. High-resolution XRD data, acquired along three successive partial cycles, revealed the formation process of crystalline core–amorphous shell particles and their associated strain behavior, demonstrating the reversibility of the c-Ge lattice strain, unlike what is observed in the crystalline silicon nanoparticles. Moreover, the crystalline and amorphous lithiated phases formed during a complete lithiation cycle are identified. Amorphous Li7Ge3 and Li7Ge2 are formed successively, followed by the appearance of crystalline Li15Ge4 (c-Li15Ge4) at the end of lithiation. These results highlight the enhanced mechanical properties of germanium compared to silicon, which can mitigate pulverization and increase structural stability, in the perspective for developing high-performance anodes.
Document type :
Journal articles
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/cea-03681043
Contributor : Serge Palacin Connect in order to contact the contributor
Submitted on : Monday, May 30, 2022 - 8:42:29 AM
Last modification on : Tuesday, June 28, 2022 - 9:28:45 AM

Identifiers

Citation

Diana Zapata Dominguez, Christopher Berhaut, Anton Buzlukov, Michel Bardet, Praveen Kumar, et al.. (De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles. ACS Nano, American Chemical Society, 2022, 16 (6), pp.9819-9829. ⟨10.1021/acsnano.2c03839⟩. ⟨cea-03681043⟩

Share

Metrics

Record views

21