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Abstract

Slip activity in body-centered cubic chromium is modeled by means of ab initio calculation of screw disloca-
tions core properties and Peierls potential. As dislocations having 1/2〈111〉 Burgers vector and also 〈100〉,
both gliding in {110} crystallographic planes have been reported experimentally, both screw dislocations are
modeled. A generalized yield criterion incorporating physical ingredients necessary to account for deviations
from the Schmid law is obtained for 〈111〉{110} and 〈100〉{110} slip systems. We report a broad range of
crystal orientations for which 〈100〉 screw dislocations are easier to activate than the conventional 1/2〈111〉
in tension and compression. These results hold for both the non-magnetic and antiferromagnetic phases of
body-centered cubic chromium, with only a marginal effect of magnetism.
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1. Introduction

Among all body-centered cubic (bcc) metals,
chromium (Cr) is the only one with an antiferro-
magnetic (AF) order below its Néel temperature of
311 K [1]. At low temperature, as in other bcc met-
als, screw dislocations control the plastic deforma-
tion due to their high lattice friction [2–5]. These
dislocations glide in the {110} planes [2, 3, 6] and
have a Burgers vector equal to the smallest peri-
odicity vectors of the bcc crystal lattice, 1/2 〈111〉.
As 1/2 〈111〉 is not a periodicity vector of the AF
magnetic order, such dislocations should trail mag-
netic faults while gliding [7, 8]. But, except this
magnetic fault, ab initio calculations have shown
that magnetism has a limited impact on the core
properties of this screw dislocation [7].

In addition to this 〈111〉{110} slip system, some
experiments [3, 4] in Cr have also reported activity
of 〈100〉{110} slip systems, i.e. dislocation gliding
in the same {110} planes but with a 〈100〉 Burgers
vector. Reid and Gilbert [3] observed with TEM in
pure Cr deformed at 300 K slip traces corresponding
to cross-slip events. As intersections between the
primary and the cross-slipped {110} planes were
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along 〈100〉 and not 〈111〉 directions, this clearly
indicate slip activity of 〈100〉 dislocations in bcc
Cr, with an ability to cross-slip at ambient tem-
perature. Existence of these 〈100〉 dislocations was
later confirmed by Hale and Henderson Brown [4]
who determined Burgers vectors through extinc-
tion experiments in TEM (~g.~b contrast). Although
these 〈100〉 dislocations have a larger Burgers vec-
tor than 1/2 〈111〉 dislocations, both have close core
and elastic energy [7, 9]. The latter is a consequence
of the strong elastic anisotropy of bcc Cr: with an
anisotropy ratio A = C44/(C11−C12) smaller than
1 (A ' 0.68), 〈100〉 screw dislocations have actu-
ally a lower elastic energy than 1/2〈111〉 ones in
chromium [9]. Looking at their energy, there is thus
no physical argument to discard a priori 〈100〉 dis-
locations. Besides, 〈100〉 dislocations do not disrupt
the AF magnetic order and thus do not create mag-
netic fault in bcc Cr at low temperature, giving an
additional reason to consider them.

〈100〉 dislocations in bcc metals are the junc-
tion product resulting from the interaction of two
1/2 〈111〉 dislocations, a reaction driven by elastic-
ity [10]. Such a junction has been observed recently
by transmission electron microscopy in Cr by Holzer
et al. [5] on compressed single crystals at a temper-
ature of 77 K. However, these authors did not report
any activity of the 〈100〉{110} slip system for the
different orientations of the compression axis they
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investigated. On the other hand, ab initio calcula-
tions have shown that these 〈100〉 screw dislocations
have a Peierls energy barrier and a Peierls stress
which are comparable to 1/2 〈111〉 screw disloca-
tions [7]. One would thus expect the coexistence of
both dislocations in bcc Cr.

But plasticity in bcc metals has some complexity
which prevents discussing the competition between
different slip systems solely on the basis of their
Peierls stress. Indeed, as opposed to face-centered
cubic metals, bcc metals deviate from the predic-
tions of the Schmid law [11–13]. The experimental
yield stress measured under uniaxial loading on sin-
gle crystals exhibits an asymmetry with respect to
the orientation of the loading axis, a phenomenon
known as the twinning/antitwinning (T/AT) asym-
metry. A tension/compression (T/C) asymmetry
also exists, with a yield stress generally lower in
tension than in compression for the same loading
axis [11, 14]. Such departures from the Schmid law
have been shown to result from the trajectory of
the gliding dislocation which locally deviates from
the {110} plane [15] and from the variations along
this trajectory of the dislocation relaxation volume
[16]. With all corresponding quantities extracted
from ab initio calculations, one can build a gener-
alized yield criterion going beyond the Schmid law
to take full account of the specificities of the bcc
crystal [17].

The object of the present work is to develop such
a generalized yield criterion at 0 K in bcc Cr by
means of ab initio calculations. Both screw dis-
locations with 1/2〈111〉 and 〈100〉 Burgers vectors
are studied in order to compare their ease to glide
in {110} planes as a function of the orientation of
the loading axis. Both non-magnetic (NM) and AF
magnetic phases of Cr are considered to get fur-
ther insights on the impact of magnetism on plastic-
ity. The Peierls potentials for both slip systems and
screw dislocation core properties are first presented
before studying the dependence of 〈111〉{110} and
〈100〉{110} slip systems activity with the orienta-
tion of a uniaxial mechanical loading.

2. Computational details and methods

2.1. Ab initio parameters

All calculations have been performed within den-
sity functional theory (DFT) as implemented in the
Vasp code [18], using the same parameters as in our
previous work [7]. A projector augmented wave

pseudopotential including 12 valence electrons is
used to model Cr, with the GGA-PBE functional
[19] to approximate the exchange and correlation
potential. A plane-wave basis with an energy cutoff
of 500 eV is used, with a Γ-centered k-point mesh
generated using the Monkhorst-Pack scheme and
sampling the Brillouin zone with 20 k-points per
lattice parameter unit length in every direction. All
atomic relaxations are performed in simulation cells
with fixed periodicity vectors at the equilibrium lat-
tice parameter and the stopping condition is set on
the remaining forces on all atoms in every Cartesian
directions to be below 5 meV/Å.

Magnetism is treated as collinear within spin-
polarized DFT and spin-orbit coupling is not con-
sidered. As already thoroughly debated in various
studies [7, 20–23], the spin-density wave (SDW) ex-
perimental magnetic ground-state of bcc Cr below
its Néel temperature cannot be properly modeled
using ab initio DFT calculations, which predicts
the antiferromagnetic phase to have a lower energy
than the SDW. The experimental SDW consists
of a quasi-sinusoidal modulation of the magnetic
moments of the atoms along a 〈100〉 axis of the
crystal, with a locally AF order. However, as dis-
cussed in our previous work [7], the AF phase is a
good approximate of the experimental SDW mag-
netic ground-state, with similar elastic properties
and magnetic orders of the two phases.

Minimum energy paths between stable configu-
rations are obtained with the nudged elastic band
(NEB) method as implemented in Vasp, with 5 in-
termediate images, and a spring constant of 5 eV/Å.
The periodicity vectors of the supercell are kept
fixed in these NEB calculations.

2.2. Simulation setup for dislocation modeling

A dislocation dipole is introduced in a periodic
simulation cell using anisotropic elasticity theory,
taking account of periodicity in all three Cartesian
directions [24, 25]. To be able to extract precise
dislocation positions and to obtain the Peierls stress
via the derivative of the energy barrier with respect
to the position, the simulation setup used in this
study (Fig. 1 for the 1/2〈111〉 screw dislocation) is
slightly different from the quadrupolar arrangement
used in previous works [7, 15, 16].

In the quadrupolar arrangement which is usu-
ally preferred for modeling dislocation with peri-
odic boundary conditions (positions indicated by
blue dashed lines in Fig. 1), the two dipole dislo-
cations contained in the simulation cell are sepa-
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Figure 1: Dislocation setup used for the study of 1/2〈111〉
screw dislocations. Initial and final configurations of the
NEB calculations are shown in red and green respectively.
The position corresponding to a quadrupolar array is located
at the intermediate position and is indicated by blue dashed
lines.

rated by a vector (~p1 + ~p2) /2, where ~p1 and ~p2 are
the periodicity vectors of the simulation cell in the
plane orthogonal to the dislocation line. This setup
minimizes the elastic interactions between the dis-
locations and their periodic images. In the present
setup, the two dislocations in their initial configu-
ration are displaced from this quadrupolar position
a distance equal to half the distance λP between
two adjacent Peierls valleys, i.e. +λP /2 for +~b dis-

location and −λP /2 for −~b (red configuration in
Fig. 1). The final configuration (green configura-

tion in Fig. 1) is obtained by displacing +~b and −~b
by respectively −λP and +λP in their glide plane.
Therefore, the position of the quadrupolar array lies
half-way between the initial and final states of the
NEB calculation. As a consequence, the variation
of the elastic energy is symmetrical with respect to
this quadrupolar position located in the middle of
the path. In particular, the initial and final config-
urations are fully equivalent and have exactly the
same elastic energy, as the distance between dis-
locations and their periodic images is the same in
both configurations. To cancel the plastic strain
generated by the dislocation dipole, a homogeneous

strain is applied to the periodicity vectors of the
simulation cell [24, 25], which is calculated for the
quadrupolar position located in-between the initial
and final states. This choice preserves the symme-
try of the path. Given that the dislocation setup is
symmetrized with respect to the intermediate po-
sition, the displacements of the +~b and −~b screw
dislocations are assumed to be identical in absolute
value upon crossing the Peierls barrier. We checked
the validity of this assumption by comparing atomic
configurations of the two dislocation cores which
were found to be fully equivalent in every image
of the path for all the NEB calculations described
below.

In addition to the Volterra elastic field, disloca-
tions also induce a short-range dilatation field in the
vicinity of their cores which can be modeled as an
Eshelby inclusion defined by a relaxation volume
tensor [16]. The dislocation positions and relax-
ation volume tensor can be evaluated from ab initio
calculations taking advantage of the stress variation
∆σ induced by moving dislocations in a simulation
cell with fixed periodicity vectors [16, 17]. These
variations are caused by changes in the distance be-
tween the two dislocations of the dipole, and by the
variations of their relaxation volume. They are ex-
pressed as:

∆σij(ξ) =
Cijkl

hS
[bk∆Al(ξ)− 2h∆Ωkl(ξ)] , (1)

with ξ the reaction coordinate along the NEB path,

C the elastic constant tensor, ~b the Burgers vector,
S the surface of the simulation cell perpendicular to

the dislocation line, of height h, and ∆Ω the varia-
tion of the dislocation relaxation volume tensor per
unit length. ∆ ~A is the change in cut vector, in-
dicated by red and green arrows in Fig. 1, and is
related to the variation of the dislocation relative
positions. Assuming that dislocations +~b and −~b
are displaced from their initial positions by a vec-
tor ~r(ξ) = [x(ξ), y(ξ), 0] and −~r(ξ), this variation

of the cut vector is ∆ ~A(ξ) = 2h [y(ξ),−x(ξ), 0].
As extracted from the stress variation recorded

along the NEB minimum energy path, the trajec-
tories of the 1/2〈111〉 and 〈100〉 screw dislocations
were not exactly located at the bottom of their
Peierls valleys in the initial and final positions, and
the relaxation volumes were not perfectly symmet-
rical with respect to the middle of the trajectory
ξ = 0.5. To correct these small deviations, the elas-
tic constants appearing in Eq. 1 were slightly ad-
justed. A variation of the components C15 and C44
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allows to recover the correct properties of the dis-
location core and trajectory (Tab. A.3 and A.4).
This does not appear disproportionate as the ex-
pression used to extract the dislocation trajectories
and relaxation volumes is based on linear elasticity
theory assuming that elastic constants are not per-
turbed by the presence of the dislocation dipole. As
discussed in Appendix A, calculation of the elastic
constants for a simulation cell containing the dis-
location dipole show that such a variation of the
elastic constants is reasonable and can be induced
by anharmonicity. A similar correction was also re-
ported to be necessary in tungsten [17].

Such NEB calculations, allowing for the deter-
mination of the dislocation position and of the re-
laxation volume along the minimum energy path,
are performed in the following for the 1/2〈111〉 and
〈100〉 screw dislocations gliding in a {110} plane in
the NM and AF magnetic phases of bcc Cr.

3. Peierls potentials

3.1. 1/2〈111〉 screw dislocation

Periodicity vectors (~p1, ~p2, ~p3) of the simulation
cell used for the study of the 1/2〈111〉 screw dis-
location are given by ~p1 = λ1~u1 − λ2~u2, ~p2 =
λ1~u1 + λ2~u2, and ~p3 = n3~u3 (see Fig. 1). The
glide plane of the dislocations is oriented by its nor-
mal Y ‖ ~u2 = [101], the X ‖ ~u1 = [121] axis is
the glide direction, and the dislocation line is along
the Z ‖ ~u3 = 1/2[111] axis. The simulation cell
contains 135 atoms per b in the Z direction, corre-
sponding to λ1 = 5/2 and λ2 = 9/2. Periodicity
vector ~p3 is defined by n3 = 1 and 2 in the NM and
AF phases respectively in order to respect the AF
magnetic order in the [111] direction.

In the following subsections, we first present re-
sults for the NM magnetic phase, and then for the
AF phase where the magnetic fault created by the
1/2[111] dislocation dipole needs special care.

3.1.1. Non-magnetic phase

The Peierls energy barrier of the 1/2[111] screw
dislocation gliding in the (101) plane from the ini-
tial to final positions (red to green configuration of
Fig. 1) is presented in Fig. 2. The barrier ∆E(ξ)
obtained by NEB calculation needs to be corrected
from the variation in elastic energy caused by the
change in the distance between the two dislocations
of the dipole along the path. This process is illus-
trated in Fig. 2 for the NM magnetic phase.
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Figure 2: (a) NEB energy barrier ∆E (dashed line), varia-
tion of the elastic energy ∆Eelas (dotted line), and corrected
Peierls potential VP (solid line) for a 1/2〈111〉 screw disloca-
tion gliding in a {110} plane in the NM phase as a function
of the reaction coordinate ξ. The height of the Peierls barrier
previously obtained [7] with a setup without variation of the
elastic energy is shown with a grey cross. (b) and (c) show
the position of the screw dislocation projected along the X
and Y axis respectively.

Using the position (x, y) (Fig. 2.b and c) of the
the dislocations deduced from the stress variation
along the NEB path, the variation of the elastic
energy of the dipole is evaluated using anisotropic
elasticity theory [25]. This variation ∆Eelas of the
elastic energy (dotted line in Fig. 2.a) is sym-
metrical with respect to the saddle point, as ex-
pected from the setup used in our simulations, and
accounts for about one fifth of the energy varia-
tion observed in the NEB calculation. The energy
variation ∆E recorded along the NEB calculation
(dashed line) is then corrected from this variation
of the elastic energy to obtain the Peierls potential
VP (solid line). For comparison, the height of the
barrier obtained in our previous work using a dislo-
cation setup where both dislocations glided in the
same direction, thus without any variation of elas-
tic energy, is indicated by a grey cross at ξ = 0.5.
A very good agreement between the two setups is
found, illustrating the correctness of the elastic en-
ergy calculation and the ability of this approach to
lead to the Peierls potential despite the variations
of the elastic energy along the path. One bene-
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fit of these NEB calculations is that they allowed
the determination of dislocation position along the
energy barrier. Fig. 2 shows that the position x
of the dislocation in its glide plane slightly differs
from a simple proportionality relation, x = ξλP ,
with the reaction coordinate ξ. Most importantly,
with y > 0, the trajectory deviates from a straight
line, a feature responsible for non-Schmid effects in
bcc metals [15].

3.1.2. Antiferromagnetic phase

(a)

(b)

(c)

[111]

[1̄01]

[1̄21̄]

Figure 3: Differential displacement maps of the dislocation
dipole in the AF magnetic phase with a fault located in the
(101) plane, in the (a) initial and (b) final configurations for
the setup shown in Fig. 1. The colored rectangles indicate
the range of the magnetic fault separating the two disloca-
tions. The saddle configuration is shown in (c), located at
the intermediate position. Atoms located at different heights
along the [111] direction are represented in different colors,
and their diameters are proportional to their magnetic mo-
ments.

The disruption of the AF magnetic order by
1/2〈111〉 dislocations generates a magnetic fault
separating the two dislocations composing the
dipole [7]. Due to this fault, the energy of the ini-
tial and final configurations of the NEB path are
not identical, leading to a negative slope on the en-
ergy barrier (curve I → F in Fig. 4) as the disloca-
tions erase part of the magnetic fault when gliding
(Fig. 3). With an energy of the magnetic fault
γ = 16.3 meV/Å2 [7], one expects an energy varia-
tion ∆Emag = λP γ = 38.1 meV/Å per unit-length
of dislocation. Ab initio calculations lead to an en-
ergy difference in good agreement (Fig. 4a), which
is only slightly lower probably because of the per-
turbation of the magnetic fault by the dislocation
core. To remove this magnetic contribution to the

energy barrier, we consider the same NEB calcu-
lation but read in the reverse direction. In this
reversed path F → I, the dislocations increase the
width of the magnetic fault when gliding, now lead-
ing to a positive slope on the energy barrier (curve
F → I in Fig. 4). Because of the symmetry of
the bcc lattice and of our simulation setup where
the quadrupolar position is centered in the middle
of the path, the two paths I → F and F → I
lead to the same variations of the Peierls and elas-
tic energies. The average of the two energy barri-
ers, [∆E(ξ) + ∆E(1− ξ)] /2, therefore cancels the
magnetic contribution while keeping unchanged all
other energy contributions. The same symmetriza-
tion procedure is applied to the stress variations to
obtain the dislocation position and the variation of
the relaxation volume along the path. The varia-
tion of the elastic energy is then removed to obtain
the Peierls potential of the screw dislocation (Fig.
4) using the same procedure as for the NM phase.
Once again, a perfect agreement is found concern-
ing the height of the Peierls energy barrier between
the present NEB calculations and previous ones [7]
where the distance between dislocations was kept
constant along the path (compare red solid line with
grey cross in Fig. 4b).

3.1.3. Trajectory and relaxation volume

We now compare the trajectory of the 1/2〈111〉
screw dislocation when gliding in a {110} plane ob-
tained in the NM and AF magnetic phases as well
as the variation of its relaxation volume (Fig. 5).
As previously reported for all other bcc transition
metals [15], the 1/2〈111〉 screw dislocation does not
have a straight trajectory from one Peierls valley to
the next nearest while gliding in a {110} plane. The
screw dislocation leaves its {110} average macro-
scopic glide plane to move towards the split core
configuration [26]. This can be described by a devi-
ation angle α, defined by the tangent to the disloca-
tion trajectory at the position corresponding to the
maximum slope of the Peierls potential VP (x). This
deviation angle α in bcc Cr is −13.5◦ and −7.0◦

in the NM and AF magnetic phases respectively.
The deviation from a straight line of the dislocation
trajectory is therefore more pronounced in the NM
than in the AF magnetic phase, and one expects
that the T/AT asymmetry will be more important
in this NM phase.

In the frame of the simulation cell, the relaxation
volume tensor of the gliding 1/2〈111〉 screw dislo-
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Figure 4: (a) Energy barriers following the two paths I → F
and F → I, with the variation of magnetic fault energy
∆Emag for a 1/2〈111〉 screw dislocation gliding in a {110}
plane in the AF magnetic phase of bcc Cr as a function of
the reaction coordinate ξ. (b) Peierls potential VP obtained
after averaging the paths I → F and F → I. The height
of the barrier obtained previously [7] is shown with a grey
cross. (c) and (d) show the position of the dislocation along
the path along the X and Y axis respectively.

cation has the following form [16]:

¯̄Ω1/2〈111〉 =

Ω11 Ω12 0
Ω12 Ω22 0
0 0 Ω33

 , (2)

where Ω32 and Ω13 are negligible compared to the
other components of the tensor. There is no sym-
metry argument imposing that these components
should be null but, as also reported in the case of
bcc tungsten [16, 17], post-processing of the I → F
and F → I show that this is the case in Cr for
both NM and AF magnetic phases. The variations
of the relaxation volume tensor are extracted from
the stress variation along the dislocation minimum
energy path using Eq. 1 and by adjusting the elas-
tic constants as introduced in section 2.2. The re-
sults are presented in Fig. 5.b as a function of the
dislocation position.

As also reported in tungsten, the dilatation field
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Figure 5: (a) Trajectory of a 1/2〈111〉 screw dislocation glid-
ing in a {110} plane in the NM (blue) and AF (red) phases.
The variation of the relaxation volume tensor ∆Ωij of the
1/2〈111〉 screw dislocation is presented for (b) the NM and
(c) AF magnetic phases as a function of the dislocation po-
sition. The symbols are ab initio data after post-processing
and lines are quadratic splines.

induced by the 1/2〈111〉 screw dislocation core does
not remain isotropic upon crossing of the Peierls
barrier. The shape of the dilatation field is defined
by its ellipticity ∆Ωe = ∆Ω22 − ∆Ω11, which is
higher in the AF than in the NM magnetic phase,
and the tilt of the core deformation, ∆Ωt = 2∆Ω12,
which is similar in both phases. One therefore ex-
pects that the tension/compression asymmetry will
be more important in the AF than in the NM phase.
We note that the trace of the relaxation volume ten-
sor is not zero, and also differs from one magnetic
phase to the other. This induces a coupling be-
tween the dislocation core and the pressure. As a
consequence, the yield stress will become sensitive
to the applied pressure.

3.2. 〈100〉 screw dislocation

The simulation cell used for the 〈100〉 screw dis-
locations contains 200 atoms per b for both NM
and AF magnetic phases, with periodicity vectors
~p 1 = 10 × [100], ~p 2 = 10 × [010], and ~p 3 = [001].
Like for the 1/2〈111〉 screw dislocation (Fig. 1), the
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quadrupolar position of the dislocation array is po-
sitioned in-between the two ground-state positions
corresponding to the initial and final configurations
of the NEB calculation. The crystal is oriented by
the glide directionX ‖ [110], the normal to the glide
plane Y ‖ [110], and the dislocation line Z = [001].
In this frame, the relaxation volume tensor of the
〈100〉 screw dislocation has the following form:

¯̄Ω〈100〉 =

Ω11 0 0
0 Ω22 0
0 0 Ω33

 (3)

Like 1/2〈111〉 screw dislocations, post-processing
of the stress variations along the two I → F and
F → I paths show that Ω13 and Ω32 are zero for
the 〈100〉 screw dislocation gliding in a {110} plane.
As for the Ω12 component, the mirror symmetry of
the {110} glide plane imposes its nullity. This is
the case for both magnetic phases. As no magnetic
fault is generated by 〈100〉 dislocations in the AF
phase, the dislocation trajectory and the variation
of its relaxation volume tensor can be directly ex-
tracted from the stress variation recorded along the
NEB path between the initial and final configura-
tions in both magnetic phases.

The Peierls energy barrier opposing 〈100〉 screw
dislocation glide in a {110} plane in the NM and
AF magnetic phases is presented in Fig. 6.a and
b in solid lines as a function of the reaction coor-
dinate ξ after substraction of the variation of the
elastic energy. The heights of the barrier obtained
in our previous work [7] with a setup where both
dislocations glide in the same direction are repre-
sented by a grey cross at ξ = 0.5 for comparison.
Very good agreement is found between the two se-
tups concerning the Peierls potential of the 〈100〉
screw dislocation, proving once again the validity
of the elastic correction.

The trajectory followed by the 〈100〉 screw dislo-
cation along its minimum energy path when gliding
in a {110} plane is presented in Fig. 7.a in the NM
and AF magnetic phases. For clarity, the trajecto-
ries have been shifted up and down. We note that
the 〈100〉 screw dislocation follows a straight trajec-
tory between two adjacent Peierls valleys in a {110}
plane, and is almost identical in both magnetic
phases. This is also a consequence of the mirror
symmetry of the {110} glide plane. As the disloca-
tion trajectory coincides with the macroscopic glide
plane, 〈100〉{110} slip systems should not show any
T/AT asymmetry, unlike 〈111〉{110} slip systems.
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Figure 6: Peierls potential VP (solid lines) of a 〈100〉 screw
dislocation gliding in a {110} plane in (a) the NM and (b)
AF magnetic phases as a function of the reaction coordinate
ξ. The position of the dislocation in the glide plane is shown
in (c) and (d) in the NM and AF phases respectively.

Variations of the relaxation volume as a function of
the dislocation position x are presented in Fig. 7.b
and c in the NM and AF magnetic phases respec-
tively. Although relaxation volume tensor remains
diagonal, the high symmetry of the core dilatation
field is broken along the path, with the develop-
ment of an elliptic contribution ∆Ω22 −∆Ω11 and
of a non-negligible trace. Yield stress of the 〈100〉
screw dislocation should therefore experience ten-
sion/compression asymmetry and be sensitive to
the applied pressure. The variation of the relax-
ation volume tensor is similar in the NM and AF
phases, except for ∆Ω33 which is almost negligible
in the AF phase.

3.3. Peierls stresses

The Peierls barriers obtained after correction of
the elastic and magnetic fault contributions are pre-
sented in Fig. 8 as a function of the dislocation po-
sition x for both dislocations and magnetic phases.
The Peierls stress τP necessary to overcome the en-
ergy barrier can be evaluated precisely using the
dislocation position x extracted from NEB calcu-
lations. The Peierls stress is calculated from the
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Figure 7: (a) Trajectory of a 〈100〉 screw dislocation gliding
in a {110} plane in the NM (blue) and AF (red) phases. The
trajectories, which are straight and coincide with the black
dashed line, have been shifted upwards (NM) and downwards
(AF) for clarity. The variations of the relaxation volume ten-
sor ∆Ωij are presented for (b) the NM and (c) AF magnetic
phases as a function of the dislocation position.

maximum slope of the Peierls potential:

τP =
1

b
max

x

[
∂VP (x)

∂x

]
, (4)

with b the norm of the considered Burgers vector,
namely a0

√
3/2 and a0 for 1/2〈111〉 and 〈100〉 screw

dislocations respectively. We obtain a Peierls stress
of 2.3 and 2.0 GPa for the 1/2〈111〉 screw disloca-
tion gliding in a {110} plane in the NM and AF
magnetic phases respectively. The Peierls stress of
the 〈100〉 screw dislocation gliding in a {110} plane
is 2.2 and 1.7 GPa in the NM and AF phases re-
spectively. For both screw dislocations and both
magnetic phases, the Peierls stress does not devi-
ate by more than 0.1 GPa from the value obtained
in our previous work [7] where the dislocation posi-
tion x was assumed to vary linearly with the reac-
tion coordinate ξ. Trajectories extracted from the
NEB calculations with the present setup (Figs. 2b,
4c and 6c and d) show that it was indeed a rea-
sonable assumption. These new NEB calculations
confirm that the Peierls stresses of the 1/2〈111〉
and 〈100〉 screw dislocations are comparable in both
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Figure 8: Peierls potential VP for 1/2〈111〉 (solid lines) and
〈100〉 (dashed lines) screw dislocations gliding in a {110}
plane in the NM (blue) and AF (red) magnetic phases of
bcc Cr as a function of the dislocation position x.

magnetic phases, and that the two 〈111〉{110} and
〈100〉{110} slip systems should be competitive on
the basis of their mobilities. However, as we now
know precisely the trajectory followed by the dislo-
cation along its minimum energy path when gliding
in a {110} plane and also the variations of its relax-
ation volume along this path, it becomes possible
to study in more details the competition between
these two slip systems, taking full account of non-
Schmid effects.

4. Slip activity

In this section, the dependence of the yield stress
for 〈111〉{110} and 〈100〉{110} slip systems is stud-
ied as a function of the orientation of the loading
axis taking non-Schmid effects into account.

4.1. Yield stress

The application of a stress tensor ¯̄Σ on a gliding
dislocation results in a change in its enthalpy ∆HP

per unit length as it crosses the Peierls barrier given
by:

∆H2D
P (x, y) = V 2D

P (x, y) + Σijbi∆Aj(x, y)

− Σij∆Ω2D
ij (x, y),

(5)

where (x, y) is the position of the dislocation in the
{111} plane, V 2D

P is the 2D Peierls potential, defin-
ing the dislocation enthalpy ∆HP as a 2D function
of the dislocation position. By assuming that the
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trajectory of the dislocation between two adjacent
Peierls valleys is not sensitive to the mechanical
loading, which has been verified by ab initio calcu-
lations for tungsten [16, 17], it is possible to define
∆HP as a 1D functional of the dislocation position
x:

∆H1D
P (x) = ∆H2D

P (x, ȳ(x))

= V 1D
P (x) + Σijbi∆Aj(x)

− Σij∆Ω1D
ij (x),

(6)

where ∆ ~A(x) = 2h [ȳ(x),−x, 0], ȳ(x) is the disloca-

tion trajectory and ∆¯̄Ω1D(x) is the variation of the
relaxation volume along the NEB minimum energy
path. The second term in the right hand side of Eq.
6 is the work of the Peach-Koehler force acting on
the gliding dislocation, resulting from the coupling
between the dislocation trajectory and the applied
stress, and the last term describes the coupling be-
tween the dislocation relaxation volume and non-
glide components of the applied stress.

The yield stress σY necessary to overcome the
Peierls barrier is found at the unstable position x∗

satisfying the following conditions:

∂∆H1D
P

∂x

∣∣∣∣
x∗

= 0 and
∂2∆H1D

P

∂x2

∣∣∣∣
x∗

= 0, (7)

corresponding to the inflexion point of the Peierls
enthalpy barrier ∆HP as a function of the dislo-
cation position x. In the following, this method is
applied to the case of uniaxial loading. However
more complex loadings can be considered following
the same scheme by changing the considered stress
tensor in Eq. 6.

4.2. Uniaxial loading

Under uniaxial loading of magnitude σ along an
axis ~t, the stress tensor is:

¯̄Σ = σ(~t⊗~t) (8)

By expressing the tensile axis in the frame of the
gliding dislocation, the above stress tensor is given
by:

σ

sin2 ζ sin2 χ 1/2 sin2 ζ sin 2χ 1/2 sin 2ζ sinχ
sin2 ζ cos2 χ 1/2 sin 2ζ cosχ

cos2 ζ

 ,
(9)

where ζ is the angle between the slip direction (or

Burgers vector ~b) of the gliding dislocation and the
tensile axis ~t, and χ is the angle between the nor-
mal ~n to the glide plane and the plane of maximum

~X

~n ‖ ~Y

glide
plane

MRSSP

~b ‖ ~Z

ζ

χ < 0

σ~t

Figure 9: Schematic representation of a single crystal under
uniaxial loading along the axis ~t, showing the dislocation
glide plane of normal ~n, the slip direction ~b, the glide direc-
tion ~X and the MRSSP defining the angles ζ and χ.

resolved shear stress (MRSSP). A sketch of the sam-
ple under uniaxial loading, with the angles ζ and χ
is shown in Fig. 9.

To have a physical understanding of the contri-
bution of the relaxation volumes to the yield stress,
it is helpful to define the following quantities:

∆ΩP = Tr∆¯̄Ω = ∆Ω11 + ∆Ω22 + ∆Ω33

∆Ωe = ∆Ω22 −∆Ω11

∆Ωt = 2∆Ω12

(10)

where ∆ΩP represents the coupling with pressure,
∆Ωe is the ellipticity of the dislocation core field,
and ∆Ωt is the transverse variation. In the case of
uniaxial loading, the dislocation enthalpy ∆H1D

P of
Eq. 6 per unit length can be written as:

∆H1D
P (x) = V 1D

P (x)

− 1

2
σb sin (2ζ) [−y(x) sinχ+ x cosχ]

− 1

2
σ sin2 ζ

[
∆ΩP (x) + ∆Ωe(x) cos (2χ)

+ ∆Ωt(x) sin (2χ)
]

+
1

2
σ
(
1− 3 cos2 ζ

)
∆Ω33(x)

(11)
Taking the first and second derivatives of the above
enthalpy at the inflexion point x∗ and applying the
conditions of Eq. 7 gives the following expression
for the yield stress in tension:

σY (ζ, χ) =
2τP

sin (2ζ)
cos (χ− α)

cos (α)
+ β(ζ, χ)

, (12)
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Figure 10: Yield stress σY predicted by the criterion of Eq. 12 for [111](101) (first row) and [001](110) (second row) slip systems
under uniaxial loading as a function of the angle χ at constant ζ = 45◦, 50◦, 55◦ lines in the NM magnetic phase. Results are
shown according to the Schmid law and including non-Schmid effects in tension, and compression. The stereographic projection
corresponding to each slip system is shown in the first column.

where β is a function of the angles ζ and χ which
incorporates all the contributions of the core di-
latation. It only depends on the derivatives of the
relaxation volumes with respect to the position x
at the inflexion point:

β(ζ, χ) = sin2 ζ

[
∆Ω

′∗
e

b
cos (2χ) +

∆Ω
′∗
t

b
sin (2χ)

+
∆Ω

′∗
P

b

]
− (1− 3 cos2 ζ)

∆Ω
′∗
33

b
(13)

The superscripts ′ and ∗ denote the first deriva-
tive with respect to x and its value at the inflex-
ion point x∗ respectively. The yield stress in com-
pression is found by applying Eq. 7 at the mirror-
symmetry equivalent of the inflexion point x∗, lo-
cated at λP − x∗. The yield stress has the same
form as in tension but the parameters of the crite-
rion have different signs according to the derivatives
of the relaxation volumes at this symmetrical posi-
tion. The parameters of the above criterion for both
1/2〈111〉 and 〈100〉 screw dislocations gliding in a
{110} in the NM and AF magnetic phases of bcc
Cr are given in Tab. 1. We checked that this an-
alytical expression gives a quantitative description
of the yield stress for all orientations of the tensile

axis by comparing with the numerical resolution of
Eq. 7.

An analytical expression for a similar yield crite-
rion was introduced by Vitek and co-workers [27–
30], with a different form than the one presented
here. The main reason for these two formulations
is that the mechanical loadings considered are dif-
ferent. In the work of Vitek et al., the mechanical
loading is a superposition of a shear stress τ in the
MRSSP, and a tensile/compressive stress σ normal
to the MRSSP, leading to:−σ cos (2χ) −σ sin (2χ) τ sinχ

σ cos (2χ) −τ cosχ
0

 , (14)

where the two stress components τ and σ are inde-
pendent. Using this stress tensor in Eq. 6, Kraych
et al. have shown that the yield criterion of Vitek
et al. is recovered (see supplementary materials of
Ref. [16]), if the components ∆ΩP and ∆Ω33 of the
dislocation relaxation volume can be neglected.

When non-Schmid effects are neglected, i.e. the
dislocation trajectory is assumed to be straight be-
tween two adjacent Peierls valleys and the relax-
ation volume of the dislocation core does not vary
along the path, the dislocation enthalpy of Eq. 11
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is:

∆H1D
P (x) = V 1D

P (x)− 1

2
σbx sin (2ζ) cos (χ), (15)

where SF(ζ, χ) = sin (2ζ) cos (χ)/2 is the Schmid
factor of the slip system. Applying the conditions of
Eq. 7 to this simplified enthalpy gives the following
expression for the yield stress:

σY (ζ, χ) =
2τP

sin (2ζ) cos (χ)
=

τP
SF(ζ, χ)

, (16)

resulting in the Schmid law, which can be retrieved
from Eq. 12 taking α = 0 and β(ζ, χ) = 0. The
variation of the predicted yield stress σY as a func-
tion of the angle χ at a constant ζ is presented in
Fig. 10 for [111](101) and [001](110) slip systems in
the first and second rows respectively, considering
the NM magnetic phase. The T/AT asymmetry of
〈111〉{110} slip is clearly seen, showing an easier
glide in the χ < 0 region in tension, and the oppo-
site in compression. Apart from the easier twinning
sense, the asymmetry between tensile and compres-
sive behaviors is small, with a slightly lower yield
stress in tension in the center of the standard stere-
ographic triangle. As for the [001](110) system, no
asymmetry between twinning and antitwinning is
found, as was expected from the straight trajectory
of the 〈100〉 screw dislocation in {110} planes, and
the tensile and compressive yield stresses are also
comparable.

The predicted yield stress in the AF phase shows
the same qualitative features as in the NM phase
(see Fig. 1 in Supplementary Materials). Quan-
titatively, a lower yield stress is found for both
slip systems, due to the lower Peierls stresses τP
in the AF phase, and the T/AT asymmetry of
〈111〉{110} slip is less pronounced than in the NM
phase, because of the lower deviation α. However,
tension/compression asymmetry for 〈111〉{110} is
more pronounced given the higher magnitude of the
relaxation volumes in the AF phase, and is almost
identical to the NM case for 〈100〉{110} (Tab. 1).

In the following section, we use the obtained yield
criterion to consider the competition between the
different 〈111〉{110} and 〈100〉{110} slip systems for
all possible orientations of the tensile/compressive
axis at 0 K in the NM and AF magnetic phases of
bcc Cr.

Table 1: Parameters of the yield criterion of Eq. 12 for
〈111〉{110} and 〈100〉{110} slip systems in the NM and AF
magnetic phases of bcc Cr under uniaxial loading: Peierls
stress τP (GPa), angle α (◦), and derivatives of the relax-
ation volumes with respect to the dislocation position x at
the inflexion point x∗. The signs of the parameters corre-
spond to tension/compression values.

〈111〉{110} 〈100〉{110}
NM AF NM AF

τP ±2.32 ±1.98 ±2.17 ±1.74
α ∓13.46 ∓6.970 0 0

∆Ω
′∗
P ±0.041 ±0.171 ±0.058 ±0.099

∆Ω
′∗
e ±0.025 ±0.103 ±0.007 ±0.015

∆Ω
′∗
t +0.133 +0.237 0 0

∆Ω
′∗
33 ∓0.034 ±0.041 ∓0.086 ∓0.014

4.3. Competition between 1/2〈111〉 and 〈100〉
Using the yield criterion of Eq. 12, the yield

stress σY of all slip systems of the 〈111〉{110} and
〈100〉{110} types is evaluated as a function of the
orientation of the tensile axis in the region of the
stereographic projection shown in the upper row of
Fig. 10. This region encapsulates the whole range
of orientations to characterize the plastic anisotropy
of both slip systems. The results for the NM phase
are presented in the first row of Fig. 11 according to
the Schmid law, and including non-Schmid effects
in tension and compression. The distribution of
primary slip systems predicted by the Schmid law
is a direct image of the ratio between the Peierls
stresses of 1/2〈111〉 and 〈100〉 screw dislocations,
weighted by their respective Schmid factors. The
regions colored in green represent the range of load-
ing orientations where a 〈100〉{110} system requires
a lower stress to operate than a 〈111〉{110} system.
These regions are close to a 〈111〉 axis, where the
maximum Schmid factor of a 〈111〉{110} system is
below 0.3 whereas it concentrates the orientations
for which the Schmid factor of a 〈100〉{110} is max-
imum. According to these results, 〈100〉 slip should
be observed for a large range of loading orientations
in both tension and compression.

The distribution of the corresponding primary
slip systems in the NM phase, i.e. with the lowest
yield stress at a given loading orientation, is shown
on the second row of Fig. 11. If 〈100〉{110} sys-
tems were not considered, the Schmid law predicts
a single 〈111〉{110} primary slip system in each of
the 〈100〉 − 〈110〉 − 〈111〉 triangle, and the repar-
tition of the yield stress would follow its Schmid
factor in each triangle. With non-Schmid effects,
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Figure 11: Type of slip systems (first row), with the corre-
sponding primary system (second row) and yield stress σY
(third row) for bcc Cr in the NM magnetic phase under uni-
axial loading, both according to the Schmid law (first col-
umn), and including non-Schmid effects in tension (second
column), and compression (third column).

the orientations resulting in the lowest yield stress
to activate a given 〈111〉{110} system are shifted to-
wards χ < 0 in tension, and χ > 0 in compression as
a consequence of the T/AT asymmetry due to the
deviated trajectory of the 1/2〈111〉 screw disloca-
tion. As this affects every slip system of this family,
we see the appearance of a region where [111](101)
(purple) is easier to activate in compression near
[001], and [111](110) in tension (sky blue) near the
[011]− [111] edge of the standard stereographic tri-
angle. We also note that the maximum Schmid fac-
tor among 〈100〉{110} systems goes to zero for load-
ing axis close to the [001] corner of the stereographic
triangle. When non-Schmid effects are taken into
account, the region where 〈100〉{110} slip systems
are easier to activate is reduced in compression as

[111](101) glides more easily in the χ > 0 zone.

The results in the AF magnetic phase show the
same qualitative features as in the NM phase (see
Fig. 2 in Supplementary Materials). However, as

the ratio τ
〈100〉
P /τ

1/2〈111〉
P between Peierls stresses is

slightly lower than in the NM phase (0.89 and 0.94
respectively, see Tab. 1), a larger range of loading
orientations favors 〈100〉{110} slip over 〈111〉{110}.

5. Discussion

5.1. Deviation from the Schmid law

Looking separately to the dislocations with two
possible Burgers vectors, the 〈111〉{110} slip sys-
tems show a behavior deviating noticeably from the
predictions of the Schmid law. The main experi-
mental features of plasticity in bcc metals are well
captured by the model, namely the T/AT asymme-
try and the asymmetrical behaviors in tension and
compression with an overall lower yield stress in
tension in the center of the stereographic triangle.

On the other side, 〈100〉{110} slip systems do
not show T/AT asymmetry since 〈100〉 screw dislo-
cations have a straight trajectory in {110} planes.
Only the coupling of the dislocation relaxation vol-
ume with the applied stress has an effect on the
predicted yield stress. For these 〈100〉{110} slip
systems, an almost negligible deviation from the
Schmid law is predicted, as shown in the second
row of Fig. 10.

Qualitatively, magnetism has only a small influ-
ence on the yield behavior of bcc Cr under uniax-
ial loading. Indeed, the deviation angle defining
dislocation trajectory and T/AT asymmetry is al-
most the same in both magnetic phases and the
relaxation volumes of the two screw dislocations
also follow the same trends. However, the ten-
sion/compression asymmetry is more pronounced
in the AF phase as a result of the higher magni-
tude of its components, whereas the T/AT asym-
metry is more pronounced in the NM phase with
a deviation angle twice the value found in the AF
phase. As the Peierls stress of both screw disloca-
tions is slightly lower in the AF than in the NM
phase, the overall yield stress required to activate
slip is lower. However, the predicted primary slip
systems are the same in the two magnetic phases,
covering a more or less equivalent space in the stere-
ographic projection shown in Fig. 11.
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5.2. Competing slip systems and comparison with
experimental data

Observations of dislocations with a 〈100〉 Burgers
vector have been reported in various experimental
studies: in polycrystalline samples at room temper-
ature by Hale and Henderson Brown [4] using a two-
beam extinction criterion in transmission electron
microscopy, by Reid and Gilbert [3] through a cross-
slip event incompatible with a 1/2〈111〉 dislocation,
and by both McLaren [2] and Garrod and Wain [31]
in an annealed sample as part of hexagonal disloca-
tion networks formed by intersecting 1/2〈111〉 dis-
locations. Holzer et al. [5] also report the presence
of 〈100〉 dislocations in a compressed single-crystal
at 77 K oriented at the center of the stereographic
triangle, formed by the intersection of two 1/2〈111〉
screw dislocations.

Our ab initio modeling predicts 〈100〉{110} slip
to occur in a large portion of the standard stere-
ographic triangle, mainly near 〈111〉 orientations
(see Fig. 11) where slip systems having all three
〈100〉 Burgers vectors have the same Schmid fac-
tor. For instance, in the case of the [5 9 11] single
crystal tested in compression by Holzer et al. [5],
strong 〈100〉{110} slip activity is expected. The
predicted yield stress for the slip systems having
the 6 highest Schmid factors are presented in Tab.
2, among which the two most stressed are of the
〈100〉{110} type. For this orientation, the authors
report slip activity on both (101) and (110) planes
through the rotation of the sample towards the cor-
responding poles of the stereographic projection.
They attributed this observation to the activity
of a 〈111〉{110} slip system for both observed slip
planes. However, according to our yield criterion,
the lowest yield stress for a 〈111〉{110} slip sys-
tem in compression for (110) slip is 6.95 GPa in
the AF phase, whereas it is only 3.68 GPa for a
〈100〉{110} system, suggesting slip might have oc-
curred through the operation of the [001](110) slip
system. As for slip on (101) plane, it is prob-
ably due to the operation of the highly stressed
[111](101) system, but can also be interpreted as
the operation of the [010](101) slip system, which
has a lower predicted yield stress in compression.

The contribution of the different slip systems to
the development of the plastic strain depends not
only on the dislocation ease to glide but also on the
corresponding dislocation density and their multi-
plication propensity. Hale and Henderson Brown [4]
measured the ratio of presence between 1/2〈111〉,
〈100〉, and 〈110〉 dislocations in both iron (Fe) and

Table 2: Predicted yield stress for Cr single crystal under
uniaxial compression along [5 9 11] (ζ = 54.9◦, χ = 23.4◦)
considering the AF magnetic phase.

Slip system SF Schmid law Compression

[111](101) 0.432 4.59 GPa 4.45 GPa

[111](110) 0.378 5.25 GPa 6.95 GPa

[111](101) 0.270 7.35 GPa 8.18 GPa

[001](110) 0.480 3.62 GPa 3.68 GPa

[010](101) 0.449 3.87 GPa 3.98 GPa
[100](011) 0.312 5.58 GPa 5.25 GPa

Cr using TEM observations. For a single extinction
criterion ~g.~b = 0, they reported a ratio of 60:20:20
for Fe, and 46:36:18 for Cr, thus leading to a non-
negligible density of 〈100〉 dislocations compared
to 1/2〈111〉, with a higher proportion in Cr than
in Fe. This relative density of 〈100〉 dislocations
is, nevertheless, probably overestimated because of
the use of an extinction criterion with a single ~g
vector. Using at least two different ~g vectors, the
measured ratios in Fe were now 94:5:1, with thus
a much lower, but still non-negligible, relative den-
sity of 〈100〉 dislocations. Unfortunately, no anal-
ysis with two extinction conditions was performed
in Cr. One can only expect that a lower proportion
of 〈100〉 dislocations would be obtained than with
a single extinction condition, but that the relative
density will still be relevant, like in Fe. These 〈100〉
dislocations are actually observed as junctions be-
tween intersecting 1/2〈111〉 dislocations [5]. At low
temperature, 77 K in the work of Holzer et al. [5],
all 〈100〉 and 1/2〈111〉 dislocations are lying along
their screw orientation. Our ab initio results indi-
cate that resolved shear stress necessary to activate
glide of the 〈100〉 screw dislocations is lower than for
the 1/2〈111〉. These junctions could therefore act
as sources of 〈100〉 dislocations for well oriented me-
chanical loadings. This will allow for the increase of
〈100〉 dislocation density, unless another character
has a higher Peierls stress than the screw orienta-
tion and impedes the activation of 〈100〉 sources.

6. Conclusion

Through ab initio evaluation of the Peierls barri-
ers opposing 1/2〈111〉 and 〈100〉 screw dislocations
glide in {110} planes, a yield criterion incorporat-
ing non-Schmid effects has been proposed for bcc
Cr and applied to uniaxial loading. Both the tra-
jectory and variations of the relaxation volume of

13



the two screw dislocations have been taken into
account. As in other bcc metals [15], the devi-
ated trajectory of 1/2〈111〉 screw dislocations re-
sults in T/AT asymmetry. On the other hand,
〈100〉 screw dislocations have a straight trajectory
from one Peierls valley to the next nearest in a
{110} plane. Hence the yield behavior of these slip
systems do not show T/AT asymmetry. The asym-
metry between tensile and compressive behaviors
arises from the coupling between the applied stress
and the variations of the relaxation volume of the
dislocation core field, resulting in a generally lower
yield stress in tension than in compression.

A compact form of the yield criterion for both
〈111〉{110} and 〈100〉{110} slip systems in the NM
and AF magnetic phases has been proposed with
parameters extracted from ab initio calculations,
where the contributions of the dislocation trajec-
tory and relaxation volume are well defined. This
criterion allowed to confirm the strong competition
between 〈111〉{110} and 〈100〉{110} slip systems.

Additionally, we show in this study that this com-
petition is even more pronounced including the in-
fluence of the orientation and sign of the mechanical
loading. A particular zone of interest with respect
to this observation lies close to 〈111〉 axis where
〈100〉{110} slip systems are predicted to contribute
to the plastic deformation of Cr. This result holds
for both tensile and compressive loadings in the NM
and AF magnetic phases. As a consequence, 〈100〉
screw dislocations should play an important role in
the plastic deformation of bcc Cr.

Appendix A. Elastic constants of the dislo-
cated crystal

Appendix A.1. 1/2〈111〉 screw dislocation

In section 3.1.3, the values of the elastic con-
stants appearing in Eq. 1 for the extraction of the
1/2〈111〉 screw dislocations relaxation volume and
trajectory had to be adjusted from the bulk values
to ensure the following conditions on the dislocation
core properties:

x(ξ = 0) = 0

x(ξ = 1) = λP

∆Ω12(ξ = 0) = ∆Ω12(ξ = 1/2) = ∆Ω12(ξ = 1) = 0
(A.1)

In the frame of the 1/2〈111〉 screw dislocation, the
elastic tensor appearing in Eq. 1 is:

C〈111〉 =


C11 C12 C13 0 C15 0
C12 C11 C13 0 −C15 0
C13 C13 C33 0 0 0
0 0 0 C44 0 −C15

C15 −C15 0 0 C44 0
0 0 0 −C15 0 C66


To impose the above conditions A.1, only the C15

and C44 components of the elastic tensor have to
be adjusted, by 6 GPa and 17 GPa respectively in
the NM phase, and by 10 GPa and 17 GPa respec-
tively in the AF phase (Tab. A.3). To test the
validity of our approach, we evaluated the elastic
constants of a simulation cell containing a dislo-
cation dipole, and compared the results with the
values for the perfect bcc unit cell. To do so, 6 dif-
ferent deformations are applied to both simulation
cells, and the elastic constants are fitted to the ab
initio stresses through a least-square minimization
procedure. The calculation of the elastic constants
of the dislocated crystal is carried out only for the
NM magnetic phase, and the results are presented
in Tab. A.3. Comparing the perfect bcc unit cell
with the dislocated crystal, we find relatively small
variations for the 7 components of the elastic ten-
sor, except for C15 and C44 which vary by 5 GPa
and 20 GPa respectively. This change is of the same
order and sign than for the fitted elastic constants
obtained through the procedure to impose the sym-
metry of the 1/2〈111〉 screw dislocation relaxation
volume and trajectory in the NM magnetic phase.
The adjustment of the elastic constants therefore
appears legitimate in view of anharmonic effects
induced by the dislocation dipole, a result already
observed in bcc tungsten [17].

Appendix A.2. 〈100〉 screw dislocation

In the frame of the 〈100〉 screw dislocation, the
elastic tensor is:

C〈100〉 =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66


Only the conditions A.1 on the dislocation position
has to be satisfied as Ω12 is null for 〈100〉 screw dis-
location gliding in a {110} plane. For this purpose,
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Table A.3: Elastic constants (in GPa) of the perfect bcc unit cell rotated in the frame of the 1/2〈111〉 screw dislocation (Perfect
crystal), of the simulation cell containing the dislocation dipole (Dislocated crystal), and the corrected values used to extract
the screw dislocation trajectory and variations of the relaxation volume (Fit).

NM phase C11 C12 C13 C15 C33 C44 C66

Perfect crystal 420 164 191 38 394 155 128
Dislocated crystal 416 174 195 33 382 135 118
Fit 420 164 191 32 394 138 128
AF phase C11 C12 C13 C15 C33 C44 C66

Perfect crystal 338 86 117 45 306 157 126
Fit 338 86 117 35 306 140 126

only C44 had to be slightly adjusted from the bulk
values, as presented in Tab. A.4. The correction is
only of a few GPa in both magnetic phases (4 GPa
and 1 GPa in the NM and AF phases respectively).

Table A.4: Elastic constants (in GPa) of the bcc unit cell
rotated in the frame of the 〈100〉 screw dislocation (Perfect)
and the corrected values used to extract the screw dislocation
trajectory and variations of the relaxation volume (Fit).

NM phase C11 C12 C13 C33 C44 C66

Perfect 415 219 151 483 98 166
Fit 415 219 151 483 102 166
AF phase C11 C12 C13 C33 C44 C66

Perfect 343 152 63 432 96 185
Fit 343 152 63 432 97 185
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