Skip to Main content Skip to Navigation
Journal articles

PICSAR-QED: a Monte Carlo module to simulate strong-field quantum electrodynamics in particle-in-cell codes for exascale architectures

Luca Fedeli 1 Neïl Zaïm 1 Antonin Sainte-Marie 1 Maxence Thévenet 2 Axel Huebl 3 Andrew Myers 3 Jean-Luc Vay 3 Henri Vincenti 1 
1 PHI - Physique à Haute Intensité
IRAMIS - Institut Rayonnement Matière de Saclay, LIDyl - Laboratoire Interactions, Dynamiques et Lasers (ex SPAM)
Abstract : Abstract Physical scenarios where the electromagnetic fields are so strong that quantum electrodynamics (QED) plays a substantial role are one of the frontiers of contemporary plasma physics research. Investigating those scenarios requires state-of-the-art particle-in-cell (PIC) codes able to run on top high-performance computing (HPC) machines and, at the same time, able to simulate strong-field QED processes. This work presents the PICSAR-QED library, an open-source, portable implementation of a Monte Carlo module designed to provide modern PIC codes with the capability to simulate such processes, and optimized for HPC. Detailed tests and benchmarks are carried out to validate the physical models in PICSAR-QED, to study how numerical parameters affect such models, and to demonstrate its capability to run on different architectures (CPUs and GPUs). Its integration with WarpX, a state-of-the-art PIC code designed to deliver scalable performance on upcoming exascale supercomputers, is also discussed and validated against results from the existing literature.
Complete list of metadata

https://hal-cea.archives-ouvertes.fr/cea-03622022
Contributor : Caroline Lebe Connect in order to contact the contributor
Submitted on : Monday, March 28, 2022 - 4:31:09 PM
Last modification on : Wednesday, March 30, 2022 - 3:49:38 AM

Links full text

Identifiers

Citation

Luca Fedeli, Neïl Zaïm, Antonin Sainte-Marie, Maxence Thévenet, Axel Huebl, et al.. PICSAR-QED: a Monte Carlo module to simulate strong-field quantum electrodynamics in particle-in-cell codes for exascale architectures. New Journal of Physics, Institute of Physics: Open Access Journals, 2022, 24 (2), pp.025009. ⟨10.1088/1367-2630/ac4ef1⟩. ⟨cea-03622022⟩

Share

Metrics

Record views

18